苏科版七年级下8.2《幂的乘方与积的乘方》同步练习题
- 格式:doc
- 大小:37.00 KB
- 文档页数:2
8.2幂的乘方与积的乘方同步练习(1)【基础演练】一、填空题1.计算:()43a 表示 . 2.计算:(x 4)3= .3.计算:(y 3)2+(y 2)3= .4.计算:=-•-3223)()(a a . 5.)(234)2(=.(在括号内填数)二、选择题6.计算下列各式,结果是8x 的是( )A .x 2·x 4;B .(x 2)6;C .x 4+x 4;D .x 4·x 4.7.下列各式中计算正确的是( )A .(x 4)3=x 7; B.[(-a )2]5=-a 10;C.(a m )2=(a2)m =a m 2; D.(-a 2)3=(-a 3)2=-a 6. 8.计算32)(x -的结果是( )A.5x -;B.5x ;C.6x -;D.6x .9.下列四个算式中:①(a 3)3=a 3+3=a 6;②[(b 2)2]2=b 2×2×2=b 8;③[(-x )3]4=(-x )12=x 12; ④(-y 2)5=y 10,正确的算式有( )A .0个;B .1个;C .2个;D .3个.10.下列各式:①[]325)(a a -⋅-;②34)(a a -⋅;③2332)()(a a ⋅-;④[]34a --,计算结果为12a -的有( )A.①和③;B.①和②;C.②和③;D.③和④.三、解答题11.计算:⑴n m a a ⋅3)(; ⑵[]423)1(a ⋅-; ⑶324)(a a •; ⑷()()5243a a ⋅.12.计算:⑴()43a +48a a ; ⑵23422225)()()()(2a a a a ⋅-⋅⑶()()3443a a -⋅-; ⑷335210243254)()()()()(a a a a a a a -•-•--+•---.【能力提升】13.在下列各式的括号中填入适当的代数式,使等式成立:⑴a 6=( )2;⑵2342225)()((_____))(a a a ⋅=⋅.14.计算:比较750与4825的大小.15.已知:0432=-+y x ,求y x 84⋅的值.16.若510=x ,310=y ,求y x 3210+的值.17.已知:723921=-+n n ,求n 的值.18.若552=a ,443=b ,334=c ,比较a 、b 、c 的大小.参考答案1.4个3a 连乘;2.12x ;3.62y ;4.12a-; 5.3. 6.D ; 7.C ; 8.C ; 9.C ; 10.D.11.⑴n m a +3; ⑵8a ; ⑶10a ; ⑷22a .12.⑴122a ; ⑵14a ; ⑶24a -; ⑷202a -.13.在下列各式的括号中填入适当的代数式,使等式成立:⑴3a ; ⑵2a .14.提示:750=(72)25=4925,可知前者大.15.解:因为0432=-+y x ,所以432=+y x .所以1622228443232===•=⋅+y x y x y x . 16.解:因为510=x ,310=y ,所以675272535)10()10(10101032323232=⨯=⨯=•=•=+y x y x y x .17.解:由723921=-+n n 得7233222=-+n n ,7233922=-⨯n n ,72382=⨯n ,932=n , 所以1=n .18.解:因为1111532)2(==a ,1111481)3(==b ,1111364)4(==c ,所以b c a <<.。
专题8.13 幂的运算(全章复习与巩固)(培优篇)(专项练习)一、单选题1.计算的结果是()A.B.C.D.2.下列整式的运算中,正确的是()A.B.C.D.3.已知,,那么下列关于,,之间满足的等量关系正确的是()A.B.C.D.4.下列运算中,错误的个数是()(1);(2);(3);(4)A.1个B.2个C.3个D.4个5.已知,则a、b、c的大小关系为( )A.B.C.D.6.方程的整数解的个数是( )A.2B.3C.4D.57.计算的结果是( )A.B.1C.﹣D.﹣28.下列运算正确的是()A.B.C.D.9.已知,,则的值是()A.B.C.D.10.小马虎在下面的计算中只做对了一道题,他做对的题目是()A.B.C.D.二、填空题11.已知:,,则________.12.若,,则的值为________.13.计算:______.14.若,,则______.15.如果,那么x的值为_____.16.若x,y均为实数,,则_______.17.若,则代数式xy与之间关系是_______.18.已知,用含x,y的代数式表示为___________;三、解答题19.计算:(1) (2)20.计算:(1) ; (2) ;(3) .21.(1)已知,,求的值;(2)已知,求的值.22.按要求解答下列各小题.(1) 已知,,求的值;(2) 如果,求的值;(3) 已知,求m的值.23.已知,,(其中为任意实数)(1)____,____;(2)先化简再求值:,其中;(3)若,请判断是否为同底数幂的乘法运算,试说明理由.24.阅读材料:定义:如果,那么称a为n的劳格数,记为,例如:,那么称2是100的劳格数,记为.填空:根据劳格数的定义,在算式中,______相当于定义中的n,所以______;直接写出______;探究:某数学研究小组探究劳格数有哪些运算性质,以下是他们的探究过程若a、b、m、n均为正数,且,,根据劳格数的定义:,______,∵∴,这个算式中,______相当于定义中的a,______相当于定义中的n,∴______,即,请你把数学研究小组探究过程补全拓展:根据上面的推理,你认为:______.参考答案1.C【分析】根据幂的乘方与积的乘方法则计算即可.解:.故选:C.【点拨】本题考查了幂的乘方与积的乘方,属于基础题,掌握基本的运算法则是关键.2.D【分析】分别根据同底数幂的乘法,积的乘方与幂的乘方以合并同类项法则判断出各选项即可.解:A.,故此选项不合题意;B.,故此选项不合题意;C.与不是同类项,无法合并,故此选项不合题意;D.,故此选项符合题意.故选:D.【点拨】本题主要考查了同底数幂的乘法,积的乘方与幂的乘方以合并同类项,熟练掌握同底数幂的乘法,积的乘方与幂的乘方以合并同类项法则是解答本题的关键.3.A【分析】由可得:,则可得到,即可得到结论;解:∵,,,∴,,∴,∴;故选A.【点拨】本题主要考查了同底数幂的乘法,解答的关键是对同底数幂的乘法的运算法则的掌握与灵活运用.4.D【分析】利用同底数幂的乘法运算法则,合并同类项的法则对各式进行运算,即可得出结果.解:(1),故(1)错误;(2),故(2)错误;(3),故(3)错误;(4),故(4)错误,综上所述,错误的个数为4个,故选:D.【点拨】本题主要考查同底数幂的乘法运算法则、合并同类项运算等知识,解题的关键是对相应的运算法则的掌握.5.B【分析】逆运用幂的乘方法则,把a、b、c都写成一个数的8次方的形式,比较底数得结论.解:解: ,故选:B.【点拨】本题考查了整式的运算,掌握幂的乘方法则是解决本题的关键.6.C【分析】方程的右边是1,有三种可能,需要分类讨论.第1种可能:指数为0,底数不为0;第2种可能:底数为1;第3种可能:底数为,指数为偶数.解:由题意可得,当且,解得:;当,解得:或;当且是偶数,解得:;综上所述:x的值有4个.故选:C【点拨】本题考查了:(a是不为0的任意数)以及1的任何次方都等于1.容易遗漏第3种可能情况,需特别注意.7.A【分析】根据有理数的乘方法则以及积的乘方法则进行计算即可.解:====故选:A.【点拨】本题考查的是有理数的乘方以及积的乘方运算,熟知有理数乘方的法则是解题的关键.8.A【分析】根据同底数幂的乘法、除法法则、幂的乘方法则、合并同类项法则逐项判断即可.解:,故A计算正确,符合题意;,故B计算错误,不符合题意;,故C计算错误,不符合题意;和不是同类项,不能进行加减计算,故D计算错误,不符合题意.故选A.【点拨】本题主要考查幂的乘方、同底数幂的乘法和除法运算法则、合并同类项等知识点.掌握各运算法则是解题关键.9.C【分析】先根据幂的乘方的逆运算求出,,再根据同底数幂的乘除法逆运算求出,即可得到答案.解:∵,,∴,,∴,∴,∴,故选C.【点拨】本题主要考查了幂的乘方的逆运算,同底数幂乘除法的逆运算,熟知,是解题的关键.10.D【分析】根据同底数幂的乘法、科学记数法、积的乘方运算及负整数指数幂运算逐项计算即可得到答案.解:A、,计算错误,不符合题意;B、,6后是7个0而不是8个0,计算错误,不符合题意;C、,计算错误,不符合题意;D、根据负整数指数幂的定义及计算可知,计算正确,符合题意;故选:D.【点拨】本题考查整式混合运算及有理数混合运算,涉及同底数幂的乘法、科学记数法、积的乘方运算及负整数指数幂运算,熟练掌握相关运算法则是解决问题的关键.11.##【分析】根据同底数幂的乘法以及幂的乘方的逆运算计算即可得出答案.解:∵,,故答案为:.【点拨】本题考查的是幂的运算公式,需要熟练掌握四个幂的运算公式及其逆运算.12.54【分析】根据同底数幂的乘法和幂的乘方逆运算计算即可;解:∵,,∴;故答案是54.【点拨】本题主要考查了同底数幂的乘法和幂的乘方,准确计算是解题的关键.13.49【分析】根据和(a≠0,p是正整数)的运算法则进行计算即可得出答案.解:=1÷=49,故答案为:49.【点拨】本题考查了负整数指数幂和零指数幂,熟练运用零指数幂,负整数指数幂运算法则是解决本题的关键.14.##0.5【分析】用同底数幂相乘和幂的乘方的逆用进行计算即可.解:∵,∴,,∵,∴,∴,故答案为:.【点拨】本题考查同底数幂相乘和幂的乘方,解本题的关键是掌握幂的乘方和同底数幂相乘运算法则,并灵活运用.15.【分析】利用同底数幂的除法算出等式左边的值,再解一元一次方程即可.解:∵,∴原方程可变形为.∴.解得:.经检验:是原方程的解.故答案为:.【点拨】本题考查同底数幂的除法,以及解一元一次方程.熟练掌握同底数幂的除法法则,解一元一次方程的步骤,是解题的关键.16.1【分析】根据同底数幂的乘法和幂的乘方法则得出,再根据积的乘方法则得出,得出,从而求出答案.解:∵,∴;又∵,∴∴,∴【点拨】本题主要考查同底数幂的乘法、幂的乘方与积的乘方,根据运算法则将式子进行相应的换算是解题的关键.17.【分析】由条件可得可得而从而可得答案.解:∵,∴∴而∴∴故答案为:【点拨】本题考查的是同底数幂的乘法运算,积的乘方的逆运算,掌握“利用幂的运算与逆运算进行变形”是解本题的关键.18.【分析】根据有理数乘方的逆运算、幂的乘方的逆用、积的乘方与幂的乘方法则即可得.解:,,故答案为:.【点拨】本题考查了有理数乘方的逆运算、幂的乘方的逆用、积的乘方与幂的乘方,熟练掌握各运算法则是解题关键.19.(1) (2)【分析】(1)先计算积的乘方,再计算整式的除法;(2)先乘方再加减,注意负号的作用.(1)解:(2)【点拨】本题考查整式的乘除法,涉及积的乘方、同底数幂的除法、零指数幂、负整指数幂的计算等知识,是基础考点,掌握相关知识是解题关键.20.(1)0(2) (3)【分析】(1)根据同底数幂的乘法和幂的乘方以及合并同类项的计算法则求解即可;(2)根据幂的乘方和同底数幂的除法计算法则求解即可;(3)根据同底数幂的乘除法计算法则求解即可.(1)解:;(2)解:;(3)解:.【点拨】本题主要考查了幂的混合运算,熟知相关计算法则是解题的关键.21.(1)24;(2)【分析】(1)由同底数幂的乘法法则的逆运算和负整数指数幂的定义来计算求解;(2)配方得出,求出,,再代入计算即可.解:(1)∵,,∴===24;(2)将变形为,∴,,∴==.【点拨】本题考查了配方法的应用、偶次方的非负性质、负整数指数幂的定义,同底数幂的乘法法则的逆运算,熟练掌握相关知识是解决问题的关键.22.(1)4(2) (3)【分析】(1)根据同底数幂相除的运算法则即可得到答案;(2)将变成底数为3的幂,根据同底数幂相乘的法则即可得到答案;(3)将8,变为底数为2的幂,再根据同底数幂相乘及相除的法则即可得到答案.(1)解:∵,,∴;(2)解:由题意可得,,∵,∴;(3)解:由题意可得,,∴,解得.【点拨】本题考查同底数幂乘除的法则:同底数幂相乘底数不变指数相加,同底数幂相除底数不变指数相减.23.(1),;(2),4;(3)是,理由见分析.【分析】(1)根据幂的乘方运算的逆运算即可求解;(2)先通过条件求出的值,再代入化简结果即可;(3)根据幂的乘方运算法则得出,进一步得出两个底数相等即可.解:(1),,即,解得:;由,得:,,;(2)===,由,,利用同底数幂相除得:,即:,得:,将,代入化简结果得:原式=;(3)由,得:,由,得:,,即:,得:,整理可得:,的底数相同,即为同底数幂的乘法运算.【点拨】本题考查了整式的混合运算、积的乘方和幂的乘方,掌握它们的运算法则是解题关键.24.1000,3;﹣8;b,a+b,,a+b;-.【分析】根据新定义法则进行运算即可.解:∵如果,那么称a为n的劳格数,记为,∴,那么称3是1000的劳格数,记为.∴在算式中,1000相当于定义中的n,所以3;﹣8;∵,∴,∵,,∴=pq,∴这个算式中,pq相当于定义中的a,相当于定义中的n,∴=+,即,设,,∴,,∵,∴=a-b=-,即-.故答案为:1000,3;﹣8;b,a+b,,a+b;-.【点拨】此题考查了新定义问题,用到了幂的相关运算,解题的关键是理解新定义及其运算法则.。
幂的运算1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()mnm na a am n +⋅=、为正整数同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.例1: 计算列下列各题 (1) 34a a ⋅; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅-练习:简单 一选择题1. 下列计算正确的是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a42. 下列计算错误的是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5④p 2+p 2+p 2=3p 2正确的有( )A.1个B.2个C.3个D.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=104二、填空题1. a4·a4=_______;a4+a4=_______。
2、 b 2·b ·b 7=________。
3、103·_______=10104、(-a)2·(-a)3·a5=__________。
5、a5·a( )=a2·( ) 4=a186、(a+1)2·(1+a)·(a+1)5=__________。
《幂的乘方与积的乘方》典型例题例1 计算:(1)199********.08⨯;(2)3014225.01⨯-例2 计算题:(1)43)(b -; (2)n m 24)(; (3)5])[(m y x -; (4)3542)()(x x ⋅; (5)32)4(n m ⋅; (6)43)32(ab -.例3 计算题(1)33326)3()5(a a a ⋅-+-;(2)5335654)()2(a a a a a -+--⋅⋅;(3)1232332312)()(3)()(4--⋅+⋅-n n n n a b b a ;(4)))(2()3(24232xy y x xy --+-。
例4 计算题。
(1)20012001125.08⨯; (2)199910003)91(⨯-; (3)2010225.0⨯。
例5 比较5553,4444,3335的大小。
参考答案例1 解:(1)原式199********.088⨯⨯=8181997=⨯=;(2)原式15214)2(25.01⨯-= 1514425.01⨯-= 4425.011414⨯⨯-=4)425.0(114⨯⨯-=41114⨯-=41-= 说明:(1)逆用了积的乘方性质;n n n ab b a )(=;(2)先后逆用幂的乘方n m mn a a )(=和同底数幂的乘法n m n m a a a ⋅=+的运算性质。
例2 分析:运算中同底数幂相乘和幂的乘方要注意加以区分,同底数幂相乘指数相加 ,而幂的乘方是指数相乘。
在积的乘方运算中要注意以下的错误,如333)2()2(y a y a -=-。
解:(1)43)(b -;)()1(12434b b =⋅-=(2)n n n m m m 84242)(=⨯=;(3)m m y x y x 55)(])[(-=-;(4)231583542)()(x x x x x =⋅=⋅;(5)363264)4(n m n m =⋅;(6)1244344438116)()32()32(b a b a ab =⋅⋅-=-。
❖ 知识点一:同底数幂的乘法大山坪一长方形草坪的长比宽多2米,如果草坪的长和宽都增加3米,则这个长方形草坪的面积将增加75平方米,这块草坪原来的长和宽各是多少米? 解:设这个长方形草坪的宽是x 米,则长为(x+2)米。
x ( x+2)+75=(x+3)(x+5)解这个方程需要用到整式的乘法。
思考: a n 表示的意义是什么?其中a 、n 、a n分 别叫做什么?概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘.问题:25表示什么?10×10×10×10×10 可以写成什么形式?25= . 10×10×10×10×10 = .思考: 式子103×102的意义是什么?幂的运算知识讲解这个式子中的两个因数有何特点?先根据自己的理解,解答下列各题。
103×102 =23×22 =a3×a2 =思考:观察下面各题左右两边,底数、指数有什么关系?103×102 = 10() = 10();23×22 = 2() = 2();a3× a2 = a()= a()。
猜想: a m · a n=? (当m、n都是正整数)分组讨论,并尝试证明你的猜想是否正确。
a m·a n=(aa…a)(aa…a)=aa…a=a m+nm个a n个a (m+n)个a即:a m·a n =a m+n (当m、n都是正整数)猜想是正确的!同底数幂的乘法:a m·a n =a m+n (当m、n都是正整数)同底数幂相乘,底数______,指数________。
运算形式(同底、乘法)运算方法(底不变、指数相加)如 43×45=43+5=48想一想:a m·a n·a p= (m、n、p都是正整数)问题:光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。
)幂的乘方与积的乘方 练习题一、判断题1.(xy )3=xy 3 ( )2.(2xy )3=6x 3y 3( ) 3.(-3a 3)2=9a 6 ( )4.(32x )3=38x 3( )5.(a 4b )4=a 16b ( )`二、填空题1.-(x 2)3=______,(-x 2)3=______;2.(-21xy 2)2=_______;3.81x 2y 10=( )2;4.(x 3)2·x 5=_____;5.(a 3)n =(a n )x (n 、x 是正整数),则x =_____.三、选择题。
1.计算(a 3)2的结果是( ).A .a 6B .a 5C .a 8D .a 92.计算(-x 2)3的结果是( ).A .-x 5B .x 5C .-x 6D .x 63.运算(a 2·a n )m =a 2m ·a mn ,根据是( ).A .积的乘方B.幂的乘方C.先根据积的乘方再根据幂的乘方"D.以上答案都不对4.-a n=(-a)n(a≠0)成立的条件是( ).A.n是奇数 B.n是偶数C.n是整数 D.n是正整数5.下列计算(a m)3·a n正确的是( ).A.a m+n B.a3m+nC.a3(m+n) D.a3mn,四、解答题1.已知:84×43=2x,求x.2.如下图,一个正方体棱长是3×102mm,它的体积是多少mm\3.选做题4πr3计算出地球的数学课上老师与同学们一起利用球的体积公式V=3体积是×1011(km3),接着老师问道:“太阳也可以看作是球体,它的半径是地球的102倍,那么太阳的体积约是多少立方千米呢”同学们立即计算起来,不一会好多同学都举手表示做完了,小丁的答案是×1013(km3),小新的答案是×1015(km3),小明的答案是×1017(km3),那么这三位同学谁的答案正确呢请同学们讨论,并将你的正确做法写出来.(—$参考答案一、判断题1.×2.×3.√4.×5.×)二、填空题1.-x6,-x61x2y42.43.9xy54.x115.3三、选择题1.A-2.C3.C4.A5.B四、解答题1.(23)4×(22)3=2x∴212×26=2x,∴218=2x∴x=182.(3×102)3=33×(102)3=27×106=×107 3.小明的对,略.。
幂的乘方与积的乘方练习题及答案第1课时幂的乘方基础题1.计算(a2)3的结果是()A.a5 B.a6 C.a8 D.3a22.下列式子的化简结果不是a8的是()A.a6·a2 B.(a4)2 C.(a2)4 D.(a4)43.下列各式计算正确的是()A.(x3)3=x6 B.a6·a4=a24C.[(-x)3]3=(-x)9 D.-(a2)5=a104.下列运算正确的是()A.a2+a2=a4 B.a5-a3=a2 C.a2·a2=2a2 D.(a5)2=a105.填空:( )2=( )3=( )4=a12.6.已知x n=2,则x3n=____.7.已知10a=5,那么100a的值是()A.25 B.50 C.250 D.5008.若3x+4y-5=0,则8x·16y的值是()A.64 B.8 C.16 D.329.下列各式与x3n+2相等的是()A.(x3)n+2 B.(x n+2)3C.x2·(x3)n D.x3·x n+x210.计算(-p)8·[(-p)2]3·[(-p)3]2的结果是()A.-p20 B.p20 C.-p18 D.p1811.若26=a2=4b,则a b等于()A.43 B.82 C.83 D.4812.若 2a=3,2b=4,则23a+2b等于()A.7 B.12 C.432 D.10813.若3×9m×27m=321,则m的值是()A.3 B.4 C.5 D.614.若a4n=3,那么(a3n)4=____.15.若5m=2,5n=3,则53m+2n+1=_______.16.填空:(1)(-a3)2·(-a)3=________;(2)[(x-y)3]5·[(y-x)7]2=_______;(3)a3·(a3)2-2·(a3)3=____________.精选题17.计算:(1)(-x)3·(x3)2·(-x)4=_________.(2)x n-1·(x n+2)2·x2·(x2n-1)3=_______.(3)2(x3)2·x2-3(x2)4+5x2·x6=_____.(4)[(a-b)3]2-2(a-b)3·(b-a)3=.18.若x2n=5,且n为整数,求(x3n)2-5(x2)2n的值.19.已知10m=2,10n=3,求103m+2n的值.20.(1)已知2x+5y-3=0,求4x·32y的值;(2)已知273×94=3x,求x的值.21.已知A=355,B=444,C=533,试比较A,B,C的大小.第2课时积的乘方基础题1.计算(x3)2的结果是()A.x5 B.x6 C.x8 D.x92.下列计算错误的是()A.a2·a=a3 B.(ab)2=a2b2C.(a2)3=a5 D.-a+2a=a3.计算(x2y)3的结果是()A.x5y B.x6y C.x2y3 D.x6y3 4.计算(-3a2)2的结果是()A.3a4 B.-3a4 C.9a4 D.-9a45.计算(-0.25)2010×42010的结果()A.-1 B.1 C.0.25 D.44020 6.-(a3)4=_____.7.若x3m=2,则x9m=_____.8.[(-x)2] n·[-(x3)n]=______.9.若a2n=3,则(2a3n)2=____.10.计算:(1)(a4)3+m (2)(-4xy2)211.计算: (x-y)3·(y-x)2·(x-y)4.12.计算(1)(-0.25)11×411 (2)(-0.125)200×8201精选题13.若x m·x2m =2,求 x9m 的值14.若x m =2,求 x4m 的值15已知:644×83=2x,求x.16.计算:(-2x2y3)+8(x2)2·(-x)2·(-y)3.17.某养鸡场需定制一批棱长为3×102毫米的正方体鸡蛋包装箱(包装箱的厚度忽略不计),求一个这样的包装箱的容积.(结果用科学记数法表示)1.2 幂的乘方与积的乘方第1课时幂的乘方1 B2 D3 C4 D 5. a6,a4,a3 6. 8 7. A 8 .D 9 .C 10. B 11. C 12. C 13.B 14. 2715. 36016. (1) -a9 (2) (x-y)29 (3) -a917. (1) 解:原式=x13(2) 解:原式=a9n+2(3) 解:原式=4x8(4) 解:原式=3(a-b)618. 解:原式=x6n-5x4n=(x2n)3-5(x2n)2=53-5×52=019. 解:103m+2n=(10m)3·(10n)2=23×32=7220. (1) 解:由2x+5y-3=0得2x+5y=3,所以4x·32y=22x·25y=22x+5y=23=8(2) 解:x=1721. 解:因为A=355=(35)11=24311;B=444=(44)11=25611;C=533=(53)11=12511,所以B>A>C第2课时积的乘方1.B 2.C 3.D 4.C 5.B6.-a127.8 8.-x5n9.10810.a12+4m,16x2y4 11.(x-y)9 12.-1,813.解:x m·x2m=x3m=2,∵x9m =(x3m)3,∴x9m的值为814.解:x m =2,∵x4m=(x m)4,∴x4m的值为1615.∵644×83=(26)4×(23)3=224×29=233∵644×83=2x,∴233=2x,∴x=33.16.-16x6y3.17.(3×102)3=33(102)3=27×106=2.7×107(立方毫米).答:一个这样的包装箱的容积是2.7×107立方毫米.。
苏科版初中数学七年级下册第八章《幂的运算》检测试卷(二)姓名 班级 得分一、单选题1.计算2()()n n x y y x --的结果为( )A .3()n x y -B .3()n y x -C .3()n x y --D .3()n y x ±- 2.据研究,某种似球形病毒的直径约为120 nm (1 nm =10﹣9 m ),用科学记数法表示120 nm 应为( )A .1.2×10﹣9 mB .12×10﹣9 mC .0.12×10﹣10 mD .1.2×10﹣7 m3.W 细菌为二分裂增殖(1个细菌分裂成2个细菌),30分钟分裂一次,培养皿上约有2152⨯个细菌,其中W 细菌占其中的140,在加入T 试剂后,如果该培养皿中的W 细菌的数量达到262后会使T 变色,那么需要( )小时T 恰好变色.A .425B .4C .8D .10 4.当a <0,n 为正整数时,(-a )5·(-a )2n 的值为( )A .正数B .负数C .非正数D .非负数5.若0m >,3x m =,2y m =,则3x y m -的值为( )A .32B .32-C .1D .386.已知a+2b-2=0,则2a ×4b ( )A .4B .8C .24D .32 7.已知23a =,26b =,212c=,则a ,b ,c 的关系为①1b a =+,②2c a =+,③2a c b +=,其中正确的个数有( )A .0个B .1个C .2个D .3个 8.计算:()()5160.1252-⨯-=( )A .1B .-1C .2D .-29.已知553a =,444b =,335c =,则a 、b 、c 的大小关系为( )A .c a b <<B .c b a <<C .a b c <<D .a c b << 10.观察等式(2a ﹣1)a +2=1,其中a 的取值可能是( )A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 二、填空题11.如果38222n ⨯=,则n =_______________.12.如果n x y =,那么我们规定(),x y n =.例如:因为239=,所以()3,92=.根据上述规定,()2,8=_______,若(),16m p =,(),5m q =,(),m t r =,且满足p q r +=,则t =______.13.已知1221648x y x y ++==,,则32x y +=_____. 14.观察下列等式:133=,239=,3327=,4381=,53243=,63729=,732187=.解答下列问题:201720213273-⨯的末位数字是______.15.计算20202019(2)(2)-+-的结果是_________.16.若n 为整数,则n n 1(-1)(-1)3++=__________. 17.将()232aa b -写成不含分母的形式,其结果为_______.18.已知25a =,1208b =,则3(31)a b +-的值为__.三、解答题19.计算:(1) (2)20.计算:(1)()3242a a a ⋅+-; (2)()()()345222a a a ⋅÷-;(3)432()()()p q q p p q -÷-⋅-.21.已知 3m a =,3n b =,分别求:(1)3m n +. (2)233m n +. (3)2333m n + 的值.22.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作23,读作“2的3次商”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)4,读作“﹣3的4次商”,一般地,把一般地,把 (a ≠0)记作an ,读作“a 的n 次商”.【初步探究】(1)直接写出计算结果:23= ,(﹣3)4= ;(2)关于除方,下列说法错误的是 ; A .任何非零数的2次商都等于1;B .对于任何正整数n ,(﹣1)n =﹣1;C .34=43;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭. (3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式.(﹣3)4= ;517⎛⎫ ⎪⎝⎭= . (4)想一想:将一个非零有理数a 的n 次方商an 写成幂的形式等于 .(5)算一算:2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= . 23.阅读材料:求l+2+22+23+24+…+22019的值.解:设S=l+2+22+23+24+…+22018+22019…①则2S=2+22+23+24+25+…+22019+22020…②②-①,得2S ﹣S=22020-l 即S=22020-l∴1+2+22+23+24+…+22019=22020-l仿照此法计算: (1)计算:1+3+32+33+34+ (3100)(2)计算:1+12+212+312+…+112n -+12n =________(直接写答案) 24.找规律:观察算式13=113+23=913+23+33=3613+23+33+43=100…(1)按规律填空)13+23+33+43+…+103= ;13+23+33+43+…+n 3= .(2)由上面的规律计算:113+123+133+143+…+503(要求:写出计算过程)(3)思维拓展:计算:23+43+63+…+983+1003(要求:写出计算过程)25.阅读下列材料,并解决下面的问题:我们知道,加减运算是互逆运算,乘除运算也是互逆运算,其实乘方运算也有逆运算,如我们规定式子328=可以变形为25log 83log 252==,也可以变形为2525=.在式子328=中,3叫做以2为底8的对数,记为2log 8.一般地,若()010n a b a a b =≠>且,>,则n 叫做以a 为底b 的对数,记为()a log log a b b n 即,=且具有性质: ()log log log log log log n n a a a a a a b n b a n M N M N ==+=⋅①;②;③,其中0a >且100.a M N ≠,>,> 根据上面的规定,请解决下面问题:(1)计算:31010log 1_____log 25log 4=+=, _______(请直接写出结果);(2)已知3log 2x =,请你用含x 的代数式来表示y ,其中3log 72y =(请写出必要的过程).。
苏科版数学七年级下册8.2.1《幂的乘方与积的乘方》说课稿一. 教材分析《幂的乘方与积的乘方》是苏科版数学七年级下册第八章第二节的第一课时内容。
本节课主要学习了幂的乘方和积的乘方的性质和运算方法。
这部分内容是初等数学中的基础,对于学生来说,理解掌握这部分内容对于后续学习有重要的意义。
教材中通过引入幂的乘方和积的乘方的概念,引导学生通过观察、分析和归纳,总结出幂的乘方和积的乘方的性质和运算方法。
通过这部分的学习,学生可以培养自己的观察能力、逻辑思维能力和归纳总结能力。
二. 学情分析学生在学习这部分内容时,已经具备了一定的数学基础,例如有理数的乘方、幂的定义等。
但学生对于幂的乘方和积的乘方的理解和运用还需要进一步的引导和培养。
在学习过程中,学生可能对于幂的乘方和积的乘方的概念和性质理解不够深入,对于运算方法的应用可能存在困惑。
因此,在教学过程中,需要教师引导学生通过观察、分析和归纳,理解幂的乘方和积的乘方的性质和运算方法,提高学生的观察能力、逻辑思维能力和归纳总结能力。
三. 说教学目标1.理解幂的乘方和积的乘方的概念和性质。
2.掌握幂的乘方和积的乘方的运算方法。
3.培养学生的观察能力、逻辑思维能力和归纳总结能力。
四. 说教学重难点1.幂的乘方和积的乘方的概念和性质的理解。
2.幂的乘方和积的乘方的运算方法的应用。
五. 说教学方法与手段在教学过程中,采用讲授法、引导发现法、小组合作学习法等教学方法。
利用多媒体课件、黑板等教学手段,引导学生通过观察、分析和归纳,理解幂的乘方和积的乘方的性质和运算方法。
六. 说教学过程1.引入新课:通过复习有理数的乘方和幂的定义,引出幂的乘方和积的乘方的概念。
2.讲解示范:讲解幂的乘方和积的乘方的性质和运算方法,通过示例引导学生理解和掌握。
3.练习巩固:布置练习题,让学生独立完成,巩固所学内容。
4.拓展提高:引导学生通过观察、分析和归纳,发现幂的乘方和积的乘方的性质和运算方法的应用,提高学生的观察能力、逻辑思维能力和归纳总结能力。
同底数幂的乘除法、积的乘方、幂的乘方专项练习一、同底数幂的乘法:n m a a a n m n m ,(+=⋅是正整数)1.公式及其推广:m n p m n p a a a a++=p n m ,,(是正整数) 2.公式顺用:例1、计算(1) 21n n n a a a ++ (2)232)()(x x x -⋅⋅- (3)432111()()()101010-- (4)34(2)(2)(2)x y x y y x --- (5)2132()()()n n a a a ++--- 练习(1)若,1032x x x m m =-则整式=+-1322m m (2)若,1282)8(22-=⋅-⋅+n n 则=n(3)n 为正整数=-+-+n n 212)2(2)2(, 3.公式的逆用例2.若,64412=+a 解关于x 的方程)1(532-=+x x a 二、幂的乘方:p n m a aa p n m mn n m ,,(])[(,)(=是正整数)1.公式的应用 例3.计算:(1)34()x - (2)34[()]x -练习:计算下列各题 253(1)()x x - 2844(2)()()x x 2332222(3)()()(2)y y y y +-2.公式的逆用例4.(1)已知,3,2==n n y x 求n n y x )()(23的值;(2)已知,310,210==ba 求b a 3210+的值; (3)若,0352=-+y x 求yx 324⋅的值; (4)若,)()(963131y x y x n m =⋅+-求n m +的值. 三、积的乘方:n c b a abc b a ab n n n n n n n ()(,)(==是正整数)1.公式的顺用例5.计算:(1)52)(b x - 322(2)(2)()ab ab 23(3)3()x x --练习:计算2233(1)()()(5)ab a b ab -- 122(2)()()n n n c dc d - 2.公式的逆用例6.计算:10010223(1)()()32- (2) 200320011(0.75)(1)3-练习:(1)已知,3,2==nn y x 求n y x 22)(的值;(2)已知,034=-+y x 求y x 162⋅的值. 四、同底数幂的除法:n m a a a a n m nm ,,0(≠=÷-是正整数,且)n m > 例7.计算:(1)3227)(m m m ÷⋅; (2)])()[()()(233234x x x x -÷-⋅-÷-练习:(1)2242)()(xy xy -÷-;(2)347)23()23()23(-÷÷-;(3)已知,52,32==yx 求y x 22-的值. 一、选择题1.下列计算正确的是( )A.532a a a =+B. 532a a a =⋅C.m m m 523=+D.4222aa a =+ 2.下列四个算式中①5552a a a =⋅; ②655x x x =+;③523b b b b =⋅⋅;④22223p p p p =++ 正确的有( )A.1个B.2个C.3个D.4个3.下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=1044.a 与b 互为相反数且都不为n ,0为正整数,则下列两数互为相反数的是( )A.12-n a 与12--n bB. 12-n a与12-n b C. n a 2-与n b 2- D. n a 2与n b 2 5.计算1)()(--⋅-n n a b b a 等于( ) A.12)(--n b a B. 12)(--n a b C. 12)(--±n b a D.非以上答案 6.若,8)2(1593b a b a n m m =+成立,则( )A .2,3==n mB .3==n mC .2,6==n mD .5,3==n m7.当m 是正整数时,下列等式成立的有( )(1)22)(m m a a =;(2) m m a a )(22=;(3) 22)(m m a a -=;(4) m m a a )(22-=.A .4个B .3个C .2个D .1个8.下列等式中正确的个数是( ) ①1055a a a =+;②1036)()(a a a a =⋅-⋅-;③2054)(a a a =-⋅-;④655222=+.A 、0个B 、1个C 、2个D 、3个9.下列计算错误的个数是( )①()23636x x =;②()2551010525a b a b -=-;③332833x x ⎛⎫-=- ⎪⎝⎭;④()42367381x y x y = A .2个 B .3个 C .4个 D .5个二、填空题1.若215x x a a a +⋅=,那么=x ___________2.已知,)(151553b a x =则=x _______3.=-⋅19991999)8()125.0( _______ 4.化简32212)2()(a a a n m -⋅⋅=所得的结果为 .5.( )5=(8×8×8×8×8))(a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅6.如果,b a ≠且595()p p q ab a b +⋅=成立,则=p ___ _,=q . 7.若,)2(1593b ka b a n m m =⋅-+则=++n m k .8.若,0)1(|12|2=++++x y x 则=⋅+x y y y x 2)( . 9.已知,3,9==n m x x 则=-n m x 3 .三、解答题1.计算(1)()23531410102⎛⎫⨯⨯-⨯ ⎪⎝⎭; (2))()()(322a a a -⋅⋅-; (3)2332])()[(x x -⋅; (4)2332)][()(x x -+; (5) 201420151001004)41()211()32(⨯⨯⨯;(6)263432(2)()()a b a b -+--;(7)24422(2)[()]a b a b ---- (8)65)()(b a b a +--; (9))()())()((32b a a b b a b a b a +--+-; (10)323633])8([])2([--+--2.用简便方法计算: (1)224)412(⨯ (2)12124)25.0(⨯- (3)125.025.032⨯⨯ (4)3332)2(])21[(⨯. 3.(1)已知,911,999909999==y x 比较x 与y 的大小;(2) 比较下列一组数的大小:61413192781,, 4.(1)已知2340x y +-=,求48x y ⨯的值;(2)已知213,n a +=求84n a + 的值. 5.(1)已知322,3m n a b ==,求263232()()m n m n a b a b -+⋅的值;(2)若21327,x +=求2014(2)x x +- 的值.6.(1)已知453)5(31+=++n n x x x ,求x 的值;(2) 已知,251022547⋅=⋅⋅n m 求n m ,.7.(1)已知,0352=-+y x 求y x 324⋅的值; (2)若n m n n m x x x++==求,2,162的值. 7.已知,16,64==n m a a 求n m a 43-的值.(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。