第七节 分块乘法的初等变换及应用举例v3.
- 格式:ppt
- 大小:218.00 KB
- 文档页数:10
精品文档高等代数( 1)课程教学大纲第一部分前言一、课程基本信息1.课程类别:专业基础课2.开课单位:数学与财经系3.适用专业:数学与应用数学专业4. 备选教材:《高等代数(第三版)》,北京大学数学系几何与代数教研室前代数组编.高等教育出版社,2003.二、课程性质和目标高等代数是数学与应用数学专业的一门重要基础课程。
本课程的主要内容是多项式理论和线性代数理论。
通过本课程的教学,使学生掌握代数基本理论和基本方法,培养学生代数方面的科学的思维、抽象的思维,逻辑推理、提高运算以及解决实际应用的能力,为进一步学习专业后续课程奠定坚实的代数基础。
本课程的教学目的是使学生获得一元多项式,行列式,线性方程组,矩阵等方面的系统知识 , 为进一步学习近世代数,复变函数、等后续课程打下坚实的基础,也为深入理解初等数学、指导中学数学教学提供了高等的专业知识与重要的方法论。
通过本门课程系统的学习与严格的训练,全面掌握高等代数的基本理论知识;培养抽象的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用代数学的理论知识解决实际应用问题的能力。
三、课程学时与学分教学时数:96 学时,其中理论教学81 学时,实践教学15 学时学分数: 6 学分教学时数具体分配:教学内容理论教学实践教学合计(学时)(学时)(学时)第一章多项式26632第二章行列式16319第三章线性方程组22325第四章矩阵17320合计811596第二部分教学内容及其要求第一章多项式1.教学目标:要求学生理解数域的概念;掌握一元多项式的概念、运算及基本性质;掌握带余除法与整除性的关系,会进行相关运算;会求多项式的最大公因式;理解不可约多项式的概念,掌握求重因式的方法;理解多项式在不同的数域的因式分解形式;掌握Eisenstein判别法,会求有理系数多项式的根。
2.教学重点:整除概念,带余除法及整除的性质,最大公因式、互素、辗转相除法、不可约多项式概念、性质,k 重因式与 k 重根的关系。
十.研究创新题解:1.分块矩阵的初等变换分块矩阵的初等变换与初等矩阵吴云在1997年8月的《工科数学》上的《分块矩阵的初等变换》一文中提到 定义1 分块矩阵的行(列)初等变换是指: (1)交换两行(列)的位置;(2)第i行(列)的各个元素分别左乘(右乘)该行(列)的一个)(i h 阶)阶)((i l 左(右)保秩因子H;(3)第i行(列)的各个元素分别左乘(右乘)一个)(i h 阶)阶)((i l 矩阵K后加到第j行. 定义2 对应于分块矩阵t s ij A ⨯)(的初等分块矩阵是指:(1)))((k j i P i +=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ss ll ii E E K E E11或ijk P =⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ii ll ii jj E O E E O E(2) )(H P il =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ss llE H E 或)(H P ik =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ii E H E 11其中H为第i行(列)的一个左(右)保秩因子;(1) ))((k j i P i +=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ss ll ii E E K E E11(2) 或))((k j i P k +=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ll ll ii E E K E E11 初等分块矩阵与通常的初等矩阵类似,但由于矩阵乘法不满足交换律,故需要分为左、右两种.直接验算可得: 定理1 (1)交换t s ij A ⨯)(的第i行与第j行,相当于左乘一个m阶初等分块矩阵ijL P,其中ijL P 中的元素ii E 为h(i)阶单位矩阵, jj E 为h(j)阶单位矩阵,当r≠i且r≠j时, rr E 为h(r)阶单位矩阵;交换t s ij A ⨯)(的第i列与第j列相当于右乘一个n阶初等分块矩阵ijk P ,其中ii E 为l(i)阶单位矩阵, jj E 为l(j)阶单位矩阵, 当r≠i且r≠j时, rr E 为l(r)阶单位矩阵;(2) t s ij A ⨯)(的第i行的每一个元素左乘一个矩阵H相当于t s ij A ⨯)(左乘一个m阶分块矩阵)(H P iL 中H为h(i)阶方阵; t s ij A ⨯)(的第i列的每一个元素右乘一个矩阵H,相当于t s ij A ⨯)(右乘一个n阶初等到变换矩阵)(H P ik ,其中H为l(i)阶方阵; (3) t s ij A ⨯)(的第j行的每个元素分别左乘一个h(i)×h(j)矩阵K后加到第i行,相当于t s ij A ⨯)(左乘一个初等分块矩阵))((k j i P L +;第j列的每一个元素分别右乘l(j)×l(i)矩阵K后加到第i列,相当于t s ij A ⨯)(右乘))((k j i P k +. 定理2设A为方阵,则分块矩阵t s ij A ⨯)(施行第一种行初等变换后,对应的行列式为A j i h ),()(1-,其中h(i,j)=h(i)h(j)-l+h(i+l)]+…+h(j)[h(i)+h(i+j)+…+h(j-l)], l(i,j)=l(i)h(j)-l+l(i+l)]+…+l(j)[l(i)+l(i+j)+…+l(j-l)],施行第二种初等变换后,对应的行列式为|H|·|A|;施行第三种初等变换后,对应的行列式的值不变.证明: H H P i =)(,A k j i P =+))((显然成立. 下证),()(j i h irL P 1-=,ii E 所在的第1行逐次与它相邻的行交换,移至jj E 前,共进行h(i)-1+h(i+1)+…+h(j-1)次交换两行,第2行逐次与它相邻的行交换,移至jj E 前,同样进行相同次交换两行,依此类推,把ii E 所在的行移至jj E 所在的行前,共进行h(i)[h(i)-1+h(i+1)+…+h(j-1)]次交换两行,然后把jj E 移至适当的位置,同理共进行h(j)[h(i)+h(i+1)+…+h(j-1)]次交换两行,所以交换两行的总次数为h(i,j),故),()(j i h irL P 1-=;同理),()(j i l irR P 1-=. 所以有A P ilj =ilj P ∙A =(-1)),(l i h A 或ilk AP =A ∙ilkP =(-1)),(j i l AA H P il )(=)(H P il A =H ∙A 或A )(H P ik =H ∙AA k j i p l ))((+=)((k j i P l +A ∙=A ))((k j i AP K +=A ))((k j i P k +=A定理3 分块矩阵进行初等变换后,秩不变.证明: 对于(1),相当于对n m ij a A ⨯=)(进行若干次行(列)的交换,故命题成立;对于(2),根据定义1,显然成立;对于(3),相当于进行若干次把n m ij a A ⨯=)(行(列)乘以一个倍数后加到另一行(列),故命题成立.定理4 (1)设A,B的行数均为m,则矩阵方程AX=B,当rank (A)= rank (A,B)=m时有唯一解,当rank (A)= rank (A,B)<m时有无穷多解, 当rank (A)< rank (A,B)时无解;(2)设A,B的列数均为n,则矩阵方程XA=B,当rank (A)= )(T T B A rank ,=n时有唯一解,当rank (A)= )(T T B A rank ,<n有无穷多解, 当rank (A)< )(T T B A rank ,时无解. 证明: (1)设rank (A)= rank (A,B)<m,则存在可逆矩阵P,Q,使Q O O O I P A r ⎢⎢⎣⎡⎥⎦⎤=,Q O OB B P B ⎢⎢⎣⎡⎥⎦⎤=21 其中r I 为r阶单位矩阵, 1B 为r阶方阵,设Q B B B B Q X o⎢⎣⎡⎥⎦⎤=-43211,则有: Q O O O I P AX r o ⎢⎢⎣⎡⎥⎦⎤= Q B B B B Q ⎢⎣⎡⎥⎦⎤-43211= []⎢⎣⎡⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤4321B B B B O O O I P r = Q O O B B P ⎢⎢⎣⎡⎥⎦⎤21=B所以o X 为AX=B的解,其中3B , 4B 是任意的.当rank (A)= rank (A,B)=m时,A=P(m I O)Q,B=( 1B 2B ),显然,AX=B有唯一解: Q B B Q X o )(211-=;当rank (A)< rank (A,B)时,AX=B无解.同理可证(2)成立(当rank (A)= rank ( tA , TB )<n时,X=P ⎢⎢⎣⎡⎥⎦⎤O OO I r1-P ) 定义3 对于任意的u,v,如果rank ( ij A )= rank ( ij A ,iv A )= rank (T ij A ,Tiv A ),则称ij A 为极大元.定理5 分块矩阵22 ij A ⨯)(可以用分块矩阵的初等变换对角化的充要条件是:它有一个极大元.证明: 充分性.不妨设11A 为极大元(否则可以通过第一种分块矩阵的初等变换把极大元移到第一行,第一列交叉位置).由定理4,存在可逆矩阵P,Q,使Q O O O I P A r⎢⎢⎣⎡⎥⎦⎤=11Q O B O A P A ⎢⎣⎡⎥⎦⎤=2121,Q O O A A P A ⎢⎢⎣⎡⎥⎦⎤=2'1'12,令K=-P⎢⎣⎡⎥⎦⎤4321A A A A 1-P ,其中3A , 4A 为适当阶数的任意矩阵.则 K 11A + 21A =P -⎢⎣⎡⎥⎦⎤4321A A A A 1-P P ⎢⎢⎣⎡⎥⎦⎤O O O I r Q , 所以22 ij A ⨯)( 第一行左乘K加到第二行,得⎢⎢⎣⎡⎥⎦⎤+22121211A KA O A A .同理,令K'=-1-Q ⎢⎢⎣⎡⎥⎥⎦⎤4231,,,,A A A A Q , 则11A K′+12A =0,所以⎢⎢⎣⎡⎥⎦⎤+22121211A KA OA A 的第一列右乘K′后加到第二列,得⎢⎢⎣⎡⎥⎥⎦⎤+221211A KA OO A .(如先进行列变换,再进行行变换,得⎢⎢⎣⎡⎥⎥⎦⎤+222111A K A OO A ,, 因为2221A KA +=⎢⎢⎣⎡⎥⎥⎦⎤-2'21'22'11'1A A A A A A A A +22A =21'A K +22A ,故两种运算顺序结果相同) 必要性.反证法,不妨设rank (11A )≠rank (T A 11,T A 21)或rank (T A 11,TA 221)rank (21A ),则由定理4, X 11A =-21A 或X 21A =-11A 无解,从而不存在K,使22 ij A ⨯)(对角化.同理,当rank (11A )≠rank (11A ,12A )或rank (11A ,12A )≠rank (12A )时,不存在'K 使 -A 11K '=A 12或-'12K A =11A 成立.定理5表明:并不是所有的2×2分块矩阵都可以用分块矩阵初等变换对角化,如果分块矩阵没有极大元,则需分得更细,才能对角化.定理 6 矩阵n m A ⨯的一种分块方法t s ij A ⨯)(可以用分块矩阵的初等变换对角化的充分条件是:存在s-1行且存在t-1列有极大元.证明: 用数学归纳法.当s=t=1时,只有一块,命题成立;设s ≤e,t≤ f时命题成立.当s=e+1,t=f时,存在e行且存在f-1列有极大元,显然可以用第一种分块矩阵的初等变换,通过交换两行或两列的位置,使t s ij A ⨯)(的前e行与前f-1列都有极大元,再把前e行,前f-1列看成一块,得到一个新的2×2分块矩阵,记为22 ij B ⨯)(.显然11B 为极大元,根据定理4, 22 ij B ⨯)(可以化成对角形:⎥⎦⎤⎢⎣⎡+2221B KB O OB ,又)()(111-⨯=f e ij A B ,它的每行、列都有极大,故由假设11B 可以对角化,从而f e ij A ⨯=)()(1可以对角化.同理可证当s=e,t=f+1时, )()(1+⨯f e ij A 可以对角化.由此命题成立.下面讨论对角化后的非零块ii A 进一步化简的方法.设Q O OO I P A i ii ⎥⎦⎤⎢⎣⎡=,121-⎥⎦⎤⎢⎣⎡=P B O B I L i i 与⎥⎦⎤⎢⎣⎡=-211C C O I Q R Ri .根据定理1, i L ,i R 为ii A 的左(右)保秩因子,显然也是ii A 所在行(列)的左(右)保秩因子,故对角化后的分块矩阵第i行、第i列分别左乘i L ,右乘i R 后, ii A 可以化成⎥⎦⎤⎢⎣⎡O O O I i讨论分块方阵行列式的计算,先讨论分块初等阵的行列式. 设I 为S ×S 分块单位阵:I=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛s r r r r I I I I321 其中I r i 为r i 阶单位阵(1≤i ≤S),对I 施行一次初等变换可得定义2所述的三种分块初等阵,它们的行列式有下列计算公式.引理 分块初等阵的行列式有以下性质:(1)|I(i,j)|= τ)1(-,其中τ=r i (r i +1+…+r j )+ r j (r i +1+…+ r j -1)(i<j). 特别地,若j=i+1,则| I(i,j)|=(-1) r i r j ; (2)|I(i(K))|=|k|,其中K 是r i 阶可逆阵; (3)|I(j(K),i)|=1,其中K 是r i ×r j 矩阵.证(1)不难验证,将I(i,j)的元素行进行τ次相邻的对调可将I(i,j)变成I,由行列式的性质,|I(i,j)|= τ)1(-|I|=τ)1(-.(2),(3)由对角分块方阵及三角形分块方阵的行列式计算方法即知.由于对分块方阵A 施行一次初等行变换,相当于用相应的分块初等阵左乘A,由上述引理,我们有下列分块方阵的行列式计算性质. 定理7 设A 是一个分块方阵.(1)交换|A|的i,j 两行(列),行列式变为(-1)τ|A|,其中τ= r i (r i +1+…+ r j )+ r j (r i +1+…+ r j -1);特别地,交换|A|的相邻两行(列)(i 行和i+1行),行列式变为(-1) r i r i +1|A|; (2)用一个r i 阶可逆阵K 左(右)乘|A|的第i 行(列)的所有矩阵,等于用|K|乘以|A|; (3)用一个矩阵左(右)乘|A|的某一行(列)的所有矩阵再加到另一行(列)的对应元素上,行列式不变. 由定理7的(2)可得推论 分块行列式|A|的某一行(列)的所有矩阵的可逆左(右)因子K,可以行列式|K|的形式提到行列式符号外.2.分块矩阵初等变换的应用一、利用分块矩阵的初等变换求矩阵的逆.廖中行在2002年05期《四川教育学院学报》上的《初等变换在分块矩阵乘法》的一文中提到例1: 已知⎥⎦⎤⎢⎣⎡=C OD BP 其中B是r×r可逆阵,C是s×s可逆阵,求证:P可逆,并求1-P .分析:本题是一个分块阵的求逆问题,一般可用待定子块法,也可利用广义初等变换,还可用左乘分块初等阵的方法.解:因B、C可逆,故|B|≠0,|C|≠0.根据拉普拉斯展开,有C B CO DB P ·==≠0,故P可逆.求C 有三种办法:解法一:利用广义初等行变换法.⎪⎭⎝E C 0012⎪⎭ ⎝-100C E (B 1-D)2r ⨯+r 1 ⎪⎪⎭⎫ ⎝⎛-----1111000C DC B E B E 故P 1-=⎪⎪⎭⎫ ⎝⎛-----11110C DC B B 本题对分块矩阵进行广义初等变换是一般矩阵的初等变换的一种推广,其方法和一般矩阵相同.作初等行(列)变换时,对矩阵P应左(右)乘相应的分块单位阵.上述分块初等变换的过程也可用分块阵左乘相应的分块初等阵,可表示如下: 解法二: 可用左乘分块初等阵的方法求1-P⎪⎪⎭⎫ ⎝⎛--1100C B ⎪⎪⎭⎫ ⎝⎛C D B 0=⎪⎪⎭⎫⎝⎛--110C D B E有 ⎪⎪⎭⎫ ⎝⎛--E D B E 01⎪⎪⎭⎫ ⎝⎛-E D B E 01=⎪⎪⎭⎫⎝⎛E E 00 即:⎪⎪⎭⎫ ⎝⎛--E D B E 01⎪⎪⎭⎫ ⎝⎛-C B 001⎪⎪⎭⎫ ⎝⎛C D B 0=⎪⎪⎭⎫⎝⎛E E 00=E 故有P 1-=⎪⎪⎭⎫ ⎝⎛C D B 01-=⎪⎪⎭⎫ ⎝⎛--E D B E 01⎪⎪⎭⎫ ⎝⎛--1100C B =⎪⎪⎭⎫⎝⎛-----11110C DC B B 例2:已知A=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1001000000643521100010001,求A 1-.分析:本题是一个矩阵的求逆问题,一般可用公式法,矩阵的初等变换法求;可块矩阵初等变换法求1-A .利用分块矩阵初等变换法先A 化分成分块矩阵,即A=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1001000000643521100010001=⎪⎪⎭⎫ ⎝⎛C D B 0 其中B=⎪⎪⎪⎭⎫ ⎝⎛100010001,C=⎪⎪⎭⎫ ⎝⎛--1001,D=⎪⎪⎪⎭⎫ ⎝⎛654321 从而求得B 1-=⎪⎪⎪⎭⎫ ⎝⎛100010001,C 1-=⎪⎪⎭⎫ ⎝⎛--1001然后对A 进行广义初等变换,即:⎪⎭⎝E C 0012⎪⎭⎝-100C E(B 1-D)⨯r 2+r 1 ⎪⎪⎭⎫⎝⎛-----111100C DC B E B E ∴A 1-=⎪⎪⎭⎫ ⎝⎛-----11110C DC B B =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--1000001000651004201031001如果用其它方法来求解将会变得很繁琐,用分块矩阵的初等变换发来求解就显的比较简单.二、利用分块矩阵初等变换求行列式的值宋玉英在2002年04期的《兰州教育学院学报》上的《“用广义初等变换”法求“分块矩阵”的逆矩阵》一文中提到 例3 设P=⎪⎪⎭⎫⎝⎛D C B A 是一个分块方阵,其中A 是r 阶可逆阵,求|P|. 解: 由推论及定理7的(3):P =D C B A =A DCB A Ir 1-=ABCA D B A I r 110---=A B CA D 1-- 若A 与D 可乘,则|P|=|AD-ACAB|;又若A 与C 可交换(即AC=CA),则|P|=|AD-CB|.例例4 设D n 2=d c d c b a b a, 其中a ≠0,求|A|解: D n 2=dcd c b a ba=DC BA由于A,C 可交换,所以D n 2=CB AD -=⎪⎪⎪⎭⎫⎝⎛∙⎪⎪⎪⎭⎫ ⎝⎛bc bc ad ad = =|(ad-bc)I|=(ad-bc)n例5 设A,B,C 和D 是n 阶方阵,试证明DC B A =AB CD证 两次利用定理4的(1),得D C B A =(-1)2n B A D C =(-1)2n (-1)2n A B C D =AB C D三、利用分块矩阵的初等变换求矩阵的秩史永铨在2002年02期《淮南师范学院学报》上的《分块矩阵初等变换及其应用》一文中提到:矩阵的秩有以下初等性质:设A与B分别是r×s与p×q矩阵,则rBC A 0≥r(A)+r(B)并且当A(或B)是方阵且非异时,或者C=0时上式的等号成立.例6. 设A是m×n阵DC BA 的非异顺序主子阵,则r DC B A =r(A)+r(D-CA1-B)证: ⎥⎦⎤⎢⎣⎡---r m rI CA I 10∙⎥⎦⎤⎢⎣⎡D C B A =⎥⎦⎤⎢⎣⎡--B CA D B A10而A是非异阵,由以上性质知r⎥⎦⎤⎢⎣⎡D C B A =⎥⎦⎤⎢⎣⎡--B CA D B A 10≥r(A)+r(D-CA 1-B) 例7. 设n阶方阵A=(Qij )为反对称矩阵,证明:r(A)必为偶数 证: 对n用归纳法n=1,2是命题显然成立设阶数小于n时命题为真则对n阶及对称矩阵A,将A分块成A=DBCA 1,其中A1=01212a a -不妨设12a ≠0.⎥⎦⎤⎢⎣⎡--I BA I 110⎥⎦⎤⎢⎣⎡D B C A 1⎥⎦⎤⎢⎣⎡--I C A I 011=⎥⎦⎤⎢⎣⎡--C BA D A 11100∴r(A)=r⎥⎦⎤⎢⎣⎡D BC A 1=r⎥⎦⎤⎢⎣⎡--C BA D A 11100 =r(A1)+r(D-BA11-C) =2+r(D-BA11-C)但D-BA 11-C为阶数比A低的反对称矩阵,由归纳假设r(D-BA11-C)为偶数,故r(A)为偶数.四、分块矩阵的初等变换在矩阵分解中的应用例8. 设A=(aij )是n阶方阵,它的顺序主子式全不为零,证明: 存在非异下三角形矩阵B与非异上三角形矩阵C,使A=BC 证: 对n用归纳法n=1时显然成立设当n-1时,结论成立,则对n,将A分块成A=⎥⎦⎤⎢⎣⎡-nn n a A βα1由归纳假设对A1-n =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1,11,11,11,1n n n n a a a a 有A1-n =B1C1其中B1C1分别是n-1阶非异下三角形与上三角形矩阵⎥⎦⎤⎢⎣⎡----10111n n A I β∙⎥⎦⎤⎢⎣⎡-b a A n 01,其中b=a nn -11--n A βa 上式两端取行列式有:A =1-n A ∙b, ∴ b ≠0∴ ⎥⎦⎤⎢⎣⎡-b A n 001=⎥⎦⎤⎢⎣⎡I C B 0011∙⎥⎦⎤⎢⎣⎡-b a B C 0111 于是得:A ⎥⎦⎤⎢⎣⎡-m n a A βα1=⎥⎦⎤⎢⎣⎡----10111n n A I β∙⎥⎦⎤⎢⎣⎡1001B ⎥⎦⎤⎢⎣⎡-b B C 0111α=BC 其中B=⎥⎦⎤⎢⎣⎡----10111n n A I β1-∙⎥⎦⎤⎢⎣⎡1001B =⎥⎦⎤⎢⎣⎡---10111n n A I β⎥⎦⎤⎢⎣⎡1001B =⎥⎦⎤⎢⎣⎡-10111C B β, C=⎥⎦⎤⎢⎣⎡-b B C 0111αB =1B ≠0,C =b 1C 0≠∴B 与C 分别是非奇异的下三角与上三角形矩阵.类似的例子还可以举出很多,由于篇幅有限,不再赘述.总之,在矩阵乘法中,只要对矩阵进行恰当的分块,结合矩阵初等变换的方法,就能大大的简化其运算.。
分块矩阵的乘法
由于矩阵乘法要求前一个矩阵的列数等于后一个矩阵的行数,所以两个分块矩阵可以相乘的条件就是,前一个分块矩阵列的分法和后一个矩阵行的分法必须相同(也只需相同,也就是有了这个相同,就一定可以相乘了),其含义就是:
前一个矩阵共n列,进行分块以后,记分块矩阵的第一列的每块的列数为n1,第二列的每块的列数为n2,第三列的每块列数为n3,…,…,最后一列的每块的列数为nt,所以前一矩阵分完块以后的列数是t列,
那么后一个矩阵的n行(根据矩阵乘法的定义后,后一个矩阵必须是n行)的分块方法必须满足:后一个矩阵分完块以后,必须是t行,且这个分块后的矩阵的第一行,每块的行数必须是n1行,第二行的每块的行数必须是n2行,第三行的每块的行数必须是n3行,…,…,第t行的每块儿的行数必须是nt 行。
这样我们就介绍了分块矩阵相乘时必须满足的条件,也是只需要满足的条件。
例如abc都是n阶方阵:
又例如:
先说分块矩阵的用法。
它们最重要的用途是(在某些情况下)可以把分块矩阵的块看成数,可以根据普通矩阵(即每一个元素都是数)找到解题的思路,从而帮助我们思考并最终完成解题的过程(其实整个线性代数就是这个思路,就是矩阵有一些数的特性,让我们从更高的角度看问题,看得更清楚。
)
我们举一个例子,就是我们可以把分块矩阵做行变换(当然,必要的时候也可以做列变化),而我们知道做行变换相当于左乘一个初等矩阵(当然,做列变换时相当于右乘一个初等矩阵),因此,我们就可以用矩阵的乘法解决一些分块矩阵的行变换问题,从而完成我们需要做的题目,下面看一个具体的例子:
先举这个例子,后面还有其他合适的例子。
最近有个学生问我一个问题,就以这里为例吧!
只做其中,第一个小题。
十.研究创新题解:1.分块矩阵的初等变换分块矩阵的初等变换与初等矩阵吴云在1997年8月的《工科数学》上的《分块矩阵的初等变换》一文中提到定义1分块矩阵的行(列初等变换是指:(1)交换两行(列的位置;(2)第i行(列的各个元素分别左乘(右乘该行(列的一个阶左(右保秩因子H;(3)第i行(列的各个元素分别左乘(右乘一个阶矩阵K后加到第j行.定义2 对应于分块矩阵的初等分块矩阵是指:(1)=或=(2)=或=其中H为第i行(列的一个左(右保秩因子;(1 =(2 或=初等分块矩阵与通常的初等矩阵类似,但由于矩阵乘法不满足交换律,故需要分为左、右两种.直接验算可得:定理1(1交换的第i行与第j行,相当于左乘一个m阶初等分块矩阵,其中中的元素为h(i阶单位矩阵,为h(j阶单位矩阵,当r≠i且r≠j时,为h(r阶单位矩阵;交换的第i列与第j列相当于右乘一个n阶初等分块矩阵,其中为l(i阶单位矩阵,为l(j阶单位矩阵,当r≠i且r≠j时,为l(r阶单位矩阵;(2 的第i行的每一个元素左乘一个矩阵H相当于左乘一个m阶分块矩阵中H为h(i阶方阵; 的第i列的每一个元素右乘一个矩阵H,相当于右乘一个n阶初等到变换矩阵,其中H为l(i阶方阵;(3 的第j行的每个元素分别左乘一个h(i×h(j矩阵K后加到第i行,相当于左乘一个初等分块矩阵;第j列的每一个元素分别右乘l(j×l(i矩阵K后加到第i列,相当于右乘.定理2设A为方阵,则分块矩阵施行第一种行初等变换后,对应的行列式为,其中h(i,j=h(ih(j-l+h(i+l]+…+h(j[h(i+h(i+j+…+h(j-l],l(i,j=l(ih(j-l+l(i+l]+…+l(j[l(i+l(i+j+…+l(j-l],施行第二种初等变换后,对应的行列式为|H|·|A|;施行第三种初等变换后,对应的行列式的值不变.证明: ,显然成立.下证,所在的第1行逐次与它相邻的行交换,移至前,共进行h(i-1+h(i+1+…+h(j-1次交换两行,第2行逐次与它相邻的行交换,移至前,同样进行相同次交换两行,依此类推,把所在的行移至所在的行前,共进行h(i[h(i-1+h(i+1+…+h(j-1]次交换两行,然后把移至适当的位置,同理共进行h(j[h(i+h(i+1+…+h(j-1]次交换两行,所以交换两行的总次数为h(i,j,故;同理.所以有==(-1或==(-1)==或=====定理3 分块矩阵进行初等变换后,秩不变.证明: 对于(1,相当于对进行若干次行(列的交换,故命题成立;对于(2,根据定义1,显然成立;对于(3,相当于进行若干次把行(列乘以一个倍数后加到另一行(列,故命题成立.定理4 (1设A,B的行数均为m,则矩阵方程AX=B,当(A= (A,B=m时有唯一解,当(A= (A,B<m时有无穷多解,当(A< (A,B时无解;(2设A,B的列数均为n,则矩阵方程XA=B,当(A= =n时有唯一解,当(A= <n有无穷多解,当(A< 时无解.证明: (1设(A= (A,B<m,则存在可逆矩阵P,Q,使,其中为r阶单位矩阵, 为r阶方阵,设,则有: == =B所以为AX=B的解,其中, 是任意的.当(A= (A,B=m时,A=P(OQ,B=( ,显然,AX=B有唯一解: ;当(A< (A,B时,AX=B无解.同理可证(2成立(当(A= ( , <n时,X=P定义3 对于任意的u,v,如果( = ( ,= (,,则称为极大元.定理5 分块矩阵可以用分块矩阵的初等变换对角化的充要条件是: 它有一个极大元.证明: 充分性.不妨设为极大元(否则可以通过第一种分块矩阵的初等变换把极大元移到第一行,第一列交叉位置.由定理4,存在可逆矩阵P,Q,使,,令K=-P,其中, 为适当阶数的任意矩阵.则K+ =,所以第一行左乘K加到第二行,得.同理,令K'=-, 则K′+ =0,所以的第一列右乘K′后加到第二列,得.(如先进行列变换,再进行行变换,得,因为=+=+,故两种运算顺序结果相同必要性.反证法,不妨设(≠(,或(,(,则由定理4, =-或=-无解,从而不存在K,使对角化.同理,当(≠(,或(,≠(时,不存在使-A K=A或-=成立.定理5表明:并不是所有的2×2分块矩阵都可以用分块矩阵初等变换对角化,如果分块矩阵没有极大元,则需分得更细,才能对角化.定理6 矩阵的一种分块方法可以用分块矩阵的初等变换对角化的充分条件是:存在s-1行且存在t-1列有极大元.证明: 用数学归纳法.当s=t=1时,只有一块,命题成立;设s≤e,t≤ f时命题成立.当s=e+1,t=f时,存在e行且存在f-1列有极大元,显然可以用第一种分块矩阵的初等变换,通过交换两行或两列的位置,使的前e行与前f-1列都有极大元,再把前e行,前f-1列看成一块,得到一个新的2×2分块矩阵,记为.显然为极大元,根据定理4, 可以化成对角形: ,又,它的每行、列都有极大,故由假设可以对角化,从而可以对角化.同理可证当s=e,t=f+1时, 可以对角化.由此命题成立.下面讨论对角化后的非零块进一步化简的方法.设,与.根据定理1, ,为的左(右保秩因子,显然也是所在行(列的左(右保秩因子,故对角化后的分块矩阵第i行、第i列分别左乘,右乘后, 可以化成讨论分块方阵行列式的计算,先讨论分块初等阵的行列式.设I为S×S分块单位阵:I=其中I r为r阶单位阵(1≤i≤S,对I施行一次初等变换可得定义2所述的三种分块初等阵,它们的行列式有下列计算公式.引理分块初等阵的行列式有以下性质:(1|I(i,j|= ,其中τ=r (r+1+…+r+ r (r+1+…+ r-1(i特别地,若j=i+1,则| I(i,j|=(-1 r r;(2|I(i(K|=|k|,其中K是r阶可逆阵;(3|I(j(K,i|=1,其中K是r×r矩阵.证(1不难验证,将I(i,j的元素行进行τ次相邻的对调可将I(i,j变成I,由行列式的性质,|I(i,j|= |I|=.(2,(3由对角分块方阵及三角形分块方阵的行列式计算方法即知.由于对分块方阵A施行一次初等行变换,相当于用相应的分块初等阵左乘A,由上述引理,我们有下列分块方阵的行列式计算性质.定理7 设A是一个分块方阵.(1交换|A|的i,j两行(列,行列式变为(-1τ|A|,其中τ= r (r+1+…+ r+ r (r+1+…+ r-1;特别地,交换|A|的相邻两行(列(i行和i+1行,行列式变为(-1 r r+1|A|;(2用一个r阶可逆阵K左(右乘|A|的第i行(列的所有矩阵,等于用|K|乘以|A|;(3用一个矩阵左(右乘|A|的某一行(列的所有矩阵再加到另一行(列的对应元素上,行列式不变.由定理7的(2可得推论分块行列式|A|的某一行(列的所有矩阵的可逆左(右因子K,可以行列式|K|的形式提到行列式符号外.2.分块矩阵初等变换的应用一、利用分块矩阵的初等变换求矩阵的逆.廖中行在2002年05期《四川教育学院学报》上的《初等变换在分块矩阵乘法》的一文中提到例1: 已知其中B是r×r可逆阵,C是s×s可逆阵,求证:P可逆,并求.分析:本题是一个分块阵的求逆问题,一般可用待定子块法,也可利用广义初等变换span,还可用左乘分块初等阵的方法.解:因B、C可逆,故|B|≠0,|C|≠0.根据拉普拉斯展开,有≠0,故P可逆.求C有三种办法:解法一:利用广义初等行变换法.B r,C r(B D+r故P=本题对分块矩阵进行广义初等变换是一般矩阵的初等变换的一种推广,其方法和一般矩阵相同.作初等行(列变换时,对矩阵P应左(右乘相应的分块单位阵.上述分块初等变换的过程也可用分块阵左乘相应的分块初等阵,可表示如下:解法二: 可用左乘分块初等阵的方法求=有=即:==E故有P===例2:已知A=,求A.分析:本题是一个矩阵的求逆问题,一般可用公式法,矩阵的初等变换法求;可以用分块矩阵初等变换法求.利用分块矩阵初等变换法先A化分成分块矩阵,即A==其中B=,C=,D=从而求得B=,C=然后对A进行广义初等变换,即:B r,C r(B D r+rA==如果用其它方法来求解将会变得很繁琐,用分块矩阵的初等变换发来求解就显的比较简单.二、利用分块矩阵初等变换求行列式的值宋玉英在2002年04期的《兰州教育学院学报》上的《“用广义初等变换”法求“分块矩阵”的逆矩阵》一文中提到例3设P=是一个分块方阵,其中A是r阶可逆阵,求|P|.解: 由推论及定理7的(3:====若A与D可乘,则|P|=|AD-ACAB|;又若A与C可交换(即AC=CA,则|P|=|AD-CB|.例例4 设D=, 其中a≠0,求|A|解: D==由于A,C可交换,所以D=== =|(ad-bcI|=(ad-bc例5 设A,B,C和D是n阶方阵,试证明=证两次利用定理4的(1,得=(-1)=(-1)(-1)=三、利用分块矩阵的初等变换求矩阵的秩史永铨在2002年02期《淮南师范学院学报》上的《分块矩阵初等变换及其应用》一文中提到:矩阵的秩有以下初等性质:设A与B分别是r×s与p×q矩阵,则r≥r(A+r(B并且当A(或B是方阵且非异时,或者C=0时上式的等号成立.例6. 设A是m×n阵的非异顺序主子阵,则r=r(A+r(D-CAB证:=而A是非异阵,由以上性质知r=≥r(A+r(D考情解读B例7. 设n阶方阵A=(Q为反对称矩阵,证明:r2必为偶数(1: 对n用归纳法n=1,2是命题显然成立设阶数小于n时命题为真则对n阶及对称矩阵A,将A分块成A=,其中A=不妨设(30.=∴r(A=r=r=r(A+r作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.C4=2+r(D-BAC但D-BAC为阶数比A低的反对称矩阵,由归纳假设r(D-BAC为偶数,故r(A为偶数.四、分块矩阵的初等变换在矩阵分解中的应用例8. 设A=(a是n阶方阵,它的顺序主子式全不为零,证明: 存在非异下三角形矩阵B与非异上三角形矩阵C,使A=BC证: 对n用归纳法n=1时显然成立设当n-1时,结论成立,则对n,将A分块成A=由归纳假设对A=有A=BC其中BC分别是n-1阶非异下三角形与上三角形矩阵,其中b=-上式两端取行列式有:=b,b0=于是得:A==BC其中B===,C==0,=bB与C分别是非奇异的下三角与上三角形矩阵.类似的例子还可以举出很多,由于篇幅有限,不再赘述.总之,在矩阵乘法中,只要对矩阵进行恰当的分块,结合矩阵初等变换的方法,就能大大的简化其运算.。
第1块行左乘-D C加到第 2 块行⎯⎯⎯⎯⎯⎯⎯⎯⎯ → −1 ⎛ Em ⎜⎝O 故M −1 O En (A − BD −1C −1 − D −1C(A − BD −1C −1 ⎞ −(A − BD −1C −1 BD −1 . −1 −1 −1 −1 −1 ⎟ D C(A − BD C BD + D ⎠⎛ ( A − BD −1C −1 =⎜ −1 −1 −1 ⎝ − D C ( A − BD C ⎞⎟. D −1C ( A − BD −1C −1 BD −1 + D −1 ⎠−( A − BD −1C −1 BD −1 例设 A, B 是 n 阶方阵.用分块矩阵理论证明 | AB |=| A || B | . ⎛ A O⎞证明考虑分块矩阵⎜⎟ . 对该分块矩阵进行分块矩阵的初等变换:⎝ −E B ⎠⎛ A O ⎞第 2块行左乘A加到第1块行⎛ O →⎜⎜ − E B ⎟⎯⎯⎯⎯⎯⎯⎯⎯⎝⎠⎝ −E ⎛E 于是⎜⎝O A⎞⎛ A O ⎞⎛ O ⎟⎜ −E B ⎟ = ⎜ −E E⎠⎝⎠⎝ AB ⎞⎛E . 记 Pij = ⎜⎟ B ⎠⎝O AB ⎞ . B ⎟⎠ Fij ⎞ , 其中 Fij 是 (i, j 元素为 aij , E⎟⎠⎛ A O⎞而其余元素均为零的 n 阶方阵.则 Pij 是初等矩阵,且用 Pij 左乘矩阵⎜⎟就相⎝ −E B ⎠⎛ A O⎞⎛E 当于将⎜的第 n + j 行乘上 aij 加到第 i 行.容易验证 P 11 P 12 " P nn = ⎜⎟⎝ −E B ⎠⎝O 于是⎛E ⎜O ⎝ A⎞⎛ A O ⎞ A O ⎛ A O⎞ = = P =| A || B | . 11 P 12 " P nn ⎜⎟⎜⎟⎟ E ⎠⎝ −E B ⎠⎝ −E B ⎠ −E B A⎞ . E⎟⎠另一方面, 有O −E 故结论成立. a11 " a1k 例设A = (aij n×n ,且对任意1 ≤ k ≤ n, 有# # ≠ 0. 则存在 n 阶下三角形矩 ak 1 " akk AB O 2 AB 2 2 =( − n = ( −1 n | AB || − E |= ( −1 n + n | AB | = | AB | . B B −E 阵 B 使得 BA 为上三角形矩阵. 证明对 n 用数学归纳法. 当 n = 1 时结论显然成立. 设命题对于n − 1 阶矩阵成立. 考虑 n 阶矩阵 A = (aij n×n 的情形. 记 6⎛a11 " a1,n −1 ⎞⎜⎟ # ⎟. A1 = ⎜ # ⎜a ⎟⎝ n −1,1 " an −1,n −1 ⎠由归纳假设,存在n − 1 阶下三角矩阵 B1 使得 B1 A1 为上三角形矩阵. 对 A 作如下⎛A 分块 A = ⎜ 1 ⎝α ⎟并对其进行初等行变换: ann ⎠⎛ A1 ⎜α ⎝ −1 ⎛A 第1块行左乘-α A1 加到第 2 块行⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎜ 1 ⎟ ann ⎠⎝O β ⎞ β ⎞ β ⎞ . −α A β + ann ⎟⎠ −1 1 O ⎞⎛ A1 ⎛ E 这表明⎜⎜ −1 1⎟⎝ −α A1 ⎠⎝ α ⎛A =⎜ 1 ⎟ ann ⎠⎝ O β ⎞ β ⎞ . 于是−α A β + ann ⎟⎠ −1 1 O ⎞⎛ A1 ⎛ B1 O ⎞⎛ E ⎜ O 1 ⎟⎜ −α A−1 1 ⎟⎜ α ⎝⎠⎝⎠⎝ 1 ⎛ B O ⎞⎛ A1 =⎜ 1 ⎟⎜⎝ O 1 ⎠⎝ O −1 1 ann ⎟⎠ β ⎞ β B1 β ⎞⎛ B1 A1 ⎞ =⎜⎟ −1 −α A β + ann ⎠⎝ O −α A1 β + ann ⎟⎠是上三角形矩阵.记 O ⎞⎛ B1O⎞⎛B O⎞⎛ E B=⎜ 1 . =⎜⎜⎟⎟ −1 −1 1 ⎠⎝ −α A1 1⎟⎝ O 1 ⎠⎝ −α A1 ⎠则 B 是下三角形矩阵且 BA 为上三角形矩阵. 7。
分块矩阵的乘法运算分块矩阵的乘法运算是线性代数中的一个重要概念。
在实际应用中,我们经常需要对大规模的矩阵进行运算,而分块矩阵的乘法可以显著提高计算效率和降低内存消耗。
我们需要了解什么是分块矩阵。
分块矩阵是指将一个大矩阵划分为若干个小矩阵,并按照一定规则进行组合。
这样做的好处是可以简化计算过程,提高运算效率。
例如,我们可以将一个n×n的矩阵划分为四个n/2×n/2的小矩阵,然后对这些小矩阵进行运算,最后将结果组合起来。
接下来,我们来看一下分块矩阵的乘法规则。
假设有两个分块矩阵A和B,它们的维度分别为m×n和n×p。
分块矩阵的乘法运算可以表示为AB=C,其中C是一个m×p的矩阵。
具体的计算过程如下:1. 将矩阵A和B分块,得到分块矩阵的形式。
例如,将矩阵A划分为大小为m×k的子矩阵,将矩阵B划分为大小为k×p的子矩阵。
2. 对每个子矩阵进行乘法运算,得到中间结果。
3. 将中间结果按照一定规则组合起来,得到最终的结果矩阵C。
需要注意的是,分块矩阵的乘法运算并不是简单地将对应位置的子矩阵相乘,而是需要根据分块矩阵的特性进行一定的规则组合。
具体的规则取决于划分的方式和矩阵的性质。
分块矩阵的乘法运算在实际应用中有很多优势。
首先,它可以减少内存消耗。
当我们需要对大规模矩阵进行运算时,直接对整个矩阵进行操作会占用大量的内存空间。
而分块矩阵的乘法可以将运算过程分解为多个小矩阵的运算,从而减少内存的使用。
分块矩阵的乘法可以提高计算效率。
由于分块矩阵的乘法运算可以将大规模的运算任务分解为多个小规模的运算任务,这样可以利用多核计算的优势,同时也可以进行并行计算,提高运算速度。
分块矩阵的乘法还可以简化计算过程。
对于某些特殊的矩阵,例如对角矩阵或者稀疏矩阵,可以通过适当的分块方式将乘法运算转化为更简单的运算,从而减少计算量。
在实际应用中,分块矩阵的乘法广泛应用于科学计算、信号处理、图像处理等领域。
设计(20 届)分块矩阵的初等变换及其应用所在学院专业班级信息与计算科学学生姓名学号指导教师职称完成日期年月摘要:本文介绍了矩阵,分块矩阵的一些基本概念,同时也介绍了分块矩阵的初等变换,分块矩阵的初等变换在一些问题中的相关应用,如利用分块矩阵的初等变换计算矩阵的行列式,求矩阵的逆,在秩问题中的应用,在相似问题中的应用以及在其他方面的应用,用22分块矩阵的初等变换证明实对称矩阵的正定性。
并根据各种的应用给出了大量的例题,充分体现了分块矩阵的初等变换在代数学中所具有一定的优越性。
关键词:分块矩阵;初等变换;行列式;矩阵的逆;应用Elementary block matrix transform and its applicationAbstract:This article introduces some basic concepts of the matrix and partitioned matrix,also introduces the elementary transformation of partitioned matrix and the related application in some problems. For example, using the elementary transformation of partitioned matrix to compute matrix's determinant or get the inverse of a matrix. Also it introduces the application of partitioned matrix in some rank problems, similar problems and other problems, using the 22elementary transformation of partitioned matrix to prove the definiteness of symmetric matrix. According to different kinds of application, it lists a lot of examples, which fully indicate the superiority of partitioned matrix's elementary transformation in algebra.Key words:partitioned matrices; elementary transformation; determinant; the inverse of a matrix; Application目录1 绪论 (1)1.1问题的背景 (1)1.2问题的意义 (1)2 矩阵的介绍 (2)2.1矩阵的概念 (2)2.2矩阵的运算 (4)2.3矩阵的行列式与秩 (6)2.4矩阵的逆 (8)2.5初等矩阵 (8)3 分块矩阵的介绍 (10)3.1分块矩阵的定义 (10)3.2分块矩阵的分类 (10)3.3分块矩阵的运算 (11)3.4分块矩阵的初等变换和分块初等阵 (12)3.5分块方阵的行列式 (15)4 分块矩阵初等变换的相关应用 (18)4.1利用分块矩阵的初等变换计算行列式 (18)4.2利用分块矩阵的初等变换求矩阵的逆 (20)4.3分块矩阵的初等变换在秩问题中的应用 (23)分块矩阵的初等变换证明实对称矩阵的正定性 (25)4.4用224.5分块矩阵的初等变换在相似问题中的应用 (26)结论 (27)致谢 (28)参考文献 (29)1 绪论1.1 问题的背景在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。
其中:厂可逆,试证存在, 并求•-§ 分块乘法的初等变换及应用举例 将分块乘法与初等变换结合就成为矩阵运算中极端重要的手段 现设某个单位矩阵如下进行分块: 对它进行两行 例)对换;某一行 例)左乘(右乘)一个矩阵广;一行 例)加上另 一行(列)的丄二(矩阵)倍数,就可得到如下类型的一些矩阵:(O E \ (P 0、(E.E I 和初等矩阵与初等变换的关系一样, 只要分块乘法能够进行,其结果就是对它进行相应的变换:F 用这些矩阵左乘任一个分块矩阵 60禺」A (P oB'1D ifA R 、〔尸爲丿 巧 &+FH D +閃<Q E 小 同样,用它们右乘任一矩阵,进行分块乘法时也有相应的结果 •在⑶中,适当选择」二,可使 •例如二可逆时,选:二1,则 •于是(3)的右端成为 行 B ]2 D-CA~l B 」这种形状的矩阵在求行列式、逆矩阵和解决其它问题时是比较方便的,因此⑶ 中的运算非常有用•儿丄可逆,求丁 . 例2设D 」J例3证明行列式的乘积公式I —' I I--1 -'.例4设• 一也■:,且九**■如: :F 0 ,1 ,% …%则有下三角形矩阵亠使=上三角形矩阵.第四章矩阵(小结)一、内容概述1.矩阵运算1)加法与减法(吗)土他卜也土切)其中[J「J都是蛰"矩阵2)数乘H讣甌)其中_是八飞矩阵3)乘法&淤丿■(£沁〕其中V)一 '是叱矩阵,J :是矩阵,并且若「-是和级矩阵,则\AB\=\A\\B\4)可逆矩阵对于也级矩阵V,若存在矩阵£,使得AB = BA = B .则二叫做可逆矩阵,占叫做二的逆矩阵,记做丄2.矩阵的运算规律1)满足加法的交换律,结合律,乘法的结合律,数乘对加法的分配律,乘法对加法的左右分配律•此外还有EA=A r AE=A,04 + 阿=£十3^(足^ =出=(才】尸=/ ,(才】)'=(川尸,(卿1=肝才2)要注意下面的与数不同的性质(1) J = 3A(2)J可能住=〔3.几种特殊的矩阵数量矩阵,对角矩阵,三角形矩阵,对称矩阵,反对称矩阵4.矩阵上可逆的充要条件x级矩阵上可逆=心可以通过初等变换化为单位矩阵;二上可以写成初等矩阵的乘积;-里的秩为叮;:;卫的行列式’「〔逆矩阵的求法:(1)初等变换法⑷E)竹牡檢>住川)(2)伴随矩阵法川=丄/det >45.矩阵的秩秩⑺土£)莖駆+秩£秩⑺£疋讪(秩4秩司6.初等矩阵与矩阵的初等变换1)三种初等矩阵F" FQ鈕此快))分别对应于三种初等变换2)对矩阵匸作初等行(列)变换,相当于用对应的初等矩阵左(右)乘討.3)矩阵的等价及标准形.7.矩阵的分块分块矩阵的运算.、本章的主要内容及它们之间的内在联系数乘乘法初等矩阵可逆矩阵矩阵的运算初等矩阵的乘积对称矩阵与反对称矩阵转置-------- ►矩阵的分块运算本章的重点是矩阵的乘法及其逆运算问题----逆矩阵的存在性和求法问题本章的难点是矩阵的乘法及矩阵的分块乘法三、解题方法与范例分析本章的基本题型有:求给定矩阵的和,差,积.求与给定矩阵可交换的矩阵,矩阵可逆的证明及逆矩阵的求法,矩阵的秩的计算和证明,解矩阵方程.1.关于给定矩阵的和,差,积及混合运算例1.设以为菩级实矩阵,证明-----o — A-02.与给定矩阵可交换的矩阵的求法及证明例2.用5表示:行」列的元素为1,其余元素全为0的八I:矩阵,而9几.证明1)若-禺』,则当址学〔时= °,当亦齐2时山驰=0 ;2)若討总护=竝*,则当疋窗时% = °,当片疋J时口艸=°,且引二◎霽;3)若二与所有的咋级矩阵可交换,则三一定是数量矩阵,即-.3.矩阵可逆性的证明及逆矩阵的求法例3.设巴级矩阵丄满足-1 ,证明討可逆,并求其逆矩阵.例4.设以为耳级整数矩阵,证明:仝存在且为整数矩阵的充要条件是| A|= +15.矩阵的秩及相关问题的计算和证明例5.证明若』是冒级矩阵(^匚),贝U律若秩(4)= ^;秩(才)二1,若秩㈡+十2若秩(Qs-16.解矩阵方程例6.试求矩阵方程仃P X r i r仃PJ 1丿j i」j -的所有解.7.分块矩阵的行列式例7.设「二一都是斗级矩阵,其中「并且..J -...,证明。