EDI高纯水的工作原理及技术的发展史介绍
- 格式:docx
- 大小:16.35 KB
- 文档页数:1
EDI超纯水设备EDI超纯水设备概述:EDI(Elcctrodeionization)是一种将离子交换技术、离子交换膜技术和离子电迁移技术相结合的纯水制造技术。
它巧妙的将电渗析和离子交换技术相结合,利用两端电极高压使水中带电离子移动,并配合离子交换树脂及选择性树脂膜以加速离子移动去除,从而达到水纯化的目的。
在EDI除盐过程中,离子在电场作用下通过离子交换膜被清除。
同时,水分子在电场作用下产生氢离子和氢氧根离子,这些离子对离子交换树脂进行连续再生,以使离子交换树脂保持最佳状态。
EDI超纯水设备发展过程:历史上,早期的纯水的需求主要来自于医药、化工、发电、造纸等行业,水质要求相对较低。
在六、七十年代,纯水制备主要采用蒸馏和离子交换。
前者能耗很高,后者需要化学药剂再生,既麻烦又不经济,而且由于强型树脂对一般有机分子去除效果很差,出水中TOC含量高。
随着半导体工业的发展,对纯水质量要求不断提高,从而大大推动了纯水技术的发展。
到八十年代,膜技术得到广泛应用,微滤、超滤、电渗析和反渗透(RO)等先进的水处理技术得到长足发展。
RO-混床系统取代了传统的离子交换系统,解决了TOC问题,满足了诸如电子行业对纯水质量要求。
但是,由于RO脱盐率有限,混床需要化学药剂再生的问题仍未解决,并且出于环保需要,减少化学再生药剂使用的呼声越来越大,因而以电化学为基础的EDI技术便得到了重视。
早在四十年前,EDI就作为一种不用化学药剂再生的水处理方法而用于实验室。
EDI技术的长足发展是近十年,尤其是近几年来的事情。
初期的EDI系统设计不完善,可靠性有问题,而且价格偏高,只适合于小流量用户。
EDI与RO一样设计成标准模块,可大批量生产和大规模组合,水量也能满足工业用水量要求。
EDI超纯水设备工作原理:EDI模块将离子交换树脂充夹在阴/阳离子交换膜之间形成EDI单元。
EDI模块中将一定数量的EDI单元间用格板隔开,形成浓水室和淡水室。
EDI超纯水设备的介绍一、EDI超纯水设备EDI超纯水处理设备即电去离子(EDI)系统,该设备主要是在直流电场的作用下,通过隔板的水中电介质离子发生定向移动,利用交换膜对离子的选择透过作用来对水质进行提纯的一种科学的水处理技术。
目前在发电厂水处理工艺中有三种方式:第一种方式为传统的除盐方式,水中的盐全部依靠离子交换的方式除去,需要大量酸碱溶液对离子交换树脂再生,因此运行费用增加,并且再生后的排水对环境也有一定的污染。
第二种方式为改良的除盐方式,水中的大部分盐类用反渗透方式除去,但混床中交换树脂的再生仍需要酸碱。
因此此种方式只是改良后的除盐方式,运行费用稍有降低,对环境也有污染。
第三种方式为绿色的除盐方式,彻底去除了在超纯水制备中酸碱的使用,实现了全过程的绿色化。
大河人家技术工程师将向你介绍绿色除盐方式中的EDI装置的基本原理、优缺点及应用发展市场和空间。
二、EDI的基本工作原理EDI(Electro-de-ionization)是一种将离子交换技术、离子交换膜技术和离子电迁移技术(电渗析技术)相结合的纯水制造技术。
该技术利用离子交换能深度脱盐来克服电渗析极化而脱盐不彻底,又利用电渗析极化而发生水电离产生H+和OH-离子来克服树脂失效后通过化学药剂再生的缺陷,是20世纪80年代以来逐渐兴起的新技术。
经过十几年的发展,EDI技术已经在北美及欧洲占据了相当部分的超纯水市场。
EDI装置包括阴/阳离子交换膜、离子交换树脂、直流电源等设备。
其中阴离子交换膜只允许阴离子透过,不允许阳离子通过,而阳离子交换膜只允许阳离子透过,不允许阴离子通过。
离子交换树脂充夹在阴阳离子交换膜之间形成单个处理单元,并构成淡水室。
单元与单元之间用网状物隔开,形成浓水室。
在单元组两端的直流电源阴阳电极形成电场。
来水水流流经淡水室,水中的阴阳离子在电场作用下通过阴阳离子交换膜被清除,进入浓水室。
在离子交换膜之间充填的离子交换树脂大大地提高了离子被清除的速度。
EDI超纯水处理设备的工作原理EDI(Electrodeionization)超纯水处理设备是一种先进的水处理技术,通过电化学反应和离子交换技术去除水中的杂质和离子,生成高纯度的水。
其工作原理如下:1.EDI设备由阳极、阴极和屏蔽层组成。
在EDI装置内,当水通过通过电极模块时,电极会加上一种电压。
这个过程可以去除水中的离子,比如钠、钙、氯化物等,将它们转移到电极上。
2.在EDI设备的阳极处,水中的氢氧根离子(OH-)会接受电子并释放氧气,生成氢氧根较低的浓度,而在阴极处,水中的氢离子(H+)会失去电子并结合生成氢气,这样就保持了水的电中性。
3.在EDI设备内,电极模块内部还存在阴离子和阳离子交换膜,这些交换膜会帮助去除水中的离子,其中的阳离子交换膜只允许阳离子通过,而阴离子交换膜只允许阴离子通过。
这样,在电压驱动下,离子会被分离并在设备内部的树脂填料中沉积。
4.在EDI设备的中间区域,存在蓄积腔,其中有填料的膜作为水的透过物允许离子通过。
在这个区域,水的碱性将增加,从而帮助电极去除水中的离子。
5.经过一系列的离子交换和转移,水会从EDI设备的出口输出,这时候水已经变得非常纯净,绝大多数的离子、微生物和杂质都被去除了,得到了所谓的超纯水。
1.进水:水通过预处理设备(如反渗透设备)先处理成较为纯净的原水,经过预处理后的水进入到EDI设备。
2.构建电场:在EDI设备内,通过电极金属间的电压,会形成一个电场,这个电场对水中的离子进行抽出和分离。
3.脱盐过程:在电场的作用下,阳极和阴极会帮助去除水中的离子,水中的盐分和杂质逐渐被沉淀到电极和交换膜上,从而生成高纯的水。
4.出水:经过一段时间的处理后,超纯水会从EDI装置的出口流出,此时的水已经达到了高纯度水的标准,可以用于实验室、医药、电子行业等要求高纯度水的领域。
总的来说,EDI超纯水处理设备通过电化学反应和离子交换技术结合,能够高效、可持续地去除水中的离子和杂质,生成高纯度的水,广泛应用于各个领域的实验和生产过程中。
EDI超纯水处理设备的工作原理
一、预处理阶段:
二、电离交换阶段:
1.阴阳离子交换:EDI超纯水处理设备首先由一个交流电源提供电流,分别通过阴离子交换膜和阳离子交换膜。
水中的阳离子被阴离子交换膜吸附,而阴离子被阳离子交换膜吸附。
这种电离交换过程使水中离子的浓度
减少,提高了水的纯度。
2.脱吸附:在阴阳离子交换后,还有些离子没有被去除,会通过带电
交换树脂进一步脱附。
首先,满载了离子的树脂被与固定相反电荷的电解
质溶液冲洗,使离子从树脂上解离下来。
然后,这些离子通过对流和扩散
在脱附液中更换掉。
三、电吸附阶段:
1.电化学反应:首先,EDI装置会产生一层电化学限制膜,在这个膜
的一侧是酸性环境,另一侧是碱性环境。
水中的阳离子在酸性环境一侧被
转化成化学反应产生的氢氧化物,而阴离子在碱性环境一侧被转化成产生
的氢氧根离子。
2.色敏电吸附:水分子内部的活化能减小,从而加快电子在膜和介质
之间的传递速度。
通过两端施加的直流电压,产生电场,将产生的氢氧化
物和氢氧根离子迅速吸附到受电吸附膜表面的微细孔洞中。
3.游离阶段:当电极上电荷堵塞时,会通过自净化过程重新脱附氢氧
根离子和氢氧化物。
这些游离的阳离子和阴离子通过树脂层进入电导池,
再到溢流口排出系统。
通过以上三个阶段的处理,EDI超纯水处理设备可实现高效的水纯化效果。
同时,由于其不需要化学试剂和热再生,因此更加环保和经济。
目前,EDI超纯水处理设备广泛应用于电子、化工、制药、食品和饮料等行业。
From:谷腾环保网> 水处理> 技术专题> EDI 技术应用EDI 推荐工艺流程什么是EDIElectrodeionization的缩写,中文全称为“连续电去离子技术”,其主要用于替代传统混床技术。
超纯水的生产在过去的二十年间,在成本、环境及品质等因素的驱动下,其供水系统发生了许多变化,特别值得一提的是,目前存在一个明确的方向,就是减少对离子交换工艺的依赖性,以便尽可能减少化学药品的使用,并提高产水量。
有一项重要的事实可以说明该趋势—反渗透作为阴阳床的替代技术正在普及。
反渗透作为有效的脱盐技术,其脱盐率可以达到95~99%。
但是,RO对离子的去处效果有一定的限度,一般来说,产水电导率0.5us/cm(2 MOhm-cm)是其脱盐的极限。
当产水水质有更高的要求的时候,就需要采用混床或等同技术。
EDI能高效去除残余离子和离子态杂质,尤其当用户产水水质要求高,比如对电阻率(>10 或者16MOhm-cm), 二氧化硅(<10ppb或者<1ppb),钠离子,硼等有严格的要求的时候, EDI技术更体现了其品质的优越性,且EDI系统的运行成本明显低于与混床,与混床装置及其辅助设备相比,其设备的生命周期总成本占有优势。
EDI技术在大约50年前就出现了,但是大型的商业化直到1986年才真正开始,时至如今EDI制造商已经为全球制造了1000套以上的EDI系统。
图1描述了RO,EDI取代传统离子交换工艺的过程。
图1 EDI技术的发展国内EDI技术的现状近几年来,国内陆续有EDI技术的研究和应用报道,但少有成果报道,而且未见纯水水质达到电子级水I级标准的报道。
现有的EDI纯水工程中以进口EDI膜堆居多,不仅价格高,而且由于缺乏经验,应用中尚存在不少的问题。
卫生装备研究所EDI技术研究及应用情况卫生装备研究所经过多年攻关,掌握了EDI的关键技术,不断有阶段性的研究成果推出,并于2001年3月通过了天津市科委组织的“电去离子技术和反渗透一电去离子高纯水设备”技术鉴定。
EDI高纯水设备处理工作原理:1. 水进入 EDI 系统,主要部分流入树脂 / 膜内部,而另一部分沿模板外侧流动,以洗去透出膜外的离子。
2. 树脂截留水中的溶存离子。
3. 被截留的离子在电极作用下,阴离子向正极方向运动,阳离子向负极方向运动。
4. 阳离子透过阳离子膜,排出树脂 / 膜之外。
5. 阴离子透过阴离子膜,排出树脂 / 膜之外。
6. 浓缩了的离子从废水流路中排出。
7. 无离子水从树脂 / 膜内流出。
高纯水水处理技术的发展史:第一阶段:预处理——>阳床——>阴床——>混合床第二阶段:预处理——>反渗透——>混合床第三阶段:预处理——>反渗透——>EDI装置反渗透(RO)技术是一种利用膜分离去除水中离子的方法,尽管反渗透系统将水中95%-98%的离子去除,但还不能满足工业生产的要求,其后续工艺必须使用离子交换设备。
近几十年以来,混合床离子交换技术一直作为纯水制备的标准工艺。
由于其需要周期性的再生且再生过程中使用大量的化学药品(酸碱)和纯水,因此已很难满足于无酸碱纯水系统。
正因为传统的离子交换已经越来越无法满足现代工业和环保的需要,于是将膜和树脂结合EDI技术成为水处理技术的一场革命。
其离子交换树脂的的再生使用的是电,而不再需要酸碱,因而更满足于当今世界的环保要求。
自从1986年EDI 技术工业化以来,全世界已安装了近2000套EDI 系统,尤其在制药、半导体、电力和表面冲洗等工业中得到了大力的发展,同时在废水处理、饮料及微生物等领域也得到广泛使用。
EDI 装置是应用在反渗透系统之后,取代离子交换树脂,具有水质稳定、运行费用低、操作管理方便、占地面积小等优点。
EDI超纯水设备发展历史第一台商用EDI超纯水设备诞生与1986年,同年起EDI超纯水设备数量持续稳定增长,迄今为止,全世界至少已完成安装1000套EDI超纯水设备。
EDI超纯水设备发展历史受成本、环境和质量因素的影响,超纯水的生产工艺在最近的几十年内经历了很多变化。
一个趋势特别明显,即减少对离子交换(IX)的依赖程度,其目的在于将化学药品使用减少到最低,并提高水的利用率。
反渗透(RO)技术能将水中95%-98%的离子去除,从而大大减少了酸碱的用量,但还不能完全不使用化学药品。
为了制备超纯水,通常采用反渗透+混床工艺。
混床离子交换技术一直作为超纯水制备的标准工艺。
由于其需要周期性的再生,在再生过程中使用相应的化学药品(酸碱),已无法满足现代工业清洁生产和环保的需要。
于是将电渗析技术和离子交换技术有机结合形成的EDI技术成为水处理技术的一场革命。
EDI超纯水设备的工作原理电去离子(Electrodeionization 简称EDI)是将电渗析膜分离技术与离子交换技术有机地结合起来的一种新的制备超纯水(高纯水)的技术,它利用电渗析过程中的极化现象对填充在淡水室中的离子交换树脂进行电化学再生。
EDI膜堆主要由交替排列的阳离子交换膜、浓水室、阴离子交换膜、淡水室和正、负电极组成。
在直流电场的作用下,淡水室中离子交换树脂中的阳离子和阴离子沿树脂和膜构成的通道分别向负极和正极方向迁移,阳离子透过阳离子交换膜,阴离子透过阴离子交换膜,分别进入浓水室形成浓水。
同时EDI进水中的阳离子和阴离子跟离子交换树脂中的氢离子和氢氧根离子交换,形成超纯水(高纯水)。
超极限电流使水电解产生的大量氢离子和氢氧根离子对离子交换树脂进行连续的再生。
传统的离子交换,离子交换树脂饱和后需要化学间歇再生。
而EDI膜堆中的树脂通过水的电解连续再生,工作是连续的,不需要酸碱化学再生。
EDI超纯水设备的应用领域EDI超纯水设备具有先进的技术,产水水质高,自动化控制,操作简单,出水水质符合电子行业、微电子行业、医药行业以及化工行业和实验室用水水质要求。
EDI除盐水系统/ EDI超纯水设备EDI除盐系统一、EDI技术简介EDI(Electrodeionization)是一种具有革命性意义的水处理技术,它巧妙地将电渗析与离子交换有机地结合在一起的膜分离脱盐工艺,属高科技绿色环保技术。
EDI净水设备具有连续出水、无需酸碱再生和无人值守等优点,已在制备纯水的系统中逐步代替混床作为精处理设备使用。
这种先进技术的环保特性好,操作使用简便,愈来愈多地被人们所认可,也愈来愈多广泛地在医药、电子、电力、化工等行业得到推广,至今国际上已有3千多套EDI装置在运行,总容量已超过3万吨/H。
它的出现是水处理技术的一次革命性的进步,标志着水处理工业最终全面跨入绿色产业的行业。
二、高纯水水处理技术的发展史第一阶段:预处理——>阳床——>阴床——>混合床第二阶段:预处理——>反渗透——>混合床第三阶段:预处理——>反渗透——>EDI装置反渗透(RO)技术是一种利用膜分离去除水中离子的方法,尽管反渗透系统将水中95%-98%的离子去除,但还不能满足工业生产的要求,其后续工艺必须使用离子交换设备。
近几十年以来,混合床离子交换技术一直作为纯水制备的标准工艺。
由于其需要周期性的再生且再生过程中使用大量的化学药品(酸碱)和纯水,因此已很难满足于无酸碱纯水系统。
正因为传统的离子交换已经越来越无法满足现代工业和环保的需要,于是将膜和树脂结合EDI技术成为水处理技术的一场革命。
其离子交换树脂的的再生使用的是电,而不再需要酸碱,因而更满足于当今世界的环保要求。
自从1986年EDI 技术工业化以来,全世界已安装了近2000套EDI 系统,尤其在制药、半导体、电力和表面冲洗等工业中得到了大力的发展,同时在废水处理、饮料及微生物等领域也得到广泛使用。
EDI 装置是应用在反渗透系统之后,取代离子交换树脂,具有水质稳定、运行费用低、操作管理方便、占地面积小等优点。
注:以下资料由莱特莱德提供
EDI高纯水设备处理工作原理:
1. 水进入 EDI 系统,主要部分流入树脂 / 膜内部,而另一部分沿模板外侧流动,以洗去透出膜外的离子。
2. 树脂截留水中的溶存离子。
3. 被截留的离子在电极作用下,阴离子向正极方向运动,阳离子向负极方向运动。
4. 阳离子透过阳离子膜,排出树脂 / 膜之外。
5. 阴离子透过阴离子膜,排出树脂 / 膜之外。
6. 浓缩了的离子从废水流路中排出。
7. 无离子水从树脂 / 膜内流出。
高纯水水处理技术的发展史:
第一阶段:预处理——>阳床——>阴床——>混合床
第二阶段:预处理——>反渗透——>混合床
第三阶段:预处理——>反渗透——>EDI装置
反渗透(RO)技术是一种利用膜分离去除水中离子的方法,尽管反渗透系统将水中
95%-98%的离子去除,但还不能满足工业生产的要求,其后续工艺必须使用离子交换设备。
近几十年以来,混合床离子交换技术一直作为纯水制备的标准工艺。
由于其需要周期性的再生且再生过程中使用大量的化学药品(酸碱)和纯水,因此已很难满足于无酸碱纯水系统。
正因为传统的离子交换已经越来越无法满足现代工业和环保的需要,于是将膜和树脂结合EDI技术成为水处理技术的一场革命。
其离子交换树脂的的再生使用的是电,而不再需要酸碱,因而更满足于当今世界的环保要求。
自从1986年EDI 技术工业化以来,全世界已安装了近2000套EDI 系统,尤其在制药、半导体、电力和表面冲洗等工业中得到了大力的发展,同时在废水处理、饮料及微生物等领域也得到广泛使用。
EDI 装置是应用在反渗透系统之后,取代离子交换树脂,具有水质稳定、运行费用低、操作管理方便、占地面积小等优点。