二元一次方程组2014年实际问题
- 格式:doc
- 大小:62.50 KB
- 文档页数:2
二元一次方程组的实际问题在数学中,一个二元一次方程组是由两个含有两个未知数的一次方程组成的。
解决二元一次方程组可以帮助我们解决实际问题,并在不同领域中有着广泛的应用。
本文将探讨二元一次方程组的实际问题以及如何应用数学方法进行求解。
第一节:经济预算问题假设小明每个月花费在交通和饮食上的总额为1000元。
已知他每次坐公交车需要花费3元,而每次用餐需要花费15元。
现在我们来分析小明每个月乘坐公交车和用餐的次数。
设小明乘坐公交车的次数为x,用餐的次数为y,那么我们可以得到以下两个方程:3x + 15y = 1000 (公交车花费方程)x + y = 30 (次数总和方程)通过解这个二元一次方程组,我们可以得到小明每个月乘坐公交车的次数和用餐的次数。
进而可以进一步分析他的消费结构,优化他的经济预算。
第二节:比例问题假设小红和小李两人合作修建一座花园,他们一起工作了5天。
已知小红每天能做1/4的工作量,小李每天能做1/6的工作量。
现在我们来计算他们每天的工作量以及整个工程需要多少天才能完成。
设小红每天的工作量为x,小李每天的工作量为y,那么我们可以得到以下两个方程:1/4x + 1/6y = 1 (工作量方程)x + y = 5 (工作天数方程)通过解这个二元一次方程组,我们可以得到小红和小李每天的工作量以及整个工程需要多少天才能完成。
这对于他们合理安排工作进度具有重要意义。
第三节:物理运动问题假设一枚抛体从高度为h的位置自由落下,并且在同一时间有一枚抛体从高度为2h的位置自由落下。
已知两枚抛体同时着地,现在我们来计算两枚抛体落地所需的时间以及它们的初始高度。
设小球自由落下的时间为x,小球自由落下的时间为y,那么我们可以得到以下两个方程:1/2gt^2 + h = 1/2gt^2 + 2h (落地方程)x = y (时间相等)通过解这个二元一次方程组,我们可以得到两枚抛体落地所需的时间以及他们的初始高度。
这有助于我们更好地理解物体在自由落体中的运动规律。
一、应用题1. (2014 内蒙古呼和浩特市) 为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和 410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?2. (2014 福建省福州市) 现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B 商品共用了160元.(1)求A,B两种商品每件多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?3. (2014 湖南省邵阳市) 小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?4. (2014 湖南省郴州市) 为推进郴州市创建国家森林城市工作,尽快实现“让森林走进城市,让城市拥抱森林“的构想,今年三月份,某县园林办购买了甲、乙两种树苗共1000棵,其中甲种树苗每棵40元,乙种树苗每棵50元。
根据相关资料表明:甲、乙两种树苗的成活率分别为85%和90%。
(1)若购买甲、乙两种树苗共用去了46500元,则购买甲、乙两种树苗各多少棵?(2)若要使这批树苗的成活率不低于88%,则至多可购买甲种树苗多少棵5. (2014 山东省聊城市) 某服装店用6000元购进A,B两种新式服装,按标价出售后可获毛利润3800元(毛利润=售价-进价),这两种服装的进价、标价如下表所示:.(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?6. (2014 四川省德阳市)为落实国家“三农”政策,某地政府组织40辆汽车装运A、B、C三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:农产品种类 A B C每辆汽车的装载量(吨) 4 5 6(1)如果装运C种农产品需13辆汽车,那么装运A、B两种农产品各需多少辆汽车?(2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案.7. (2014 浙江省舟山市)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?8. (2014 广西南宁市)“保护好环境,拒绝冒黑烟”,某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆。
用二元一次方程组解决实际问题(一)对大小牛的含量估计1、某班学生参加运土劳动,一部分同学抬土,另一部分同学挑土,已知全班同学共用土筐59个,扁担36根,问抬土和挑土的同学各有多少人?2、某课外小组学生准备分组外出活动,若每组7人,则余下3人,若每组8人,则少5人,求学生有多少人?3、某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售,该公司的加工能力是:每天可以精加工6吨或粗加工16吨,现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?4、两地相距280千米,一轮船在其间航行,顺流用14小时,逆流用20小时,求轮船在静水中的速度?5、已知一铁桥长1000米,有一列火车从桥上通过,测得火车开始上桥到完全过桥共用1分钟,整列火车在桥是的时间为40秒,求火车的速度和列车的长分别是多少?6、一个两位数的数字之和为10,十位数字与个位数字互换后,所得新数比原数小36,求原来的两位数是多少?7、某车间有28个工人生产某种螺栓和螺母,每人每天能生产螺栓12个或螺母18个,为了合理分配劳动,使生产的螺栓和螺母配套(一个螺栓和两个螺母)应分配多少人生产螺栓?8、甲、乙两家超市销售同一价格的某种商品,甲超市分两次降价,每次降价10%,乙超市一次性降价20%,那么顾客到哪家超市购此种商品最合算?8、要修一段420千米长的公路,甲工程队先干2天,乙工程队加入,两队再合干2天完成任务,如果乙队先干2天,两队两队再合干3天完成任务,问两个队每天各能修多少千米?(二)调动问题行程问题中常用到的等量关系:路程=____________________相遇问题:同时两地相向而行,________ ×相遇时间=出发地间的距离追击问题:同时两地同向而行,________ ×追击时间=出发地间的距离环行问题:同时同地同向而行,则快的行的路程-慢的行的路程=n×环形的周长(n为相遇次数)同时同地反向而行,则快的行的路程+慢的行的路程= n×环形的周长(n为相遇次数)1、两人练习跑步,如果乙先跑16米,甲8秒可以追上乙,如果乙先跑2秒,则甲4秒可以追上乙,求甲、乙两人每秒各跑多少米?2、甲、乙两人从同一地点出发,同向而行,甲骑车,乙步行,如果乙先行12千米,那么甲1小时就能追上乙,如果乙先走1小时,那么甲只用0.5小时就能追上乙,则乙的速度是多少?3、张华与李明两个同学相距15千米,同时出发,若同向而行,张华3小时追上李明,若相向而行,两人1小时后相遇,则张华与李明的速度分别是多少?4、一批货物要运往某地,货主准备租用汽车运输公司的甲乙两种货车,已知过去两次租用这两种货车的现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,部货主应付运费多少元?5、北京和上海都有某种仪器可供外地使用,其中北京可提供10台,上海可提供4台,已知重庆需要8台,武汉需要6台,从北京、上海将仪器运往重庆、武汉的费用如下表所示。
二元一次方程实际问题(难题)二元一次方程是数学中常见的一种形式,也是很多实际问题中的重要数学工具之一。
本文将讨论几个二元一次方程实际问题难题,并通过解决问题的方法来加深对这种方程的理解。
难题1:两人捐款的问题问题描述:小明和小张一起为一所学校捐款。
小明捐了300元,小张捐了150元。
他们的捐款总数是450元。
如果另外一个人也和他们一起捐款,那么这个人至少要捐多少钱?解决办法:假设第三个人捐x元钱,则根据题目描述,我们可以列出如下的二元一次方程:300 + 150 + x = 450将其简化为标准形式:x = 450 - 300 - 150计算可得第三个人至少要捐100元。
难题2:两条直线的交点问题问题描述:已知两条直线的方程分别为y = 3x - 1和y = -2x + 5,请问它们在哪个点相交?解决办法:将两条直线的方程转化为标准形式:y - 3x = -1y + 2x = 5将其表示成增广矩阵形式并进行初等行变换,可得:[ 1 -3 | -1 ][ 1 2 | 5 ]再进行高斯消元,得到:[ 1 0 | 2 ][ 0 1 | 1 ]因此,两条直线在点(2, 1)相交。
难题3:矩形的面积问题问题描述:一个矩形的长和宽分别为x和y,它的面积为42平方米。
如果把长和宽都增加3米,它的面积就会增加27平方米。
请问这个矩形的长和宽各是多少?解决办法:根据题目描述,可以列出如下的二元一次方程组:xy = 42(x + 3)(y + 3) = 42 + 27将后一个方程式展开可得:xy + 3x + 3y + 9 = 69xy + 3x + 3y - 27 = 0将第二个式子变形并代入第一个式子,可得:xy + 3(x + y - 9) = 0因为xy不为0,所以可以除掉,得到:x + y - 9 = 0将其代入第一个方程,可得:x(9 - x) = 42解这个方程可得:x = 6y = 3所以这个矩形的长和宽分别为6米和3米。
二元一次方程组实际问题一、 鸡兔同笼问题1.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票_____,儿童票___张.2.为保护环境,某校环保小组成员小明收集废电池,第一天收集1号电池4节,5号电池5节,总质量为460克;第二天收集1号电池2节,5号电池3节,总质量为240克.则1号电池每节重为______克,5号电池每节重为______克.(注:获利 = 售价 — 进价)求该商场购进A 、B 两种商品各多少件;二、两量和与比较问题1.甲、乙两条绳共长17米,如果甲绳减去51,乙绳增加1米,两条绳长相等,求甲、乙两条绳各长多少?若设甲绳长为x 米,乙绳长为y 米,则得方程组( )2.长方形的周长是106厘米,长比宽的3倍多1厘米,则长方形的面积为 。
3.某年级共有246人,男生人数比女生人数的2倍少2人,问男、女生各有多少人?若设男生人数为x 人,女生人数为y 人,则( )A、 B 、 C 、 D 、三、答题问题1.某次知识竞赛共出25道试题,评分标准如下:答对1题加4分;答错1题扣1分,不答记0分,已知李刚不答的题比答错的题多2道,他的总分为74分,则他答对了( )A 、18道B 、19道C 、20道D 、21道2.在中国足球超级联赛的前11轮比赛中,某队保持不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队胜得场数是( )A.4B.5C.6D.7四、航船问题1.某船顺流航行48千米用4小时,逆流航行32千米用4小时,求水流速度和船在静水中的速度.2.某船顺流航行36km ,用3小时,逆流航行24km ,用3小时,则水流速度为 ,船在静水中的速度为 。
五、数学问题1.有一个两位数比它个位数上的数字与十位上的数字的和的5倍大2;若将它个位数字与十位上的数字互换位置,则原来的数比新数小9,求这个两位数.2.有一个两位数,个位数字与十位数字之和为10,若将个位数字与十位数字互换,则所得新数比原数小18,求x +y =246 2x =y +2 x +y =246 y =2x +2x +y =246 x =2y +2 x +y =246 2y =x +2这个两位数?六、方案选择问题1.4辆小卡车和5辆大卡车一次共可运货27吨,6辆小卡车和10辆大卡车一次共可运货51吨,则小卡车和大卡车每辆车每次可以各运货( )吨。
二元一次方程(组)及其应用一、选择题1. (2014•山东烟台,第5题3分)按如图的运算程序,能使输出结果为3的x ,y 的值是( )A . x =5,y =﹣2B . x =3,y =﹣3C . x =﹣4,y =2D . x =﹣3,y =﹣9 考点:实数的运算,二元一次方程的解.分析:根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.解答:由题意得,2x ﹣y =3,A 、x =5时,y =7,故本选项错误;B 、x =3时,y =3,故本选项错误;C 、x =﹣4时,y =﹣11,故本选项错误;D 、x =﹣3时,y =﹣9,故本选项正确.故选D .点评:本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.2.(2014•江西抚州,第6题,3分)已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a b +的值为( )A. 8B. 4C. -4D. -8 解析:选A . ∵方程(1)+方程(2)即可得a b +=38.3.(2014•娄底4.(3分))方程组的解是( ),.二、填空题1. (2014•山东枣庄,第14题4分)已知x、y是二元一次方程组的解,则代数式22解:,()=故答案为:.2. (2014•浙江杭州,第13题,4分)设实数x、y满足方程组,则x+y=8.,队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队.4. (2014•年山东东营,第15题4分)如果实数x,y满足方程组,那么代数式(+2)÷的值为 1 .考点:分式的化简求值;解二元一次方程组.菁优网专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.解答:解:原式=•(x+y)=xy+2x+2y,方程组,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为:1点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.5.(2014•江苏徐州,第11题3分)函数y=2x与y=x+1的图象交点坐标为(1,2).考点:两条直线相交或平行问题.菁优网专题:计算题.分析:根据两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,所以解方程组即可得到两直线的交点坐标.解答:解:解方程组得,所以函数y=2x 与y=x+1的图象交点坐标为(1,2).故答案为(1,2).点评: 本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.三、解答题1. (2014•山东威海,第19题7分)解方程组:. 解:方程组整理得:,则方程组的解为2.(2014山东济南,第24题,8分)(本小题满分8分)2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?【解析】设小李预定了小组赛球票x 张,淘汰赛球票y 张,由题意有⎩⎨⎧=+=+580070055010y x y x ,解之⎩⎨⎧==28y x . 所以,小李预定了小组赛球票8张,淘汰赛球票2张.3. (2014•山东聊城,第22题,8分)某服装店用6000元购进A ,B 两种新式服装,按标价,这两种服装的进价、标价如表所示:(2)如果A 中服装按标价的8折出售,B 中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?.件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,根据“5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元”列出方程组解决问题;(2)分情况:不大于20件;大于20件;分别列出函数关系式即可;(3)设购进玩具x件(x>20),分别表示出甲种和乙种玩具消费,建立不等式解决问题.解答:解:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,由题意得,解得,答:件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x≤20时,y=30x;当x>20时,y=20×30+(x﹣20)×30×0.7=21x+180;(3)设购进玩具x件(x>20),则乙种玩具消费27x元;当27x=21x+180,则x=30所以当购进玩具正好30件,选择购其中一种即可;当27x>21x+180,则x>30所以当购进玩具超过30件,选择购甲种玩具省钱;当27x<21x+180,则x<30所以当购进玩具少于30件,选择购乙种玩具省钱.点评:此题考查二元一次方程组,一次函数,一元一次不等式的运用,理解题意,正确劣势解决问题.5.( (2014年河南) 21,10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。
班级_____________________ 姓名____________________ 考场号____________ 考号___________
----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 一、应用题
1. (2014 内蒙古呼和浩特市) 为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格. 我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和 410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?
2. (2014 福建省福州市) 现有A ,B 两种商品,买2件A 商品和1件B 商品用了90元,买3件A 商品和2件B 商品共用了160元.
(1)求A ,B 两种商品每件多少元?
(2)如果小亮准备购买A ,B 两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?
3. (2014 湖南省邵阳市) 小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块. (1)两种型号的地砖各采购了多少块?
(2)如果厨房也铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?
4. (2014 湖南省郴州市) 为推进郴州市创建国家森林城市工作,尽快实现“让森林走进城市,让城市拥抱森林“的构想,今年三月份,某县园林办购买了甲、乙两种树苗共1000棵,其中甲种树苗每棵40元,乙种树苗每棵50元。
根据相关资料表明:甲、乙两种树苗的成活率分别为85%和90%。
(1)若购买甲、乙两种树苗共用去了46500元,则购买甲、乙两种树苗各多少棵? (2)若要使这批树苗的成活率不低于88%,则至多可购买甲种树苗多少棵
5. (2014 山东省聊城市) 某服装店用6000元购进A ,B 两种新式服装,按标价出售后可获毛利润3800元(毛利润=售价-进价),这两种服装的进价、标价如下表所示:.
(1)求这两种服装各购进的件数;
(2)如果A 种服装按标价的8折出售,B 种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?
6. (2014 四川省德阳市)
为落实国家“三农”政策,某地政府组织40辆汽车装运A 、B 、C 三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题: 农产品种类
A
B C 每辆汽车的装载量(吨) 4
5
6
(1)如果装运C 种农产品需13辆汽车,那么装运A 、B 两种农产品各需多少辆汽车?
(2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案.
班级_____________________ 姓名____________________ 考场号____________ 考号___________
----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 7. (2014 浙江省舟山市)
某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售出2辆A 型车和1辆B 型车,销售额为62万元. (1)求每辆A 型车和B 型车的售价各为多少元.
(2)甲公司拟向该店购买A ,B 两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?
8. (2014 广西南宁市)
“保护好环境,拒绝冒黑烟”,某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B 型两种环保节能公交车共10辆。
若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元。
(1)求购买A 型和B 型公交车每辆各需多少万元?
(2)预计在该线路上A 型和B 型公交车每辆车年均载客量分别为60万人次和100万人次,若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?
9. (2014 山东省淄博市) 为鼓励居民节约用电,某省试行阶梯电价收费制,具体执行方案如下:
例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).
某户居民五、六月份共用电500度,缴电费
290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?
10. (2014 四川省攀枝花市)
为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表: (1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各
需多少台?
(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?
11. (2014 浙江省嘉兴市) 某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售出2辆A 型车和1辆B 型车,销售额为62万元. (1)求每辆A 型车和B 型车的售价各为多少元.
(2)甲公司拟向该店购买A ,B 两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?。