列表法求概率(新)
- 格式:ppt
- 大小:217.50 KB
- 文档页数:15
列表法求概率以《列表法求概率》为标题,写一篇3000字的中文文章概率(probability)是统计学中一个重要的概念,它大致上可以表示在一些实验中某件事情发生的机会大小。
在许多情况下,人们都是以列表的形式来求解概率的,即列表法求概率。
本文主要介绍如何使用列表法求概率,并给出相应的实例,希望能帮助读者更好地理解这一概念。
首先,要想用列表法求概率,就必须要先准备好所有可能发生的事情,并列出选项的所有可能组合。
列表法求概率的过程就是用来确定每个事件发生的概率,以及总的概率。
以一个简单的例子来说明,假设现在有三个贝壳,其中一个是红色的,一个是黄色的,另一个是蓝色的。
如果想求出拿到红色贝壳的概率,就可以用列表法求概率,需要做的第一步就是列出所有可能组合,即红色、黄色和蓝色三种组合:(1)红色、黄色、蓝色(2)红色、黄色(3)红色、蓝色(4)黄色、蓝色接下来,计算每一种组合的概率,以及总概率:(1)红色、黄色、蓝色的概率为1/3;(2)红色、黄色的概率为1/3;(3)红色、蓝色的概率为1/3;(4)黄色、蓝色的概率为1/3。
因此,总的概率为1/3+1/3+1/3+1/3=4/3。
列表法求概率不仅仅是计算三种组合的概率,它还可以用于计算其他更复杂的情况,比如说要计算4个贝壳中取到蓝色和黄色贝壳的概率,那么只需要把所有可能组合都列出来,然后求出每一种组合的概率,最后求出总的概率即可。
在实际的应用中,列表法求概率的方法也很常用,比如说假设有一个袋子里面有4个红球、2个黄球和3个蓝球,先从袋子里抽取一个球,然后把它放回去,再抽取第二个球,问在两次抽取中都抽到红球的概率是多少?可以用列表法求概率来解决,首先把所有可能组合都列出来:(1)红球、红球(2)红球、黄球(3)红球、蓝球(4)黄球、红球(5)黄球、黄球(6)黄球、蓝球(7)蓝球、红球(8)蓝球、黄球(9)蓝球、蓝球然后求出每一种组合的概率:(1)红球、红球的概率为4/9×4/9;(2)红球、黄球的概率为4/9×2/9;(3)红球、蓝球的概率为4/9×3/9;(4)黄球、红球的概率为2/9×4/9;(5)黄球、黄球的概率为2/9×2/9;(6)黄球、蓝球的概率为2/9×3/9;(7)蓝球、红球的概率为3/9×4/9;(8)蓝球、黄球的概率为3/9×2/9;(9)蓝球、蓝球的概率为3/9×3/9。