第七讲 微分方程模型(Ⅱ)
- 格式:ppt
- 大小:1.34 MB
- 文档页数:24
微分方程模型介绍在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。
微分方程模型反映的是变量之间的间接关系,因此,要得到直接关系,就得求微分方程。
求解微分方程有三种方法:1)求解析解;2)求数值解(近似解);3)定性理论方法。
建立微分方程模型的方法:1)利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律等来建立微分方程模型。
2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。
下面我们以生态学模型为例介绍微分方程模型的建立过程: 一. 单种群模型1. 马尔萨斯(Malthus)模型假定只有一个种群,()N t 表示t 时刻生物总数,r 表示出生率,0t 表示初始时刻,则生物总数增长的数学模型为()()()00d ,d (1)t t N t rN t t N t N =⎧=⎪⎨⎪=⎩不难得到其解为()0()0r t t N t N e-=.2. 密度制约模型由马尔萨斯模型知,种群总数将以几何级数增长,显然与实际不符,因为种群密度增大时,由于食物有限,生物将产生竞争,或因为传染病不再按照增长率r 增长,因而有必要修改,在(1)式右端增加一项竞争项。
()()()d (1)(2)d N t N t rN t tK=-其中K 为最大容纳量,可以看出当()N t K =时,种群的规模不再增大。
这个模型就是著名的Logistic 模型,可以给出如下解释:由于资源最多仅能维持K 个个体,故每个个体平均需要的资源为总资源的1K,在t 时刻个体共消耗了总资源的()N t K此时资源剩余()1N t K-,因此Logistic 模型表明:种群规模的相对增长率与当时所剩余的资源份量成正比,这种种群密度对种群规模增长的抑制作用。
微分方程模型在实际问题中,我们很难直接得出变量之间的数量关系,但是有时却很容易写出包括变量的导函数在内的一个方程,这就是微分方程,我们在一般的建模中常涉及常微分方程。
微分方程一般形式为:0),...,'',',,()(=n yy y y x F 或),...,'',',,()1()(-=n n yy y y x f y。
若在某个范围内存在具有n 阶导数的函数)(x y ψ=使得))(,...,')'(,)'(),(,()(=x x x x x F n ψψψψ,则称)(x y ψ=是微分方程的解。
微分方程所解决的问题通常可以分为两类:一类是用微分方程列出变量之间的关系式,求出位置函数的表达式,有时要借助软件进行数值分析;另一类是要了解未知变量或函数的某些性质即可,常需要根据微分方程的定性理论来研究,这两类建模问题我们将在后面进行讨论。
1. 微分方程简介1.1. 简单的微分方程模型一种比较简单的微分方程模型是变量的变化率与函数的即时值成正比,即kyy =',它的解就是kt e y t y 0)(=,这里0y 是初值,k 是待定常量。
通常情况下,如果0>k 称)(t y 指数递增;如果0<k ,称)(t y 指数递减,我们通过几个例子来说明这种事实。
1.1.1. 放射性元素的自然衰变放射性元素的自然衰变是化学上的一个基本事实,它常用于定碳测量,在考古学学上利用该方法测定古生物生存年代。
存活于生物组织中占有确定比例的碳原子是放射性同位素14C ,一旦生物组织死亡,这种14C 不会增加,而会将一定比例的14C 衰变为12C ,并保持一定的速率(14C 的半衰期为5568年)按指数规律下降。
测定它现存的比例并与活的样品比较,就可以求得比例下降了多少,也就得到了被测样品的实际年代。
建立模型:假定)(t y 为t 时刻生物体内14C 原子的个数,经过相同的时间T ,y的值减少为原值的1/2 (指数衰减)。
第七章 常微分方程数值解法简介微分方程在科学和工程技术中有很广泛的应用。
许多实际问题的数学模型都可以用微分方程来描述,归结为常微分方程的定解问题;很多偏微分方程问题,也可以化为常微分方程问题来近似求解,但是求出所需的解绝非易事。
实际上,除了极特殊情形外,人们不可能求出微分方程的解析解,只能用各种近似方法得到满足一定精度的近似解。
在常微分方程中已经熟悉了级数解法和Picard 逐步逼近法,这些方法可以给出解的近似表达式,称为近似解析方法。
另一类方法只给出解在一些离散点上的值,称为数值方法。
后一类方法应用范围更广,特别适合用计算机计算,本章主要介绍常用的常微分方程数值解法。
7.1实际问题的微分方程模型函数是事物的内部联系在数量方面的反映,如何寻找变量之间的函数关系,在实际应用中具有重要意义。
在许多实际问题中,往往不能直接找出变量之间的函数关系,但是有时却容易找出变量的改变量之间的关系,从而建立描述问题的微分方程模型。
例7.1.1 将初始温度00150u C =的一碗汤放置于环境温度a u 保持为024C 的桌上,10分钟后测得汤的温度为0100C 。
如果汤的温度低于055C 才可以喝,试问再过20分钟后这碗汤能喝了吗?解:为了解决这一问题,需要了解有关热力学的一些基本规律。
热量总是从温度高的物体向温度低的物体传导的;在一定的温度范围内,一个物体的温度变化速度与这个物体的温度和其所在的介质温度的差值成正比。
设物体在t 时刻的温度为()u u t =,从t t t →+∆温度从()()u t u t t →+∆,注意到热量总是从温度高的物体向温度低的物体传导,因而0a u u >,所以温度差a u u -恒正,又因物体将随时间而逐渐冷却;则温度的改变量为:()()(())a u u t t u t k u t t u t∆=+∆-=-+∆-∆两边除以t ∆,并令0t ∆→得温度变化速度为:()a du k u u dt=--这里0k >是比例常数。
实验07 微分方程模型(2学时)(第5章 微分方程模型)1.(验证)传染病模型2(SI 模型)p136~138传染病模型2(SI 模型):0(1),(0)dik i i i i dt =-= 其中,i (t )是第t 天病人在总人数中所占的比例。
k 是每个病人每天有效接触的平均人数(日接触率)。
i 0是初始时刻(t =0)病人的比例。
1.1 画~dii dt曲线图p136~138取k =0.1,画出i dt di ~的曲线图,求i 为何值时dtdi达到最大值,并在曲线图上标注。
参考程序:提示:fplot, fminbnd, plot, text, title, xlabel1)画曲线图用fplot函数,调用格式如下:fplot(fun,lims)fun必须为一个M文件的函数名或对变量x的可执行字符串。
若lims取[xmin xmax],则x轴被限制在此区间上。
若lims取[xmin xmax ymin ymax],则y轴也被限制。
本题可用fplot('0.1*x*(1-x)',[0 1.1 0 0.03]);2)求最大值用求解边界约束条件下的非线性最小化函数fminbnd,调用格式如下:x=fminbnd('fun',x1,x2)fun必须为一个M文件的函数名或对变量x的可执行字符串。
返回自变量x在区间x1<x<x2上函数取最小值时的x值。
本题可用x=fminbnd('-0.1*x*(1-x)',0,1)y=0.1*x*(1-x)3)指示最大值坐标用线性绘图函数plot,调用格式如下:plot(x1,y1, '颜色线型数据点图标', x2,y2, '颜色线型数据点图标',…)本题可用hold on; %在上面的同一张图上画线(同坐标系)plot([0,x],[y,y],':',[x,x],[0,y],':');4)图形的标注使用文本标注函数text,调用格式如下:格式1text(x,y,文本标识内容, 'HorizontalAlignment', '字符串1')x,y给定标注文本在图中添加的位置。
§3.5传染病模型传染病是人类的大敌,通过疾病传播过程中若干重要因素之间的联系建立微分方程加以讨论,研究传染病流行的规律并找出控制疾病流行的方法显然是一件十分有意义的工作。
在本节中,我们将主要用多房室系统的观点来看待传染病的流行,并建立起相应的多房室模型。
问题的提出:医生们发现,在一个民族或地区,当某种传染病流传时,波及到的总人数大体上保持为一个常数。
即既非所有人都会得病也非毫无规律,两次流行(同种疾病)的波及人数不会相差太大。
如何解释这一现象呢?试用建模方法来加以证明。
设某地区共有n +1人,最初时刻共有i 人得病,t 时刻已感染(infective )的病人数为i (t ),假定每一已感染者在单位时间内将疾病传播给k 个人(k 称为该疾病的传染强度),且设此疾病既不导致死亡也不会康复模型1此模型即Malthus 模型,它大体上反映了传染病流行初期的病人增长情况,在医学上有一定的参考价值,但随着时间的推移,将越来越偏离实际情况。
已感染者与尚未感染者之间存在着明显的区别,有必要将人群划分成已感染者与尚未感染的易感染,对每一类中的个体则不加任何区分,来建立两房室系统。
()odi ki dt i o i ⎧=⎪⎨⎪=⎩则可导出:故可得:()kto i t i e =(3.15)模型2记t 时刻的病人数与易感染人数(susceptible )分别为i (t )与s (t ),初始时刻的病人数为i 。
根据病人不死也不会康复的假设及(竞争项)统计筹算律,1o o o i c n i =+-其中:(1)(1)(1)()1k n t o k n to c n e i t c e +++=+解得:(3.17)()()1()o di kis dt i t s t n i o i ⎧=⎪⎪+=+⎨⎪=⎪⎩可得:(3.16)统计结果显示,(3.17)预报结果比(3.15)更接近实际情况。
医学上称曲线为传染病曲线,并称最大值时刻t 1为此传染病的流行高峰。
第2章 微分方程模型2(2课时)教学目的懂得如何根据实际情况建立微分方程。
教学内容介绍应用微分方程方法建模。
模型Ⅱ 人口模型1. 引言在研究某些实际问题时,经常无法直接得到各变量之间的联系,问题的特性往往会给出关于变化率的一些关系。
利用这些关系,我们可以建立相应的微分方程模型。
在自然界以及工程技术领域中,微分方程模型是大量存在的。
它甚至可以渗透到人口问题以及商业预测等领域中去,其影响是广泛的。
问题:人口问题是当今世界上最令人关注的问题之一,一些发展中国家的人口出生率过高,越来越威胁着人类的正常生活,有些发达国家的自然增长率趋于零,甚至变为负数,造成劳动力紧缺,也是不容忽视的问题。
另外,在科学技术和生产力飞速发展的推动下,世界人口以空前的规模增长,统计数据显示:年 1625 1830 1930 1960 1974 1987 1999人口(亿) 5 10 20 30 40 50 60可以看出,人口每增长十亿的时间,由一百年缩短为十二三年。
我们赖以生存的地球,已经带着它的60亿子民踏入了21世纪。
长期以来,人类的繁衍一直在自发地进行着。
只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系,人口数量的变化规律,以及如何进行人口控制等问题。
我国是世界第一人口大国,地球上每九个人中就有一个中国人,在20世纪的一段时间内我国人口的增长速度过快,如下表:年 1908 1933 1953 1964 1982 1990 2000人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.95 有效地控制人口的增长,不仅是使我国全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要,而且对于全人类社会的美好理想来说,也是我们义不容辞的责任。
认识人口数量的变化规律,建立人口模型,作出较准确的预报,是有效控制人口增长的前提,下面介绍两个最基本的人口模型。
2. 模型1 (Malthus 模型)18世纪末,英国人Malthus 在研究了百余年的人口统计资料后认为,在人口自然增长的过程中,净相对增长率(出生率减去死亡率为净增长率)是常数。
微分方程模型重点:车间空气清洁问题、减肥问题、单种群增长问题与多物种相互作用问题等数学模型的建立过程与所使用的方法要求: 1.进一步理解建模基本方法与基本建模过程,掌握平衡原理与微元法在建模中的用法.所谓平衡原理是指自然界的任何物质在其变化的过程中一定受到某种平衡关系的支配.注意发掘实际问题中的平衡原理是从物质运动机理的角度组建数学模型的一个关键问题.就象中学的数学应用题中等量关系的发现是建立方程的关键一样.微元法是指在组建对象随着时间或空间连续变化的动态模型时,经常考虑它在时间或空间的微小单元变化情况,这是因为在这些微元上的平衡关系比较简单,而且容易使用微分学的手段进行处理.这类模型基本上是以微分方程的形式给出的.例1 设警方对司机饮酒后驾车时血液中酒精含量的规定为不超过80%(mg/ml). 现有一起交通事故,在事故发生3个小时后,测得司机血液中酒精含量是56%(mg/ml), 又过两个小时后, 测得其酒精含量降为40%(mg/ml),试判断: 事故发生时,司机是否违反了酒精含量的规定? 解:模型建立设)(t x 为时刻t 的血液中酒精的浓度, 则依平衡原理时间间隔],[t t t ∆+内, 酒精浓度的改变量t t x x ∆⋅∝∆)(, 即t t kx t x t t x ∆-=-∆+)()()(其中k >0为比例常数, 式前负号表示浓度随时间的推移是递减的, 遍除以t ∆, 并令0→∆t , 则得到,d d kx t x-= 且满足40)5(,56)3(==x x 以及0)0(x x =.模型求解容易求得通解为kt c t x -=e )(, 代入0)0(x x =,得到kt x t x -=e )(0则)0(0x x =为所求. 又由,40)5(,56)3(==x x 代入0)0(x x =可得17.04056e 40e 56e 25030=⇒=⇒⎩⎨⎧==--k x x k kk 将17.0=k 代入得 25.93e 5656e 17.03017.030≈⋅=⇒=⨯⨯-x x >80 故事故发生时,司机血液中的酒精浓度已超出规定.2.理解种群的相互关系模型的建立原理与结论. ∙ 马尔萨斯模型 模型假设(1)初始种群规模已知(设为N 0),种群数量非常大,世代互相重叠,因此种群的数量可以看作是连续变化的;(2)种群在空间分布均匀,没有迁入和迁出(或迁入和迁出平衡);(3)种群的出生率和死亡率为常数,即不区分种群个体的大小、年龄、性别等. (4)环境资源是无限的. 确定变量和参数 :t 自变量,t t N :)(时刻的种群密度, :b 出生率,:d 死亡率.模型的建立与求解由上述假设,单种群增长模型与马尔萨斯人口模型极为类似,于是使用完全相同的建模过程易得)(:)()(d )(d t rN t N d b t t N =-= (3.1) 满足初始条件0)0(N N =的解为.e e )(0)(0rt t d b N N t N ==-于是有,)(lim ,,0+∞=>>+∞→t N d b r t 则有即,)(lim ,,00N t N d b r t ===+∞→则有即,0)(lim ,,0=<<+∞→t N d b r t 则有即在种群生长的初期,种群规模较小,有足够的生存空间、足够的食物,彼此间没有利益冲突.但随着种群规模的逐渐扩大,对有限的空间、食物和其他生存必须条件的种内竞争越来越激烈,这必然影响种群的出生率和死亡率,从而降低实际增长率,因而在上述模型中假设出生率、死亡率为常数,资源无限不尽合理.∙ 罗捷斯蒂克模型完全类似于人口模型的分析知道,种群的增长模型为⎪⎩⎪⎨⎧=-=,)0(),1(0N N K N rN dt dN(3.2) 其中r 是种群的固有(N =0时)增长率,K 是环境的最大容纳量.方程(3.2)既是变量可分离方程,又是贝努利型方程.容易求得其解为00)()(N e N K KN t N rt +-=- (3.3)3.会建立较为简单的相关实际问题的数学模型.例2 在凌晨1时警察发现一具尸体, 测得尸体温度是29︒C, 当时环境温度是21︒C .一小时后尸体温度下降到27︒C , 若人的正常体温是37︒C , 估计死者的死亡时间.解 运用牛顿冷却定律T ')(T T out -=-α, 得到它的通解为 )(0out out T T T T -+=t α-e , 这里0T 是当0=t 时尸体的温度, 也就是所求的死亡时间时尸体的温度, 将题目提供的参数代入:⎩⎨⎧=-+=-++--27e)2137(2129e )2137(21)1(t t αα 解得: 168e =-t α 和 166e )1(=+-t α 则34e =α 求得:)(409.2)12(,2877.0h Ln t ≈-=≈αα 这时求得的t 是死者从死亡起到尸体被发现所经历的时间, 因此反推回去可推测死者的死亡时间大约是前一天的夜晚10:35.例3 设某种动物头数的变化服从Logistic 规律.在正常情况下净相对增长率为a 1,环境容许的极限头数为N 1.假设当头数增加到Q (Q < N 1)时瘟疫流行,使净相对增长率为a 2,极限头数降为N 2(N 2< Q ),于是头数下降.当降至q (q >N 2)时,瘟疫停止,恢复正常.试建立这种情况下动物头数的模型,并讨论在瘟疫影响下动物头数的周期性变化,周期与哪些因素有关.解 由题中条件知,动物头数x (t )应满足:⎪⎪⎩⎪⎪⎨⎧-=-=瘟疫流行时正常时)1(~d ~d )1(d d 2211N x x a t x N x x a t x解得⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=----瘟疫流行时正常时)(22)(111201e )1(1)(~e )1(1)(t t a t t a Q N N t x q N N t x其中10,t t 分别为开始转入正常的时刻和开始转入瘟疫流行的时刻,由Q qNN t x t t a =-+=--)(1101e )1(1)(解得 )()(ln 11110Q N q q N Q a t t --=-由 q QNN t x t t a =-+=--)(2212e )1(1)(~解得 )()(ln 12221N q Q N Q q a t t --=- 即动物头数周期性变化,其周期为)()(ln 1)()(ln 1222111N q Q N Q q a Q N q q N Q a T --+--=典型例题一、填空题:1.设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为 ,其解为 .解 应该填写:⎪⎩⎪⎨⎧==0)0(d d x x rxt x,.e )(0rt x t x =2.设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若允许的最大人口数为m x ,人口增长率由sx r x r -=)(表示,则人口增长问题的罗捷斯蒂克模型为 ,其解为 .解 应该填写: ⎪⎩⎪⎨⎧=-=0)0()1(d d x x x x rx t xm ,.e )1(1)(0rt m m x x x t x --+=二、分析判断题1.对于技术革新的推广,在下列几种情况下分别建立模型.(1)推广工作通过已经采用新技术的人进行,推广速度与采用新技术的人数成正比,推广是无限的.(2)总人数有限,因而推广速度还会随着尚未采用新技术人数的减少而降低. (3)在(2)的前提下考虑广告等媒介的传播作用. 解:设t 时刻采用新技术的人数为x (t ).(1)指数模型x txλ=d d .(2)Logistic 模型)(d d x N ax tx-=,N 为总人数.(3)广告等媒介在早期作用较大,它对传播速度的影响与尚未采用新技术的人数成正比,在模型(2)的基础上,有))((d d x N b ax tx-+= (2)和(3)区别见图1.图12.某种疾病每年新发生1000例,患者中有一半当年可治愈.若2000年底时有1200个病人,到2005年将会出现什么结果?有人说,无论多少年过去,患者人数只是趋向2000人,但不会达到2000人,试判断这个说法的正确性.解: 根据题意可知:下一年病人数=当年患者数的一半+新患者.于是令n X 为从2000年起计算的n 年后患者的人数,可得到递推关系模型:10005.01+=+n n X X 得递推公式).211(2000210n n n X X -+=由,12000=X 可以算出2005年时的患者数19755=X 人.由递推公式容易看出,,2000→n n X X ,且是单调递增的正值数列故结论正确.三、计算题1.建立铅球掷远模型.不考虑阻力,设铅球初速度为v ,出手高度为h ,出手角度为α(与地面夹角),建立投掷距离与v ,h ,α的关系式,并求v ,h 一定的条件下求最佳出手角度.解:在图2坐标下铅球运动方程为0=x,g y -= ,0)0(=x ,h y =)0(, αcos )0(v x= ,αsin )0(v y = . 解出)(t x ,)(t y 后,可以得铅球掷远为ααααcos )2sin (cos sin 212222v g hgv g v R ++=图2 这个关系还可表为 )tan (cos 2222ααR h v g R +=.由此计算0d d =*ααR ,得最佳出手角度和最佳成绩分别为:)(2sin 21gh v v +=-*α, gh v gvR 22+=*. 设h =1.5m ,v =10m/s ,则 4.41=*α,m 4.11=*R .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:xNrx t xln )(= ,其中r 和N 的意义与Logistic 模型相同. 设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为h =Ex .讨论渔场鱼量的平衡点及其稳定性,求最大持续产量h m 及获得最大产量的捕捞强度 E m 和渔场鱼量水平x *0. 解: 模型为 Ex x N rx x F x-==ln )( , 如图3所示,有2个平衡点:x = 0和x 0 =rE N -e.可证x = 0不稳定,x 0稳定(与E ,r 的大小无关).最大持续产量为h m = rN/e ,获得h m 的E m = r ,x *0 =e /N . 图33.在一种溶液中,化学物质A 分解而形成B ,其速度与未转换的A 的浓度成比例.转换A 的一半用了20分钟,把B 的浓度y 表示为时间的函数,并作出图象. 解:记B 的浓度为时间t 的函数y (t ),A 的浓度为x (t ). 一、假设1.1molA 分解后产生n molB .2.容体的体积在反应过程中不变. 二、建立模型,求解有假设知,A 的消耗速度与A 的浓度成比例,故有下列方程成立kx tx-=d d 其中k 为比例系数.设反应开始时t = 0,A 的浓度为x 0,由题中条件知当t = 20(分)时,A 的浓度为021)20(x x =.解初值问题⎪⎩⎪⎨⎧==-)0(d d x x kx tx得 kt x t x -=e )(0 它应满足020021e )20(x x x k ==⨯-rN/解得 2ln 201=k 所以得 )2ln 200e )((tx t x -=由于B 的浓度为x 浓度减少量的n 倍,故有)e1(]e[)(2ln 2002ln 2000ttnx x x n t y ---=-=三、作图(如图4) 图4nx。