幂的乘方与积的乘方
- 格式:doc
- 大小:68.50 KB
- 文档页数:12
幂的乘方与积的乘方
1、幂的乘方:底数不变,指数相乘
(a^n)^m=a^(m·n),m个a^n相乘
(a^n)^(1/m)=a^(n/m),1/m个a^n相乘
2、积的乘方:
(a·b)^n=a^n·b^n
(m^a·n^b)^c=m^(a·c)·n^(b·c)
2、同底数幂的乘法:既然底数相同,指数就可以相加
a^m·a^n=a^(m+n)
扩展资料
数学中的“幂”,是“幂”这个字面意思的引申,“幂”原指盖东西布巾,数学中“幂”是乘方的结果,而乘方的表示是通过在一个数字上加上标的形式来实现的,故这就像在一个数上“盖上了一头巾”,在现实中盖头巾又有升级的意思,所以把乘方叫做幂正好契合了数学中指数级数快速增长含义,形式上也很契合,所以叫做幂。
幂不符合结合律和交换律。
因为十的次方很易计算,只需在后加零即可,所以科学记数法借助此简化记录数的方式;二的次方在计算机科学中很有用。
第二节 幂的乘方与积的乘方要点精讲一、乘方的概念在a n 中,相同的乘数a 叫做底数(base number ),a 的个数n 叫做指数(exponent ),乘方运算的结果a n 叫做幂.a n 读作a 的n 次方,如果把a n 看作乘方的结果,则读作a 的n次幂.a 的二次方(或a 的二次幂)也可以读作a 的平方;a 的三次方(或a 的三次幂)也可以读作a 的立方.二、幂的乘方法则幂的乘方,底数不变,指数相乘.用字母表示为:(a m )n =a (m ×n ) 幂的乘方 m,n 为正整数特别的:a mn =a (mn )三、积的乘方积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘.用字母表示为:(a ×b )n =a n ×b n n 为正整数这个积的乘方法则也适用于三个以上乘数积的乘方.如:(a ×b ×c )n =a n ×b n ×c n注意注意:1.负数乘方的符号法则.2.积的乘方等于积中“每一个”因式乘方的积,防止有的因式漏乘方错误.3.在计算(-2xy 3z 2)4=(-2)4x 4(y 3)4(z 2)4=16x 4y 12z 8的过程中,应把y 3 , z 2 看作一个数,再利用积的乘方性质进行计算.相关链接科学记数法将一个绝对值大于10的数写成“a 乘10的n 次方(或叫做n 次幂)”,(其中大小关系是“1≤a 的绝对值<10”且n 为正整数)的形式叫做科学记数法(1)当有了负整数指数幂的时候,小于1的正数也可以用科学记数法表示.例如:0.00001=10的负5次方,即小于1的正数也可以用科学记数法表示为a 乘10 的负n 次方的形式,其中a 是正整数数位只有一位的正数,n 是正整数.任何非0实数的0次方都等于1.典型分析1. 算的结果是( ) 32)2(xA .B .C .D .【答案】B【解析】 故选B .2.计算的结果是【 】A .B .C .D .【答案】C 。
幂的乘方与积的乘方的逆用-概述说明以及解释1.引言1.1 概述概述:在数学中,幂的乘方和积的乘方是常见的运算形式。
幂的乘方指的是一个数的自身多次相乘,而积的乘方是多个数相乘的结果再自身多次相乘。
本文将探讨幂的乘方与积的乘方的逆用,即如何将一个数的乘方运算转化为幂运算或者将一个积的乘方转化为乘法运算。
通过比较幂的乘方和积的乘方的逆用方法,可以帮助我们更好地理解这两种运算形式之间的关系,提高解题效率。
本文将从理论分析和实际应用两个方面对这一主题展开讨论,以期为数学领域的研究和实践提供一定的启发。
1.2 文章结构文章结构包括引言、正文和结论三部分。
引言部分主要介绍了文章的背景和意义,引起读者的兴趣;正文部分详细阐述了幂的乘方、积的乘方以及它们的逆用比较;结论部分对文章的内容进行总结,并探讨了幂的乘方与积的乘方的逆用在不同领域的应用和未来的发展方向。
整个文章结构清晰明了,逻辑性强,能让读者快速理解文章的主要内容和观点。
1.3 目的:本文旨在探讨幂的乘方与积的乘方在数学中的应用及其逆用。
通过深入分析这两种运算的特性,我们希望能够更好地理解它们在解决问题时的实际应用方式,并且帮助读者更加灵活地运用这些概念。
同时,通过对比幂的乘方和积的乘方的逆用方法,我们将探讨它们在不同领域中的实际应用,以期为读者提供更全面的知识和启发。
通过本文的阐述,我们希望读者能够深入了解数学中的这些概念,并将其运用到实际生活或学习中,从而提升自己的数学思维能力和解决问题的能力。
2.正文2.1 幂的乘方幂的乘方是数学中常见的概念,表示将一个数自身乘以自身多次得到的结果。
例如,2的3次幂表示将2乘以自身3次,即2*2*2=8。
幂的乘方可以简单地用符号表示为a^b,其中a为底数,b为指数。
在数学运算中,幂的乘方有着重要的作用,可以用来表示很大的数字以及进行复杂的计算。
幂的乘方可以带来很多好处,其中之一是简化大数的表示和计算。
通过对一个数进行幂的乘方操作,可以快速得到结果而不需要逐个相乘。
一、概述乘方是数学中常见的运算方式,而在七年级下册数学课程中,乘方的概念和运算更是重要的一部分。
其中,幂的乘方和积的乘方是学习乘方的重要内容,通过对这两个概念的深入理解和掌握,可以帮助学生更好地应用乘方运算解决实际问题,提高数学能力。
二、幂的乘方1. 幂的概念幂指的是将一个数自身相乘若干次,比如2的3次幂即为2乘以2乘以2,记作2^3。
2. 幂的运算规则a. 同底幂相乘:若a^n × a^m,即底数相同,指数相加,底数不变。
b. 同底幂相除:若a^n ÷ a^m,即底数相同,指数相减,底数不变。
c. 幂的乘方:(a^n)^m = a^(n×m),即一个数的幂再乘以一个数的幂等于这个数的幂的乘积。
3. 举例说明若有2^3 × 2^2,则根据同底幂相乘的规则,底数2不变,指数相加得到2^(3+2)=2^5,因此2^3 × 2^2=2^5。
三、积的乘方1. 积的概念积的乘方指的是将一个数的积自身相乘若干次,比如(2×3)的4次幂即为2×3乘以2×3乘以2×3乘以2×3,记作(2×3)^4。
2. 积的乘方运算规则a. 积的乘方展开:(a×b)^n = a^n × b^n,即括号中的积的乘方等于括号里的各项的乘方相乘。
b. 积的乘方合并:a^n × a^n = (a^n)^2 = a^(2n),即同底数的乘方相乘等于底数不变,指数相加。
3. 举例说明若有(2×3)^4,则根据积的乘方展开的规则,括号中的积的乘方等于2的4次幂乘以3的4次幂,即(2^4) × (3^4)。
四、应用举例1. 计算器计算通过计算器进行幂的乘方和积的乘方的计算。
2. 实际问题通过应用题来帮助学生更好地理解幂的乘方和积的乘方在解决实际问题中的应用。
五、总结通过对幂的乘方和积的乘方的理解和掌握,学生可以更好地进行乘方运算、解决实际问题。
幂的运算一1.同底数幂的乘法:a m·a n=a m+n (m, n是自然数)同底数幂的乘法法则是本章中的第一个幂的运算法则,也是整式乘法的主要依据之一。
学习这个法则时应注意以下几个问题:(1)先弄清楚底数、指数、幂这三个基本概念的涵义。
(2)它的前提是“同底”,而且底可以是一个具体的数或字母,也可以是一个单项式或多项式,如:(2x+y)2·(2x+y)3=(2x+y)5,底数就是一个二项式(2x+y)。
(3)指数都是正整数(4)这个法则可以推广到三个或三个以上的同底数幂相乘,即a m·a n·a p....=a m+n+p+... (m, n, p都是自然数)。
(5)不要与整式加法相混淆。
乘法是只要求底数相同则可用法则计算,即底数不变指数相加,如:x5·x4=x5+4=x9;而加法法则要求两个相同;底数相同且指数也必须相同,实际上是幂相同系数相加,如-2x5+x5=(-2+1)x5=-x5,而x5+x4就不能合并。
例1.计算:(1) (- )(- )2(- )3 (2) -a4·(-a)3·(-a)5解:(1) (- )(- )2(- )3分析:①(- )就是(- )1,指数为1=(- )1+2+3②底数为- ,不变。
=(- )6③指数相加1+2+3=6= ④乘方时先定符号“+”,再计算的6次幂解:(2) -a4·(-a)3·(-a)5分析:①-a4与(-a)3不是同底数幂=-(-a)4·(-a)3·(-a)5可利用-(-a)4=-a4变为同底数幂=-(-a)4+3+5②本题也可作如下处理:=-(-a)12-a4·(-a)3·(-a)5=-a4(-a3)(-a5)=-a12=-(a4·a3·a5)=-a12例2.计算(1) (x-y)3(y-x)(y-x)6解:(x-y)3(y-x)(y-x)6分析:(x-y)3与(y-x)不是同底数幂=-(x-y)3(x-y)(x-y)6 可利用y-x=-(x-y), (y-x)6=(x-y)6=-(x-y)3+1+6变为(x-y)为底的同底数幂,再进行计算。
幂的乘方与积的乘方(二)1. 引言在前一篇文章中,我们讨论了幂的乘方和积的乘方的概念,并且给出了一些基本的性质和公式。
本文将继续探索这两个概念,并介绍一些更深入的性质和应用。
2. 幂的乘方回顾一下,我们说当一个数a的幂m和n相乘时,结果是a的幂m+n。
这个性质可以用下面的公式来表示:a^m * a^n = a^(m+n)其中,a是底数,m和n是指数。
这个公式可以很容易地推广到更多的项。
例如,当我们有三个幂相乘时:a^m * a^n * a^p = a^(m+n+p)这个公式总结了幂的乘方的基本性质,在计算中非常有用。
3. 积的乘方我们已经讨论了幂的乘方,现在让我们转向积的乘方。
当两个数a和b的乘积取幂时,结果等于这两个数分别取幂的结果再相乘。
用公式表示如下:(a * b)^n = a^n * b^n这个性质可以通过展开式来验证。
例如,让我们把(a * b)^n展开为n个a * b 的乘积,然后再使用幂的乘方的性质简化。
这个过程非常简单,留作练习给读者。
4. 幂的乘方和积的乘方的关系在前面的文章中,我们已经讨论了幂的乘方和积的乘方的基本性质。
现在,让我们来研究一下这两个概念之间的关系。
首先,我们来研究一个特殊情况,即当幂的底数相等时。
假设a和b都是非零数,并且m和n是任意实数。
我们有以下结果:(a^m)^n = a^(m*n)这个结果告诉我们,当一个数的幂再取幂时,结果等于底数不变,而指数相乘。
这个结果在实际应用中非常有用,比如在计算中化简复杂的表达式。
接下来,我们来研究当幂的指数相等时的情况。
假设a和b都是非零数,并且m是任意实数。
我们有以下结果:(a * b)^m = a^m * b^m这个结果告诉我们,当把一个乘积取幂时,结果等于每个因子取幂再相乘。
这个结果在实际应用中也非常有用,比如在计算中分布乘法运算。
5. 应用举例在实际应用中,幂的乘方和积的乘方常常会出现。
下面是一些应用举例:5.1. 几何在几何学中,面积和体积的计算经常涉及幂的乘方。
幂的乘方与积的乘方一、教学目标(一)知识目标1。
经历探索幂的乘方的运算性质的过程,进一步体会幂的意义.2。
了解幂的乘方的运算性质,并能解决一些实际问题.(二)能力目标1.在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力.2.学习幂的乘方的运算性质,提高解决问题的能力.(三)情感目标在发展推理能力和有条理的表达能力的同时,进一步体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.二、教学重难点(一)教学重点幂的乘方的运算性质及其应用.(二)教学难点幂的运算性质的灵活运用。
三、教具准备投影片三张第一张:做一做,记作(§1。
4.1 A)第二张:例题,记作(§1.4。
1 B)第三张:练习,记作(§1.4。
1 C)四、教学过程Ⅰ。
提出问题,引入新课[师]我们先来看一个问题:一个正方体的边长是102毫米,你能计算出它的体积吗?如果将这个正方体的边长扩大为原来的10倍,则这个正方体的体积是原来的多少倍?[生]正方体的体积等于边长的立方.所以边长为102毫米的正方体的体积V=(102)3立方毫米;如果边长扩大为原来的10倍,即边长变为102×10毫米即103毫米,此时正方体的体积变为V1=(103)3立方毫米。
[师](102)3,(103)3很显然不是最简,你能利用幂的意义,得出最后的结果吗?大家可以独立思考.[生]可以。
根据幂的意义可知(102)3表示三个102相乘,于是就有(102)3=102×102×102=102+2+2=106;同样根据幂的意义可知(103)3=103×103×103=103+3+3=109。
于是我们就求出了V=106立方毫米,V1=109立方毫米。
我们还可以计算出当这个正方形边长扩大为原来的10倍时,体积就变为原来的1000倍即103倍.[生]也就是说体积扩大的倍数,远大于边长扩大的倍数.[师]是的!我们再来看(102)3,(103)3这样的运算。
幂的乘方与积的乘方一.选择题1.计算(﹣x3)2所得结果是()A.x5B.﹣x5C.x6D.﹣x62.下列运算中,计算结果正确的是()A.a2•a3=a6B.(a2)3=a5C.(a2b)2=a2b2 D.a3+a3=2a33.计算()2003××(﹣1)2004的结果是()A.B.C.﹣D.﹣4.若m=2100,n=375,则m、n的大小关系正确的是()A.m>n B.m<nC.相等D.大小关系无法确定5.化简x3•(﹣x)3的结果是()A.﹣x6B.x6C.x5D.﹣x56.已知2a=3,2b=6,2c=12,则a,b,c的关系为①b=a+1②c=a+2③a+c=2b④b+c=2a+3,其中正确的个数有()A.1个B.2个C.3个D.4个7.下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab28.实数a,b,c满足2a=5,2b=10,2c=80,则代数式2006a﹣3344b+1338c的值为()A.2007 B.2008 C.2009 D.2010二、填空题9.计算:(﹣mn3)2= .10.当n为奇数时,(﹣a2)n+(﹣a n)2=11.(﹣a5)4•(﹣a2)3= .12.若7a=3,7b=2,则73a+2b= .13.若x+3y﹣3=0,则2x•8y= .14.计算a6(a2)3= .15.计算:﹣y2•(﹣y)3•(﹣y)4= .三、解答题16.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)= ,(5,1)= ,(2,)= .(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)17.计算×(﹣8)10+()11×(2)12.18.计算:(﹣x)3•x2n﹣1+x2n•(﹣x)2.19.计算:(﹣3a m)2﹣a m+1•a m﹣1+2(a m+1)2÷a2.20.阅读下列各式:(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4…①归纳得(ab)n=________;(abc)n=________;②计算4100×=________;()5×35×()5=________③应用上述结论计算:(﹣)2017×22018×42016的值.参考答案与解析一、选择题1.计算(﹣x3)2所得结果是()A.x5B.﹣x5C.x6D.﹣x6【分析】根据幂的乘方计算即可.【解答】解:(﹣x3)2=x6,故选C.【点评】此题考查幂的乘方,关键是根据法则进行计算.2.下列运算中,计算结果正确的是()A.a2•a3=a6B.(a2)3=a5C.(a2b)2=a2b2 D.a3+a3=2a3【分析】根据同底数幂的乘法,幂的乘方,积的乘方,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答】解:A、a2•a3=a5,故本选项错误;B、(a2)3=a6,故本选项错误;C、(a2b)2=a4b2,故本选项错误;D、a3+a3=2a3,正确.故选D.【点评】本题考查同底数幂相乘,底数不变,指数相加;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;合并同类项法则,只把系数相加减,字母与字母的次数不变.熟练掌握运算法则并灵活运用是解题的关键.3.计算()2003××(﹣1)2004的结果是()A.B.C.﹣D.﹣【分析】将原式化为同底数幂的乘法解答.【解答】解:()2003××(﹣1)2004=×[()2002×]×(﹣1)2004=×(×)2002=×1=.故选A.【点评】本题考查了乘方、积的乘方,理清指数的变化是解题的关键.4.若m=2100,n=375,则m、n的大小关系正确的是()A.m>n B.m<nC.相等D.大小关系无法确定【分析】根据幂的乘方法则,将每一个数化为指数相同的数,再比较底数.【解答】解:∵m=2100=(24)25=1625,n=375=(33)25=2725,∴2100<375,即m<n.故选B.【点评】本题考查幂的乘方,积的乘方运算法则.理清指数的变化是解题的关键.5.化简x3•(﹣x)3的结果是()A.﹣x6B.x6C.x5D.﹣x5【分析】先算乘方,再根据同底数幂的乘法法则进行计算即可.【解答】解:原式=x3•(﹣x3)=﹣x6,故选A.【点评】本题考查了同底数幂的乘法,幂的乘方的应用,主要考查学生的计算能力.6.已知2a=3,2b=6,2c=12,则a,b,c的关系为①b=a+1②c=a+2③a+c=2b④b+c=2a+3,其中正确的个数有()A.1个B.2个C.3个D.4个【分析】分别利用同底数幂的乘除法运算法则得出a,b,c直接的关系即可.÷【解答】解:∵2a=3,2b=6,2c=12,∴2b÷2a=2,∴b﹣a=1,∴b=a+1,故①正确;2c÷2a=22,则c﹣a=2,故②正确;2a×2c=(2b)2,则a+c=2b,故③正确;∵2b×2c=(2a)2×23,∴b+c=2a+3,故④正确.故选:D.【点评】此题主要考查了幂的乘方与同底数幂的乘除运算法则,正确应用运算法则是解题关键.7.下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【分析】根据整式的运算法则即可求出答案.【解答】解:(A)a2与a3不是同类项,故A错误;(B)原式=a5,故B错误;(D)原式=a2b2,故D错误;故选(C)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.8.实数a,b,c满足2a=5,2b=10,2c=80,则代数式2006a﹣3344b+1338c的值为()A.2007 B.2008 C.2009 D.2010【分析】直接利用同底数幂的除法运算法则进而将原式变形得出答案.【解答】解:∵2b÷2a=2,∴b﹣a=1,则a=b﹣1,∵2c÷2b=8,∴c﹣b=3,则c=b+3,∴2006a﹣3344b+1338c=2006(b﹣1)﹣3344b+1338(b+3)=2008.故选:B.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.二、填空题9.计算:(﹣mn3)2= m2n6.【分析】根据幂的乘方即可求出答案.【解答】解:原式=m2n6故答案为:m2n6【点评】本题考查幂的运算,解题的关键是熟练运用幂的运算法则,本题属于基础题型.10.当n为奇数时,(﹣a2)n+(﹣a n)2= 0【分析】由题意知n为奇数,所以(﹣a2)n=﹣a2n,+(﹣a n)2=a2n,再相加即可.【解答】解:∵n为奇数,∴(﹣a2)n=﹣a2n,(﹣a n)2=a2n,∴(﹣a2)n+(﹣a n)2=0.故答案为0.【点评】本题考查幂的乘方,底数不变指数相乘,一定要记准法则才能做题.11.(﹣a5)4•(﹣a2)3= ﹣a26.【分析】先算乘方,再算乘法,注意符号问题.【解答】解:(﹣a5)4•(﹣a2)3=﹣a20•a6=﹣a26.【点评】本题考查幂的乘方和同底数幂相乘的运算法则,在计算过程中要先确定符号,再进行计算.12.若7a=3,7b=2,则73a+2b= 108 .【分析】直接利用同底数幂的乘法运算法则以及结合幂的乘方运算法则将原式变形进而得出答案.【解答】解:∵7a=3,7b=2,∴73a+2b=(7a)3×(7b)2=33×22=108.故答案为:108.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确掌握运算法则是解题关键.13.若x+3y﹣3=0,则2x•8y= 8 .【分析】根据已知条件求得x=3﹣3y,然后根据同底数幂的乘法法则进行解答.【解答】解:∵x+3y﹣3=0,∴x=3﹣3y,∴2x•8y=23﹣3y•23y=23=8.故答案是:8.【点评】本题考查同底数幂的乘法,幂的乘方与积的乘方,熟练掌握运算性质和法则是解题的关键.14.计算a6(a2)3= a12.【分析】根据幂的运算法则即可求出答案.【解答】解:原式═a6•a6=a12,故答案为:a12【点评】本题考查幂的运算法则,解题的关键是熟练运用幂的运算法则,本题属于基础题型.15.计算:﹣y2•(﹣y)3•(﹣y)4= y9.【分析】首先计算同底数幂的乘法,然后再利用单项式乘以单项式进行计算即可.【解答】解:原式=﹣y2•(﹣y)3+4=﹣y2•(﹣y7)=y9,故答案为:y9.【点评】此题主要考查了同底数幂的乘法,关键是掌握同底数幂相乘,底数不变,指数相加.三、解答题16.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)= 3 ,(5,1)= 0 ,(2,)= ﹣2 .(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)【分析】(1)分别计算左边与右边式子,即可做出判断;(2)设(3,4)=x,(3,5)=y,根据同底数幂的乘法法则即可求解.【解答】解:(1)∵33=27,∴(3,27)=3;∵50=1,∴(5,1)=0;∵2﹣2=,∴(2,)=﹣2;(2)设(3,4)=x,(3,5)=y,则3x=4,3y=5,∴3x+y=3x•3y=20,∴(3,20)=x+y,∴(3,4)+(3,5)=(3,20).故答案为:3,0,﹣2.【点评】此题考查了实数的运算,弄清题中的新运算是解本题的关键.17.计算×(﹣8)10+()11×(2)12.【分析】直接利用积的乘方运算法则将原式变形进而求出答案.【解答】解:×(﹣8)10+()11×(2)12=(﹣×8)9×(﹣8)+(×2)11×2=8+2=10.【点评】此题主要考查了积的乘方运算,正确将原式变形是解题关键.18.计算:(﹣x)3•x2n﹣1+x2n•(﹣x)2.【分析】根据积的乘方和同底数幂的乘法计算即可.【解答】解:(﹣x)3•x2n﹣1+x2n•(﹣x)2=﹣x2n+2+x2n+2=0.【点评】此题考查积的乘方和同底数幂的乘法,关键是根据法则进行计算.19.计算:(﹣3a m)2﹣a m+1•a m﹣1+2(a m+1)2÷a2.【分析】根据幂的运算法则即可求出答案.【解答】解:原式=9a2m﹣a2m+2a2m+2÷a2=9a2m﹣a2m+2a2m=10a2m【点评】本题考查幂的运算法则,解题的关键是熟练运用幂的运算法则,本题属于基础题型.20.阅读下列各式:(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4…①归纳得(ab)n=________;(abc)n=________;②计算4100×=________;()5×35×()5=________③应用上述结论计算:(﹣)2017×22018×42016的值.【分析】①可由三个例子,直接得到结论或利用积的乘方计算;②逆运用①中的结论,计算②的结果;③逆运用同底数幂的乘法,把(﹣)2017化为﹣×(﹣)2016,把22018化为22×22016,再逆用①的结论,计算出结果.【解答】解:①(ab)n=a n b n,(abc)n=a n b n c n;故答案为:a n b n,a n b n c n;②4100×=(4×)100=1,()5×35×()5=(×3×)5=1;故答案为:1,1③(﹣)2017×22018×42016=﹣×22×(﹣×2×4)2016=﹣×(﹣1)2016=﹣.【点评】本题考查了幂的相关运算,掌握同底数幂的乘法法则、积的乘法法则并且会逆用是解决本题的关键.。