矩阵的初等变换及其应用
- 格式:pdf
- 大小:108.74 KB
- 文档页数:3
在数学中矩阵最早来源于方程组的系数及常数所构成的方阵,现在矩阵是线性代数最基本也是最重要的概念之一。
在线性代数及其许多的问题中都能看到矩阵的身影,它能把抽象的问题用矩阵表示出来,通过对矩阵进行计算得出结果。
作为矩阵的基础及核心,矩阵的初等变换及应用是非常重要的,它能够把各种复杂的矩阵转化成我们需要的矩阵形式,从而使计算变得更加的简便。
本文总结了线性变换在线性代数、初等数论、通信、经济、生物遗传等方面的应用。
关键词:矩阵;初等变换;标准型;逆矩阵;标准型;秩;方程组ABSTRACTMatrix derived from the first phalanx of the coefficients and constants of the equations in mathematics, now matrix is the most fundamental and important concepts of linear algebra, in linear algebra and many other questions can be seen the figure of the matrix, It can abstract the matrix representation, then matrix calculated results. As the foundation and core of the matrix, the elementary transformation matrix and its application is very important, it can conversion a variety of complex matrix into a matrix form we need, then the calculation becomes more simple.This paper summarizes the application of linear algebra, elementary number theory, communications, and economic, biological heredity.Key words:Matrix; Elementary transformation; standard; inverse matrix; standard; rank; equations;1矩阵及其初等变换的概念 (1)2矩阵初等变换的应用 (1)2.1在线性代数中的应用 (2)2.1.1 将矩阵化简为阶梯型和等价标准型 (2)2.1.2矩阵的分块和分块矩阵的初等变换 (3)2.1.3求伴随矩阵和逆矩阵 (4)2.1.4求矩阵的秩,向量组的秩 (5)2.1.5求矩阵的特征值和特征向量 (6)2.1.6 解线性方程组 (7)2.1.7求解矩阵方程 (8)2.1.8化二次型为标准型 (9)2.1.9判断向量组的线性相关性,求其极大线性无关组 (11)2.2在数论中的应用 (11)2.3在通信中的应用 (13)2.4在经济方面的应用 (14)2.5在生物遗传方面的应用 (15)总结 (18)致谢 (19)参考文献 (20)矩阵的初等变换及其应用在线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为对这些矩阵的转化过程,除方程组之外,还有很多方面的问题也都涉及矩阵的概念及其应用,这些问题的研究常常转化为对矩阵的研究,甚至于有些性质完全不同的、表面上完全没有联系的问题,归结成矩阵问题以后却是相同的。
矩阵初等变换及其在线性代数中的应用线性代数是一门重要的数学分支,它研究的是线性变换及其代数分析性质。
其中,矩阵是线性代数中非常重要的工具,它可以把线性方程组转化成一个更简单的形式,使得我们可以更容易地进行求解。
而矩阵的初等变换则是在求解线性方程组时必须要用到的一种基本技巧。
本篇文章将深入探讨矩阵初等变换及其在线性代数中的应用。
矩阵初等变换到底是什么?矩阵初等变换是指对于一个矩阵来说,可以通过三种基本变换操作得到新的矩阵。
这三种操作分别是:交换矩阵的任意两行或两列;用一个非零常数 k 乘以矩阵的某一行或某一列;将矩阵的某一行或某一列加上另一行或另一列的 k 倍。
这三种操作称为矩阵的行初等变换或列初等变换。
首先来看一个示例,假设有如下矩阵:$$\begin{bmatrix}1 &2 \\3 &4 \\\end{bmatrix}$$对于这个矩阵,我们可以进行如下初等变换:①交换第一行和第二行$$\begin{bmatrix}3 &4 \\1 &2 \\\end{bmatrix}$$②将第二行乘以2$$\begin{bmatrix}1 &2 \\6 & 8 \\\end{bmatrix}$$③将第二行减去第一行的两倍$$\begin{bmatrix}1 &2 \\4 & 4 \\\end{bmatrix}$$通过这三种基本变换,我们可以将原始矩阵变换成一个新的矩阵。
这个过程通常用矩阵的运算符号表示,比如将第二行减去第一行两倍的操作可以表示为:$$\begin{bmatrix}1 & 0 \\-2 & 1 \\\end{bmatrix}\begin{bmatrix}1 &2 \\3 &4 \\\end{bmatrix}=\begin{bmatrix}1 &2 \\1 & 0 \\\end{bmatrix}$$其中,左侧的矩阵就是一个变换矩阵,它表示了对原矩阵的操作。
矩阵的初等变换及其应用线性代数第一次讨论课1.导语2.讨论内容目录3.正文4.个人总结导语:矩阵是研究线性代数方程组和其他相关问题的有力工具,也是线性代数的主要研究啊、对象之一。
它的理论和方法在自然科学、工程技术、社会科学等众多领域等都有极其广泛的应用。
矩阵作为一些抽象数学的具体表现,在数学研究中占有极其重要的地位。
本文从矩阵的概念讨论矩阵的运算及性质,进而讨论用途很广的矩阵的初等变换及其应用。
讨论内容目录矩阵的初等变换及其应用1.两个矩阵的等价2.两个矩阵的乘积3.将矩阵化为行阶梯型、行最简形、标准型4.求矩阵的秩5.求可逆矩阵的逆矩阵6.求线性方程组的解7.判断向量组的线性相关性8.求向量组的秩与极大无关组9.求矩阵的对角化矩阵(采用行列初等变换,对角线元素为特征值)10.二次型化为标准形正文一、矩阵的等价1.定义:若矩阵A经过一系列初等行变换化为B矩阵,则称A与B行等价;若矩阵A经过一系列初等列变换化为B矩阵,则称A与B列等价;若矩阵A经过一系列初等变换化为B矩阵,则称A与B等价(相抵)。
2.矩阵的等价变换形式主要有如下几种:1)矩阵的i行(列)与j行(列)的位置互换;2)用一个非零常数k乘矩阵的第i行(列)的每个元;3)将矩阵的第j行(列)的所有元得k倍加到第i行(列)的对应元上去;即如果两个矩阵可通过有限次上述变换中的一个或几个的组合变为一样的,两个矩阵等价。
3.矩阵等价具有下列性质(1)反身性任一矩阵A与自身等价;(2)对称性若A与B等价,则B与A等价;(3)传递性若A与B等价,B与C等价,则A与C等价;注意:矩阵作初等变换是矩阵的一种运算,得到的是一个新矩阵,这个矩阵一般与原矩阵不会相等。
下面举例说明矩阵等价及等价变换:13640824100412204128--?? ?- ? ?-- ?-??13r r +→43213131414331222136413640824100824100412204122041280 412813641364082410082410000300030060000r rr r r r r rr r r r B ++-++-----???? ? ?-- ? ????→???→---- ? ?-------- ? ?→= ? ? ? ?????1231213121310341813601030013001300001000100000000r r r r r r r r r C -------???? ?-- ? ?→→= ?显然,根据矩阵等价的定义,以上变换过程中的每一个矩阵均为等价的,每个步骤都是等价转换。
矩阵的初等变换及应用内容摘要:矩阵是线性代数的重要研究对象。
矩阵初等变换是线性代数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。
一矩阵的概念定义:由于m×n个数aij(i=1,2,….,m;j=1,2,….,n)排成的m行n列的数表,称为m行n列,简称m×n矩阵二矩阵初等变换的概念定义:矩阵的初等行变换与初等列变换,统称为初等变换1.初等行变换矩阵的下列三种变换称为矩阵的初等行变换:(1) 交换矩阵的两行(交换两行,记作);(2) 以一个非零的数乘矩阵的某一行(第行乘数,记作);(3) 把矩阵的某一行的倍加到另一行(第行乘加到行,记为).1.初等列变换把上述中“行”变为“列”即得矩阵的初等列变换3 ,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B矩阵之间的等价关系具有下列基本性质:(1) 反身性;(2) 对称性若,则;(3) 传递性若,,则.三矩阵初等变换的应用1.利用初等变换化矩阵为标准形定理:任意一个m×n矩阵A,总可以经过初等变换把它化为标准形2.利用初等变换求逆矩阵求n阶方阵的逆矩阵:即对n×2n矩阵(A¦E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A^(-1)即(A|E)经过初等变换得到(E|A^(-1))这种计算格式也可以用来判断A是否可逆,当我们将A化为行阶梯形矩阵时,若其中的非零行的个数等于n时,则A可逆,否则A不可逆。
设矩阵可逆,则求解矩阵方程等价于求矩阵,为此,可采用类似初等行变换求矩阵的逆的方法,构造矩阵,对其施以初等行变换将矩阵化为单位矩阵,则上述初等行变换同时也将其中的单位矩阵化为,即.这样就给出了用初等行变换求解矩阵方程的方法.同理, 求解矩阵方程等价于计算矩阵亦可利用初等列变换求矩阵. 即.3.利用矩阵初等变换求矩阵的秩矩阵的秩的概念是讨论向量组的线性相关性、深入研究线性方程组等问题的重要工具. 从上节已看到,矩阵可经初等行变换化为行阶梯形矩阵,且行阶梯形矩阵所含非零行的行数是唯一确定的, 这个数实质上就是矩阵的“秩”,鉴于这个数的唯一性尚未证明,在本节中,我们首先利用行列式来定义矩阵的秩,然后给出利用初等变换求矩阵的秩的方法.定理:矩阵的初等变换不改变矩阵的秩,即若A~B则R(A)=R(B)为求矩阵的秩,只要把矩阵用初等行变换变成阶梯矩阵解体矩阵中非零行的行数即是该矩阵的秩利用矩阵值得概念,能够讨论线性方程组有解的条件,然后通过研究向量组的线性相关性,向量组的秩等重要概念,讨论线性方程组的结构。
第三章 矩阵的初等变换矩阵是数学中一个重要的概念,它在科学和工程应用中有着广泛的用途。
矩阵的初等变换是矩阵学中的一项基本操作,对矩阵进行初等变换可以用于求解线性方程组、矩阵的逆以及矩阵的特征值与特征向量等问题。
本章将从初等变换的定义、性质、分类以及应用方面进行阐述。
一、初等变换的定义及性质1. 初等变换的定义初等变换是矩阵学中对矩阵的一种基本操作,它包括三种类型的变换:(1)交换矩阵的任意两行或两列;(2)用非零常数乘矩阵的任意一行或一列;(3)把矩阵的任意一行或一列加上另一行或一列的某个倍数。
这三种变换分别称为行变换、列变换和倍加行变换 (或倍加列变换)。
通过对矩阵进行这三种变换,可以使得矩阵的某些特性变得更加清晰,可以方便地进行矩阵运算、矩阵求解等操作。
2. 初等变换的性质(1)初等变换不改变矩阵的秩。
(2)初等变换不改变矩阵的行列式的值。
(3)若矩阵A经过一次初等变换得到矩阵B,则存在一个可逆矩阵P,使得P·A=B。
(4)由矩阵A经过若干次初等变换得到的矩阵B和矩阵A之间可通过一系列的初等矩阵相乘得到,即B=E1·E2·...·En·A,其中Ei为第i种初等矩阵。
二、初等变换的分类根据初等变换的不同类型,我们可以把初等变换分为三类:行初等变换、列初等变换和整体初等变换。
1. 行初等变换行初等变换是对矩阵的一行进行变换,包括以下三种类型:(1)交换矩阵的两行;(2)用一个非零常数乘以矩阵的某一行;(3)把矩阵的某一行加上另一行的某个倍数。
对于一个n阶矩阵A,我们可以用行向量$(a_{1i} ,a_{2i} ,...,a_{ni})^{T}$表示A的第i行,例如A的第1行可以表示为$(a_{11} ,a_{12} ,...,a_{1n})^{T}$。
那么通过上述变换,我们可以得到新的矩阵A',它的第i行表示为:(1)若把矩阵第i行和第j行交换,则$A'_{i}=A_{j}$,$A'_{j}=A_{i}$,其余行不变;(2)若用非零常数k乘以矩阵的第i行,则$A'_{i}=kA_{i}$,其余行不变;(3)若把矩阵的第j行的k倍加到第i行上,则$A'_{i}=A_{i}+kA_{j}$,其余行不变。
㊀㊀㊀㊀㊀㊀矩阵的初等变换及其应用矩阵的初等变换及其应用Һ顾江永㊀(宿迁学院文理学院,江苏㊀宿迁㊀223800)㊀㊀ʌ摘要ɔ矩阵的初等变换在代数学中具有重要的地位,本文给出了运用初等变换求解方程组的基础解系㊁特征值㊁多项式的最大公因式和Jordan标准形相似变换矩阵等方法,这些方法具有直观㊁简捷㊁有效等特点.ʌ关键词ɔ初等变换;基础解系;最大公因式;相似变换矩阵ʌ基金项目ɔ2019江苏省高校教学研究一般项目(2019SJA1997)一㊁引㊀言矩阵的初等变换包括矩阵的初等行变换和矩阵的初等列变换,矩阵的初等行(列)变换有三种形式[1]:(1)交换两行(列);(2)任一行(列)的k倍(kʂ0);(3)任一行(列)的k倍加到另一行(列).在代数学中,矩阵的初等变换有着非常重要且广泛的应用,它常被应用于行列式的计算㊁方程组以及矩阵方程的求解㊁向量线性关系的判定㊁求矩阵的秩以及逆㊁λ-矩阵的不变因子和矩阵的Jordan标准形等.张家宝给出了初等变换求逆的几种方法[2];石擎天等研究了初等变换求解方程组的特殊方法[3];于莉琦等介绍了初等变换在行列式㊁矩阵和方程组中的应用[4].本文给出了矩阵的初等变换求解方程组的基础解系㊁最大公因式和Jordan标准形的相似变换矩阵等方法及应用.二㊁预备知识引理1[5]㊀设矩阵Amˑn的秩为r,且Amˑn=PEr000æèçöø÷Q,其中Pmˑm,Qnˑn为可逆矩阵,则有P-100Enæèçöø÷AEnæèçöø÷Q-1=Er000Q-1æèççöø÷÷.证明㊀因为Amˑn=PEr000æèçöø÷Q,所以Er000æèçöø÷=P-1AmˑnQ-1,故P-100Enæèçöø÷AEnæèçöø÷Q-1=P-1AEnæèçöø÷Q-1=P-1AQ-1Q-1æèçöø÷=Er000Q-1æèççöø÷÷,注:引理1给出了化一个矩阵为标准形的求Q-1的方法.引理2㊀设矩阵Amˑn的秩为r,则矩阵AEnæèçöø÷仅经初等列变换可以化为β1,β2, ,βr,0, ,0Q-1æèçöø÷,其中β1,β2, ,βr线性无关,且AQ=β1,β2, ,βr,0, ,0().证明㊀因为Amˑn的秩为r,所以Amˑn的列秩等于r,即矩阵Amˑn列向量组的最大线性无关组由r个向量构成,不妨设为β1,β2, ,βr,故由初等变换的性质可得AEnæèçöø÷仅经初等列变换可以化为β1,β2, ,βr,0, ,0Q-1æèçöø÷.引理3[6]㊀设A是数域P上的n阶方阵,将矩阵λE-A经初等变换化为上三角形矩阵f1(λ)0 0∗f2(λ)0︙︙⋱︙∗∗fn(λ)æèççççöø÷÷÷÷,则fi(λ)=0(i=1,2, ,n)在数域P上的根即为矩阵A的全部特征根.证明㊀根据初等变换的性质可知,初等变换不改变λE-A=0的根,故f1(λ)0 0∗f2(λ) 0︙︙⋱︙∗∗fn(λ)=f1(λ)f2(λ) fn(λ)=0的根即为矩阵A的全部特征根.引理4㊀设f1(x),f2(x), ,fs(x)是数域P上的多项式,且f1(x),f2(x), ,fs(x)()T经初等行变换化为d(x),0, ,0()T,则d(x)即为f1(x),f2(x), ,fs(x)的最大公因式.证明㊀由辗转相除法原理直接可得[1].三㊁主要结论定理1㊀设齐次线性方程组Amˑnx=0,其系数矩阵Amˑn的秩为r,且Amˑn=PEr000æèçöø÷Q,又设Q-1=(η1, ,ηr,ηr+1, ,ηn),则ηr+1,ηr+2, ,ηn是线性方程组Amˑnx=0的基础解系.证明㊀设Qx=y1︙yr︙ynæèçççççöø÷÷÷÷÷=YrYn-ræèçöø÷,由Amˑnx=PEr000æèçöø÷Qx=PEr000æèçöø÷YrYn-ræèçöø÷=0,可得Yr=y1︙yræèççöø÷÷=0,所以x=Q-1YrYn-ræèçöø÷=Q-10︙0yr+1︙ynæèççççççöø÷÷÷÷÷÷.㊀㊀㊀㊀㊀令Q-1=(η1, ,ηr,ηr+1, ,ηn),则x=yr+1ηr+1+yr+2ηr+2+ +ynηn.因为Q是可逆矩阵,则ηr+1,ηr+2, ,ηn线性无关,所以ηr+1,ηr+2, ,ηn为方程组的一个基础解系.定理2[7]㊀设A是数域P上的n阶方阵,矩阵λEn-AEnæèçöø÷经初等变换化为φ1(λ)0⋱0φn(λ)Q(λ)æèççççöø÷÷÷÷(其中初等行变换只能在前n行进行).设Q(λ)的第j列为qj(λ),若λ-λ0()k为φj(λ)的初等因子,则Aqj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!æèçöø÷=qj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!æèçöø÷λ0100λ00︙︙⋱100λ0æèççççöø÷÷÷÷.证明㊀由题设知,存在可逆矩阵P(λ),Q(λ),使得P(λ)λEn-A()Q(λ)=φ1(λ)0⋱0φn(λ)æèççöø÷÷.因为qj(λ)是Q(λ)的第j列,所以P(λ)λEn-A()qj(λ)=(0, ,0,φj(λ),0, ,0)T.又设qj(λ)的幂级数展开式为qj(λ)=qj(λ0)+qᶄj(λ0)1!λ-λ0()+qᵡj(λ0)2!λ-λ0()2+ ,代入P(λ)λEn-A()qj(λ)=(0, ,0,φj(λ),0, ,0)T,得λ0En-A()qj(λ0)=0,λ0En-A()qᶄj(λ0)+qj(λ)=0,λ0En-A()q(k-1)j(λ0)(k-1)!+qk-2()j(λ0)k-2()!=0.上面等式两边相加㊁移项并提取矩阵A可得A(qj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!)=(qj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!)λ0100λ0 0︙︙⋱100λ0æèççççöø÷÷÷÷.四㊁应用举例例1㊀求多项式f1(x),f2(x),f3(x)的最大公因式,其中f1(x)=x4+2x3+4x2+3x+2,f2(x)=x4+x3+3x2+x+2,f3(x)=x3+2x2+3x+2.解㊀因为f1(x)f2(x)f3(x)æèççöø÷÷=f1(x)-f2(x)f2(x)-xf3(x)f3(x)æèççöø÷÷=x3+x2+2x-x3-x+2x3+2x2+3x+2æèççöø÷÷=x3+x2+2xx2+x+2x2+x+2æèççöø÷÷=x3+x2+2xx2+x+20æèççöø÷÷=x2+x+200æèççöø÷÷,所以由引理4知,f1(x),f2(x),f3(x)的最大公因式为d(x)=x2+x+2.例2㊀求齐次线性方程组x1+x2+x3+x4+x5=0,3x1+2x2+x3+x4-3x5=0,5x1+4x2+3x3+3x4-x5=0{的基础解系.解㊀对系数矩阵A施行初等行变换如下A=111113211-35433-1æèççöø÷÷ r2-3r1r3-5r1111110-1-2-2-60-1-2-2-6æèççöø÷÷ r1+r2r2ˑ(-1)r3-r210-1-1-50122600000æèççöø÷÷.又10-1-1-5012261000001000001000001000001æèçççççççöø÷÷÷÷÷÷÷ c3+c1c4+c1c5+5c110000012261011501000001000001000001æèçççççççöø÷÷÷÷÷÷÷ c3-2c2c4-2c2c5-6c210000010001011501-2-2-6001000001000001æèçççççççöø÷÷÷÷÷÷÷则由引理2知,方程组的基础解系为η1=(1,-2,1,0,0)T,η2=(1,-2,0,1,0)T,η3=(5,-6,0,0,1)T.ʌ参考文献ɔ[1]王萼芳,石生明.高等代数(第五版)[M].北京:高等教育出版社,2019:5.[2]张家宝.浅谈求逆矩阵的几种方法[J].数学学习与研究,2020(10):4-5.[3]石擎天,黄坤阳.线性方程组求解及应用[J].教育教学论坛,2020(12):325-327.[4]于莉琦,高恒嵩.初等变换概述[J].数学学习与研究,2019(06):116.[5]徐仲,陆全,等.高等代数考研教案(第2版)[M].西安:西北工业大学出版社,2009.[6]卢博,田双亮,等.高等代数思想方法及应用[M].北京:科学出版社,2017.[7]朱广化.关于‘相似变换矩阵的简单求法“的改进[J].数学通报,1994(11):44-46.。
摘要本文探讨矩阵初等变换的性质及其在代数中的若干应用,主要从矩阵的逆、矩阵的秩、求解线性方程组及矩阵方程、求一元多项式的最大公因式、求解指派问题等若干方面进行阐述。
关键词:矩阵的初等变换;矩阵的秩;可逆矩阵;线性方程组;最大公因式AbstractThis paper is mainly to discuss the application of the elementary transfor mation of matrix in algebra, using matrix elementary transformation to solve th e matrix inverse, matrix rank, solving linear equations and matrix equations, on e yuan polynomial greatest common divisor, solving assignment problem of the se aspects of the application.Keywords:Elementary transformation of matrix;Matrix rank;Invertible matrix;System of linear equations;Greatest common factor目录1 引言 ............................. 错误!未定义书签。
2 矩阵的初等变换及其性质 (1)2.1 矩阵初等变换的定义.......................... 错误!未定义书签。
2.2 矩阵初等变换相关性质 (2)3 矩阵初等变换的若干应用 (2)3.1 利用矩阵初等变换求矩阵的逆 (1)3.2 利用矩阵的初等变换来求矩阵的秩 (5)3.3 利用矩阵初等变换求解线性方程组及矩阵方程 (7)3.4 利用矩阵的初等变换求一元多项式最大公因式 (11)3.5 利用矩阵初等变换解决指派问题 (13)参考文献 (16)矩阵初等变换的性质及其应用矩阵及其理论在众多领域中都发挥着重要的作用,而矩阵的初等变换是矩阵理论的核心和灵魂。