【学案】列举所有机会均等的结果——用列表法求概率教案(完美版)
- 格式:doc
- 大小:79.28 KB
- 文档页数:2
《用列举法求概率》教案教学目标知识与技能1.进一步在具体情境中了解概率的意义.2.会用列表法求出简单事件的概率.过程与方法通过生活中简单的例子,通过列表列举出事件的所有结果,进而求指定事件的概率.情感态度通过小组合作、探究、发现解决数学问题的方法和途径,从而激发求知欲.教学重点用列表法求概率的过程与方法.教学难点理解“等可能事件”,摸球或抽卡片放回与不放回的区别.教学过程一、情境导入,初步认识活动1:一枚硬币连续掷两次,求下列事件概率.(1)两次全部正面朝上;(2)两次全面反面朝上;(3)一次正面朝上,一次反面朝上.学生分组讨论,思考,教师让学生回答解题结果:(1)14(2)14(3)12教师问:解决上述问题,能否用一个表格先列举出所有可能结果,再解题呢?这个表格应怎样列,学生先动手试试看,然后教师展示列表.思考:若能先列出表格,列举出试验的所有结果,再求确定事件的概率,是否要简捷一些.二、思考探究,获取新知在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性都相等,可以用列表列举出试验结果的方法,分析出随机事件的概率.例:如图,甲、乙、丙三人做传球的游戏.开始时,球在甲手中,每次传球,持球的人将球任意传给其余两人中的一人,如此传球3次.(1)写出3次传球的所有可能结果(即传球的方式);(2)指定事件A:“传球3次后,球又回到甲的手中”,写出A发生的所有可能结果;(3)求P(A).例李明和刘英各掷一枚骰子,如果两枚骰子的点数之和是奇数,则李明赢,如果两枚骰子的点数之和为偶数,则刘英赢,这个游戏公平吗?【分析】1.游戏对双方是否公平,要看双方获胜的概率是否相等,若相等,则公平,若不相等,则不公平.2.各掷一枚骰子,可能出现的结果比较多,为了不重不漏,可用列表法列举出所有可能结果.解:列表从表中可以看出,出现点数之和为奇数的结果有18种,出现点数之和为偶数的结果也有18种.∴P(李明胜)=181362=,P(刘英胜)=181362=,所以游戏公平.【教学说明】以上例可以看出用列表法求概率的关键是能根据题意正确列出表格,用表格列举出事件出现的所有结果.活动2:教师引导学生完成教材P128的“做一做”.【教学说明】用列表法求概率适用的对象是:1.试验出现各种结果的个数是有限个.2.试验涉及两个因素或分两步完成,如掷两个骰子,抽两张卡片,两次摸球等.强调:当试验为模球或抽卡片时,一定要分清第一次摸球或抽卡片后,“球”与“卡”是否放回,即“放回”与“不放回”结果是不同的.三、运用新知,深化理解1.从1,2,3,4,5五个数中任意取出2个数做加法,其和为偶数的概率是( )2.均匀的正四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是( )3.(福建福州中考)从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )4.(山东潍坊中考)将一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”的概率是________(红色和蓝色配成紫色).5.(湖北黄冈中考)在一个口袋中有4个完全相同的小球,把它们分别标号1,2,3,4.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x,小强摸出球的标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.【教学说明】学生先自主解答,再教师引导分析讲解,加深对新知识理解.【答案】1.C2.B3.B4.1 185.解:(1)由题意知(x,y)共有(1,2)(1,3)(1,4)(2,1)(2,3)(2,4)(3,1)(3,2)(3,4)(4,1)(4,2)(4,3)共12种,其中x>y有6种,∴小明获胜的概率P(x>y)=612=12.(2)由题意知(x,y)除(1)中情形外,还有(1,1)(2,2)(3,3)(4,4)共16种.其中x>y 有6种.∴x>y的概率P(x>y)=616=38<12,∴游戏规则不公平.练习题1:1、如图,有三条绳子穿过一块木板,姐妹两人分别站在木板的左、右两边,各选该边的一段绳子.若每边每段绳子被选中的机会相等,则两人选到同一条绳子的概率为多少?2.小军同时抛掷两枚骰子,求两枚骰子点数之和小于7的概率.练习2:1、如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.用树状图法求小球从E点落出的概率.2、如图,从车站到书城有A1,A2,A3三条路线可走,从书城到广场有B1,B2两条路线可走,现让你随机选择一条从车站出发经过书城到达广场的行走路线,那么恰好选到经过路线B1的概率是多少?四、师生互动,课堂小结1.师生共同回顾用列表法求概率的方法和步骤.2.通过本节课的学习,你掌握了哪些新知识,还有哪些疑问,请与同伴交流.课后作业1.教材P129第1、2题.2.完成同步练习册中本课时的练习.。
九年级数学《用列表法求概率》教案教学目标:知识与技能目标学习用列表法计算概率,并通过比较概率大小作出合理的决策。
过程与方法目标经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。
渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。
情感与态度目标通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。
教学重点:习运用列表法计算事件的概率。
教学难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。
教学过程1.创设情景,发现新知例5:同时掷两个质地均匀的骰子,计算下列事件的概率:(1) 两个骰子的点数相同;(2) 两个骰子的点数的和是9;(3) 至少有一个骰子的点数为2。
这个例题难度较大,事件可能出现的结果有36种。
若首先就拿这个例题给学生讲解,大多数学生理解起来会比较困难。
所以在这里,我将新课的引入方式改为了一个有实际背景的转盘游戏(前一课已有例2作基础)。
(1)创设情景引例:为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同)。
每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次)。
作为游戏者,你会选择哪个装置呢?并请说明理由。
16 8457【设计意图】选用这个引例,是基于以下考虑:以贴近学生生活的联欢晚会为背景,创设转盘游戏引入,能在最短时间内激发学生的兴趣,引起学生高度的注意力,进入情境。
(2)学生分组讨论,探索交流在这个环节里,首先要求学生分组讨论,探索交流。
然后引导学生将实际问题转化为数学问题,即:“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”由于事件的随机性,我们必须考虑事件发生概率的大小。
课时教学设计个因素(例如抛掷两枚骰子)改为“把一枚骰子掷两次”,(1)满足两枚骰子点数相同(记为事件A)的结果有6个(表中斜体加粗部分),所以P(A)=636=16;(2)满足两枚骰子的和是9(记为事件B)的结果有4个(表中的阴影部分),所以P(B)=436=19;(3)满足至少有一枚骰子的点数为2(记为事件C)的结果有11个(表中方框部分),所以P(C)=1136步骤列表;求出表中可能出现的结果的总数n;统计某种随机事件可能发生的结果的数目m;用公式P(A)=mn计算概率.个分支,在分支下的第三行分别写上H和I;④按竖向把各种可能的结果竖着写在下面,就可得出所有可能的结果的总数(即机会均等的结果的总数m),再找出符合要求的种数,就可以利用概率的意义计算概率了.依据题意,我们可以画出如下的树状图:从树状图中可以看出,所有可能出现的结果共有12个,且这些结果出现的可能性相等,只有一个元音字母的结果有5个,即ACI,ADH,BCI,BDI,BEH,所以P(一个元音)=5 12;全是辅音字母的结果有两个,即BCH,BDH,所以P(三个辅音)=21= 126.的值,,∵共有6种等可能的结果,抽取2名,恰好是1名女生和1名男生有4种情况,∴抽取2名,恰好是1名女生和1名男生概率为23.称为几何概型).小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上(图中每一块方砖除颜色外完全相同),求它最终停留在黑色方砖上的概率.由于试验中等可能发生的结果无法计数,所以此时的概率可以用所关注区域(即所有黑色方砖)的面积除以可能发生的区域(即所有方砖)的面积.不妨设小方砖的面积为1,由几何概型的概率公式知,P(停留在黑砖上)=41=164.2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的百分比.若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是 %.板书设计。
25.2 用列举法求概率(第1课时)一、教学目标【知识与技能】初步掌握直接列举法计算一些简单事件的概率的方法.【过程与方法】通过用列举法求简单事件的概率的学习,使学生在具体情境中分析事件.计算其发生的概率,解决实际问题.【情感态度与价值观】体会概率在生活实践中的应用,激发学习数学的兴趣,提高分析问题的能力.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】熟练掌握直接列举法计算简单事件的概率.【教学难点】能不重不漏而又简洁地列出所有可能的结果.五、课前准备课件等.六、教学过程(一)导入新课出示课件2,3:小颖为一节活动课设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。
问:游戏者获胜的概率是多少?老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问,你们觉得这个游戏公平吗?上边的问题有几种可能呢?怎样才能不重不漏地列举所有可能出现的结果呢?.(板书课题)(二)探索新知探究一用直接列举法求概率出示课件5-7:同时掷两枚硬币,试求下列事件的概率:(1)两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上.师生共同分析:“掷两枚硬币”所有结果如下:⑴两正;⑵一正一反;⑶一反一正;⑷两反.师生共同解决如下:解:(1)两枚硬币两面一样包括两面都是正面、两面都是反面,共两种情形,其概率为21;=42(2)一枚硬币正面朝上,一枚硬币反面朝上,共有反正、正反两种情形,其概率为21=.42出示课件8:教师归纳:上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.教师强调:直接列举法比较适合用于最多涉及两个试验因素或分两步进行的试验,且事件总结果的种数比较少的等可能性事件.想一想:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?(出示课件13)师生共同分析:结论:一样.出示课件10:教师归纳:随机事件“同时”与“先后”的关系:“两个相同的随机事件同时发生”与“一个随机事件先后两次发生”的结果是一样的.探究二用列表法求概率出示课件11:同时掷两枚硬币,试求下列事件的概率:(1)两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上.还有别的方法求上述事件的概率吗?教师分析:还可以用列表法求概率:出示课件13:教师分析列表法中表格构造特点,学生思考并认定.出示课件14-16:例1 同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同.(2)两个骰子的点数之和是9.(3)至少有一个骰子的点数为2.教师分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能掷出1、2、···6中的每一种情况,第2枚骰子也可能掷出1,2,···,6中的每一种情况.可以用“列表法”列出所有可能的结果如下:解:由列表得,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等.(1)满足两个骰子的点数相同(记为事件A)的结果有6个,则P(A)=61.=366(2)满足两个骰子的点数之和是9(记为事件B)的结果有4个,则P(B)=41.=369(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个,则P(C)=11.36出示课件17:教师归纳:当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用列表法.巩固练习:(出示课件18-20)同时抛掷2枚均匀的骰子一次,骰子各面上的点数分别是1、2、3···6.试分别计算如下各随机事件的概率.(1)抛出的点数之和等于8;(2)抛出的点数之和等于12.教师分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能掷出1、2、···6中的每一种情况,第2枚骰子也可能掷出1、2、···6中的每一种情况.可以用“列表法”列出所有可能的结果.学生板演:解:从上表可以看出,同时抛掷两枚骰子一次,所有可能出现的结果有36种.由于骰子是均匀的,所以每个结果出现的可能性相等.(1)抛出点数之和等于8的结果(2,6),(3,5),(4,4),(5,3)和(6,2)这5种,所以抛出的点数之和等于8的这个事件发生的概率为5;36(2)抛出点数之和等于12的结果仅有(6,6)这1种,所以抛出的点数之和等于12的这个事件发生的概率为1.36出示课件21:例2 一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后放回袋中并搅匀,再从中任意摸出一个球,两次都摸出红球的概率是多少?师生共同解决如下:(出示课件22)解:利用表格列出所有可能的结果:次摸出红球4(2)=.9P ∴拓展延伸:一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后不再放回袋中,再从中任意摸出一个球,两次都摸出红球的概率是多少?(出示课件23)师生共同解决如下:解:利用表格列出所有可能的结果:次摸出红球21(2)=.63P ∴=出示课件24:教师强调:通过例2及拓展延伸的讲解,放回与不放回列举的过程是不同的,解答问题时,注意明确,若无明确,具体问题具体分析.巩固练习:(出示课件25,26)如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形).游戏规则是:如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.学生思考交流后自主解决,一生板演.解:每次游戏时,所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有一种:(1,1),因此游戏者获胜的概率为1.6出示课件27,28:例3 甲乙两人要去风景区游玩,仅知道每天开往风景区有3辆汽车,并且舒适程度分别为上等、中等、下等3种,当不知道怎样区分这些车,也不知道它们会以怎样的顺序开来.于是他们分别采用了不同的乘车办法:甲乘第1辆开来的车.乙不乘第1辆车,并且仔细观察第2辆车的情况,如果比第1辆车好就乘坐,比第1辆车差就乘第3辆车.试问甲、乙两人的乘车办法,哪一种更有利于乘上舒适程度上等的车?学生独立思考后师生共同解决.解:容易知道3辆汽车开来的先后顺序有如下6种可能情况:(上中下),(上下中),(中上下),(中下上),(下上中),(下中上).假定6种顺序出现的可能性相等,在各种可能顺序之下,甲乙两人分别会乘坐的汽车列表如下:甲乘到上等、中等、下等3种汽车的概率都是13;乙乘坐到上等汽车的概率是31=62,乘坐到下等汽车的概率只有16.答:乙的乘车办法有有利于乘上舒适度较好的车.巩固练习:(出示课件29-31)小明和小亮做扑克游戏,桌面上放有两堆牌,分别是红桃和黑桃的1、2、3、4、5、6,小明建议:“我从红桃中抽取一张牌,你从黑桃中取一张,当两张牌数字之积为奇数时,你得1分,为偶数我得1分,先得到10分的获胜.”如果你是小亮,你愿意接受这个游戏的规则吗?你能求出小亮得分的概率吗?师生共同分析:用表格表示解:由表中可以看出,在两堆牌中分别取一张,它可能出现的结果有36个,它们出现的可能性相等.满足两张牌的数字之积为奇数(记为事件A)的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5)这9种情况,所以P(A)=936=1. 4(三)课堂练习(出示课件32-39)1.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用列表的方法,求该同学两次摸出的小球所标字母相同的概率.2.小明与小红玩一次“石头、剪刀、布”游戏,则小明赢的概率是()A.49B.13C.12D.193.某次考试中,每道单项选择题一般有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全对的概率是()A.14B.12C.18D.1164.如果有两组牌,它们的牌面数字分别是1、2、3,那么从每组牌中各摸出一张牌.(1)摸出两张牌的数字之和为4的概念为多少?(2)摸出为两张牌的数字相等的概率为多少?5.在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少?参考答案:1.解:列表得:由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种.所以该同学两次摸出的小球所标字母相同的概率=31.932.B3.D4.解:列表,得(1)P(数字之和为4)=1.3(2)P(数字相等)=1.35.解:列表,得由列表得,两次抽取卡片后,可能出现的结果有36个,它们出现的可能性相等.满足第一次取出的数字能够整除第二次取出的数字(记为事件A)的结果有14个,则P(A)=147.3618(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(25.2第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.本节课通过以学生喜闻乐见的掷硬币等游戏为载体,充分调动了学生的学习欲望,将学生摆在了真正的主体位置上,充分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多有关概率的问题,本节课的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.2.本节课还通过普通列举法与列表法,对找出包含两个因素的试验结果的对比,让学生感受到列表法的作用与长处,使学生易于接受知识.3.教师引导学生交流归纳知识点,看学生能否会不重不漏地列举出事件发生的所有可能,能否找出事件A中包含几种可能的结果,并能求P(A),教学时要重点突出方法.。
用列表求概率教案教案标题:用列表求概率教案目标:1. 理解概率的基本概念和原理。
2. 掌握使用列表方法求解概率问题的技巧。
3. 培养学生的逻辑思维和问题解决能力。
教学资源:1. 黑板/白板和彩色粉笔/马克笔。
2. 学生用纸和铅笔/钢笔。
3. 教学PPT或投影仪。
教学过程:引入(5分钟):1. 引导学生回顾概率的基本概念,例如事件、样本空间和概率的定义。
2. 提出一个简单的问题,例如抛硬币的结果是正面还是反面的概率是多少?引导学生思考如何解决这个问题。
探究(15分钟):1. 解释列表法求解概率的基本原理:将所有可能的结果列成一个列表,然后计算感兴趣事件出现的次数与总次数的比值。
2. 通过一个具体的例子,例如掷骰子,向学生演示如何使用列表法求解概率问题。
3. 让学生尝试解决几个简单的概率问题,例如抽取一张扑克牌的红心的概率是多少?拓展(15分钟):1. 引导学生思考更复杂的概率问题,例如从一个袋子中抽取不同颜色的球的概率是多少?2. 提供更多的例子和练习,让学生在小组或个人中尝试使用列表法求解概率问题。
3. 引导学生总结列表法求解概率问题的步骤和技巧。
实践(15分钟):1. 将学生分成小组,给每个小组分发一些概率问题,要求他们使用列表法解决。
2. 每个小组派代表上台演示他们的解决过程和答案,其他小组进行评价和讨论。
3. 教师给予肯定和指导,纠正学生可能存在的错误,并强调解决问题的思路和方法。
总结(5分钟):1. 回顾本节课的学习内容,强调列表法在求解概率问题中的应用。
2. 鼓励学生在日常生活中运用概率知识解决问题。
3. 鼓励学生继续探索更复杂的概率问题,并提供相关的参考资料。
作业:布置一些概率问题作为课后作业,要求学生使用列表法求解,并在下节课上交。
P(小明)=
4
1
第一枚
第二枚
2、树形图求概率
若将游戏规则改为抛掷三枚硬币,出现全反面或全正面则小明
获胜;出现一正两反则小颖获胜;出现一反两正则小凡获胜,这样
游戏公平吗?
【分析】现在是抛掷三枚硬币,那么还能用列表法进行分析
吗?大家有没有合适的方法?
【教学说明】教师引导学生画树状图,使学生动手体会如何画
树状图,指导学生规范地应用树状图法解决概率问题,并比较它与
列表法的优劣。
4分钟
四、典例
分析例1在一个不透明的口袋里装有除标号外完全一样的三个小球,小
球上分别标有2,﹣1,3这三个数字,从袋中随机摸出一个小球,
记标号为a,然后放回摇匀后再随机摸出一个小球,记标号为b,
则满足<1的概率是_____.
【教学说明】教师引导学生画树状图分析,并且对于放回的情况,
需要引导学生思考每种a的情况下对应的各种b的情况。
7分钟正反
正正正反正
反正反反反。
列举所有机会均等的结果——用列表法求概率【知识与技能】理解并掌握列表法求随机事件的概率,并利用其解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历用列表法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.【情感态度】通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中的应用价值,培养缜密的思维习惯和良好的学习习惯.【教学重点】会用列表法求随机事件的概率.区分什么时候用列表法,什么时候用树状图法求概率.【教学难点】列表法是如何列表法.列表法和树状图的选取方法.一、思考探究,获取新知列表法求概率课本151页问题6【分析】这一问题可用树状图法,但不如列表的结果简明.【教学说明】引导学生如何列表,指导学生体会列表法对列举所有可能的结果所起的作用.问题6列表如下:第2枚枚积第1枚1 2 3 4 5 61 12345 62 2 4 6 8 10 123 3 6 9 12 15 184 4 8 12 16 20 245 5 10 15 20 25 30 661218243036【教学说明】教师详细讲解列表法的操作方法,学生结合列表法,理解分析,体会列表法的用法,体验列表法的优势. 二、运用新知,深化理解例1:同时掷两个质地均匀的骰子,计算下列事件的概率:(1) 两个骰子的点数相同; (2) 两个骰子的点数的和是9; (3) 至少有一个骰子的点数为2。
例题是一道“掷骰子”的问题,有了问题6作基础,学生不难发现:问题6涉及两枚骰子,这里也涉及两个骰子,实质都是涉及两个因素。
于是,学生通过类比列出下列表。
第2个 第1个 1234561 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)由上表可以看出,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。
:麦群超二、学习重点 用列表法来计算随机事件发生的概率。
三、自主预习
仔细阅读教材149-152,完成下面问题。
一布袋中放有红、黄、白三种颜色的球各一,它们除颜色处其他都一个样,小明从中摸出一个球后放回摇匀,再摸出一个球,请你利用列表法分析可能出现的
情况。
四、合作探究
小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得 2 分,当所转到的数字之积为偶数时,小刚得 1 分,这个游戏对双方公平吗?若公平,说明理由,若不公平,如何修改规则才能使游戏对双方公平?
五、巩固反馈(当堂检测)
1 2 1 2 3 甲 乙
3.小芳掷一枚硬币次,有次正面朝上,当她掷第次时,正面向上的概率为______.
4.小射手为练习射击,共射击60次,其中36次击中靶子,试估计小射手依
次击中靶子的概率为_____。
5.小红、小张,在一起做游戏,需要确定的游戏的先后顺序,他们约定用“剪子,包袱,锤子”的方式确定,小红取胜的概率是_____。
6.小王和小亮玩抛硬币的游戏,在抛两枚硬币时,规则如下:抛出两个正面小王得一分,抛出一正一反,则小亮得一分,请问:①这个游戏规则对双方公平吗?
②如果不公平,应如何改动游戏规则?
7.“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A.打扫街道卫生;B.慰问孤寡老人;C.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.
(1)若随机选一个年级的学生代表和一项活动内容,请你用列表法表示所有可能出现的结果;
(2)求九年级学生代表到社区进行义务文艺演出的概率.。