一阶电路和二阶电路的阶跃响应、冲击响应PPT
- 格式:ppt
- 大小:1.20 MB
- 文档页数:22
实验四 一阶电路和二阶电路的动态响应一、 实验目的(1) 理解零输入响应、零状态响应和完全响应 (2) 理解欠阻尼、临界和过阻尼的意义和条件 二、 实验原理用二阶微分方程描述的动态电路称为二阶电路。
图所示的线性RLC 串联电路是一个典型的二阶电路。
可以用下述二阶线性常系数微分方程来描述:s 2U 2=++c c c u dt du RC dtu d LC 1. 零输入响应动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。
电路如图6.2所示,设电容已经充电,其电压为U 0,电感的初始电流为0。
(1) CL R 2>,响应是非振荡性的,称为过阻尼情况。
电路响应为:图6.2 RLC 串联零输入响应电路图6.3 二阶电路的过阻尼过程u Lt mU 0)()()()()(212112012120t P t P t P t P C e e P P L U t i e P e P P P U t u ---=--=响应曲线如图6.3所示。
可以看出:u C (t)由两个单调下降的指数函数组成,为非振荡的过渡过程。
整个放电过程中电流为正值, 且当2112lnP P P P t m -=时,电流有极大值。
(2)CL R 2=,响应临界振荡,称为临界阻尼情况。
电路响应为tt c te LUt i e t U t u ααα--=+=00)()1()( t ≥0响应曲线如图6.4所示。
图6.4 二阶电路的临界阻尼过程(3) CL R 2<,响应是振荡性的,称为欠阻尼情况。
电路响应为t e LU t i t e U t u d td d t dC ωωβωωωααsin )(),sin()(000--=+==t ≥0其中衰减振荡角频率 2220d 2L R LC 1⎪⎭⎫ ⎝⎛-=-=αωω ,αωβdarctan= 响应曲线如图6.5所示。
U 0t图6.5 二阶电路的欠阻尼过程 图6.6 二阶电路的无阻尼过程(4)当R =0时,响应是等幅振荡性的,称为无阻尼情况。
补充第一章 阶跃响应冲击响应与卷积积分法电路中除电阻元件外,还包括有电容和电感等动态元件,如此的电路称为动态电路。
在动态电路分析中,鼓励和响应都表示为时刻t 的函数,采纳微分方程求解电路和分析电路的方式,称为时域分析法。
本章要紧讨论一阶电路的阶跃响应、冲激响应、任意输入的零状态响应,和二阶电路在恒定输入下的零状态响应。
§1-1 阶跃响应和冲激响应电路的输入除恒定不变的常量(即恒定输入或直流输入)和按正弦规律变更的交流量(即正弦输入)之外,常见的还有另外两种奇异函数,即阶跃函数和冲激函数。
本节就来讨论这两种函数的概念、性质及作用于线性动态电路时所引发的响应。
单位阶跃函数(unit step function )用()t ε来表示,它概念为 0(0)()1(0)t t t ε<⎧=⎨>⎩ 波形如图1-1(a )所示,在0t =处,()t ε由0跃变至1。
若是单位阶跃函数的跃变点不是在0t =处,而是在0t t =处,波形如图1-1(b )所示,那么称它为延迟的单位阶跃函数,用0()t t ε-表示,即0000()()1()t t t t t t ε<⎧-=⎨>⎩图1-1单位阶跃函数与任一常量K 的乘积()K t ε仍是一个阶跃函数,现在阶跃的幅度为K 。
单位阶跃函数与任一函数()f t 的乘积将只保留该函数在阶跃点以后的值,而使阶跃点以前的值变成零,即有0000(0)()()()(0)0()()()()()t f t t f t t t t f t t t f t t t εε<⎧=⎨>⎩<⎧-=⎨>⎩因此,单位阶跃函数能够用来“起始”一个任意函数()f t ,这给函数的表示带来了方便。
例如关于线性函数()(f t Kt K =为常数),由图1-2(a)、(b)、(c)能够清楚地看出()f t 、()()f t t ε及0()()f t t t ε-的不同。