七年级数学上册角的比较与运算课时练习题
- 格式:docx
- 大小:14.90 KB
- 文档页数:8
6.6《角的大小比较》课时练习一、选择题1.下列关系式正确的是( )A.35.5°=35°5′B.35.5°=35°50′C.35.5°<35°5′D.35.5°>35°5′2.已知∠1=17°18′,∠2=17.18°,∠3=17.3°,下列说法正确的是()A.∠1=∠2B.∠1=∠3C.∠1<∠2D.∠2>∠33.下列关系式正确的是( )A.35.5°=35°5′B.35.5°=35°50′C.35.5°<35°5′D.35.5°>35°5′4.如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形个数是( )A.1B.2C.3D.45.在∠AOB的内部任取一点C,作射线OC,则一定存在()A.∠AOB>∠AOC;B.∠AOB<∠BOC;C.∠BOC>∠AOC;D.∠AOC>∠BOC6.已知∠α=17°18′,∠β=17.18°,∠γ=17.3°,下列结论正确的是()A.∠α=∠β<∠γB.∠α=∠β>∠γC.∠α=∠γ>∠βD.∠α=∠γ<∠β7.若∠1=50°5′,∠2=50.5°,则∠1与∠2的大小关系是( )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.无法确定8.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧9.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧10.已知∠ABC与∠MNP,若点B与点N重合,BC与MN重合,且BA在∠MNP 的内部,则它们的大小关系是()A.∠ABC>∠MNP;B.∠ABC<∠MNP ;C.∠ABC=∠MNPD.不能确定二、填空题11.比较角的大小:37°18′_______37.18°.12.比较大小:52°52′_____52.52°.(填“>”“<”或“=”)13.用10倍放大镜看30°的角,你观察到的角是_______.14.比较大小:63°27′______63.27°(填“>”或“<”或“=”).15.如图所示,若∠AOB=∠COD,则∠1______∠2(填”>”、”<”或”=”).16.如图,比较下列各角的大小,用”>”或”<”填空:(1)∠AOC____________∠AOB;(2)∠BOD____________∠COD;(3)∠AOC____________∠AOD.三、解答题17.如图所示,∠AOC=90°,∠BOD=90°,∠BOC=25°,求出∠COD,∠AOD的度数,并比较∠AOC,∠BOC,∠COD,∠AOD的大小,用”<”连接.18.把一副三角尺如图所示拼在一起.(1)写出图中∠A,∠B,∠BCD,∠D,∠AED的度数;(2)用”<”将上述各角连接起来;(3)指出上述各角中的锐角、直角和钝角.19.如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.20.如图(甲),∠AOC和∠DOB都是直角.(1)如果∠DOC=28°,那么∠AOB的度数是多少?(2)找出图(甲)中相等的角.如果∠DOC≠28°,他们还会相等吗?(3)若∠DOC越来越小,则∠AOB如何变化?若∠DOC越来越大,则∠AOB又如何变化?(4)在图(乙)中利用能够画直角的工具再画一个与∠FOE相等的角.参考答案1.D2.B3.D.4.C.5.A6.C7.C8.D.9.D10.B11.答案为:>12.答案为:>13.答案为:30°14.答案为:>15.答案为:=16.答案为:(1)>(2)>(3)<17.解:∠COD=65°,∠AOD=155°,∠BOC<∠COD<∠AOC<∠AOD.18.解:(1)∠A=30°,∠B=90°,∠BCD=150°,∠D=45°,∠AED=135°.(2)∠A<∠D<∠B<∠AED<∠BCD.(3)∠A与∠D是锐角,∠B是直角,∠AED与∠BCD是钝角.19.解:设∠AOB=2x°,∵∠AOB:∠AOD=2:7,∴∠BOD=5x°,∵∠AOC=∠BOD,∴∠COD=∠AOB=2x°,∴∠BOC=5x﹣2x=3x°∵∠AOC=∠AOB+∠BOC=2x+3x=5x=100°,∴x=20°,∠BOC=3x=60°.20.解:(1)因为∠AOC=∠DOB=90°,∠DOC=28°所以∠COB=90°﹣28°=62°所以∠AOB=90°+62°=152°(2)相等的角有:∠AOC=∠DOB,∠AOD=∠COB如果∠DOC≠28°,他们还会相等(3)若∠DOC越来越小,则∠AOB越来越大;若∠DOC越来越大,则∠AOB越来越小(4)如图,画∠GOE=∠HOF=90°,则∠HOG=∠FOE即,∠HOG为所画的角。
前言:
该同步课时练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的同步课时练习题助力考生查漏补缺,在原有基础上更进一步。
(最新精品同步课时练习题)
4.3 角(2)
角的比较与运算
1.点C在∠AOB的内部,下列等式中,能表示OC是∠AOB的平分线的有()
①∠AOC=∠BOC;②∠AOB=2∠AOC;③∠AOC=1
2
∠AOB;④∠
BOC=
1
2
∠AOB. A.1个 B.2个 C.3个 D.4个
2.已知∠AOB=120°,OC在它的内部,且把∠AOB分成1:3的两个角,那么∠AOC的度数为( )
A.40° B.40°或80° C.30° D.30°或90°
3.已知∠AOB=45°,OC是∠AOB的一条三等分线,则AOC
∠的度数是.4.已知∠AOB是直角,OM平分∠BOC,ON平分∠AOC,那么∠MON= .
5.如图所示,已知∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,则∠1= °,∠2= °,∠3= °,∠4= °.
6.计算:
(1)48°39′+67°41′;
(2)46°35′×3.
7.如图所示,已知0
0110
,
55
,
145=
∠
=
∠
=
∠BOD
AOC
AOB,求COD
∠的度数.
1。
角的比较和运算◆随堂检测1、如图,∠AOC和∠BOD都是直角,如果∠AOB=1400,则∠DOC的度数是()A、300B、400C、500D、6002、一副三角尺可拼成很多角,如下图是由一副三角尺拼成的2个图形,请你计算:在第一个图中:∠ACD= °,∠ABD= °;在第二个图中:∠BAG= °,∠AGC= °。
图1 图23、将一副直角三角板(如图)叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC= 。
4、计算:102°43′32″+77°16′28″=____________;87 o2′36″—36o37′24″=______________。
5、如图,已知∠AOB=50º,OD平分∠BOC,OE平分∠AOC。
求∠EOD的度数。
_1 _ D_ C_ B_ A_ O6.如图,(1)已知∠AOB 是直角,∠BOC=30°,OM 平分∠AOC ,ON 平分∠BOC ,求∠MON 的度数。
(2)如果(1)中∠AOB=α,其他条件不变,求∠MON 的度数。
(3)你从(1)、(2)的结果中能发现什么规律? 课后检测1、平面内两个角∠AOB=60°,∠AOC=20°,OA 为两角的公共边,则∠BOC 为( ) A 、40° B、80° C、40°或80° D、无法确定2、下面一些角中,可以只用一副三角尺(不用量角器)画出来的角是( ) (1)150的角 (2)650的角 (3)750的角 (4)1350的角 (5)1450的角 A 、(1)(3)(4) B 、(1)(3)(5) C 、(1)(2)(4) D 、(2)(4)(5) 3、已知:∠A=50º24’,∠B=50.24º,∠C =50º14’24”,那么下列各式正确的是( ) A 、∠A>∠B>∠C B 、∠A>∠B=∠C C 、∠B>∠C>∠A D 、∠B=∠C>∠A4.在∠AOB 的内部取一点,作射线OC,则一定存在( ) A.∠AOB>∠AOC B ∠AOC>∠BOC C ∠BOC>∠AOC D ∠AOC =∠BOC5.如图:∠AOB =∠COD =90°,∠AOC=∠1,则∠BOD 的度数是( ) A. 90°+∠1 B. 90°+2∠1 C. 180°-∠1 D. 180°-2∠1_ O_ D_ C_ B_ A_ F_ E_ C_ B_ A_ E _ D_ B_ A6. .如图已知∠AOB=90°,∠BOC=60°, OD 是∠AOC 的平分线,求 ∠BOD 的度数。
第四章几何图形初步4.3 角4.3.2 角的比较与运算一、选择题1.(福建福州)下面四个图形中,能判断∠1>∠2的是()2.如图,点A位于点O的方向上().A.南偏东35°B. 北偏西65°C.南偏东65°D. 南偏西65°3.钟表上2时25分时,时针与分针所成的角是( ) .A .77.5 °B.77 °5′ C .75° D .以上答案都不对4.如图,∠AOB是直角,∠COD也是直角,若∠AOC=α,则∠BOD等于()A.90°+αB.90°-αC.180°+αD.180°-α5.如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46’,OD平分∠COE,则∠COB的度数为().A. 68°46′B.82°32′C. 82°28′D.82°46′二、填空题DABCOOADBEC图3DCBAO7.已知∠α与∠β互补,且∠α=35º18′,则∠β=________8. 如图3,∠AOD=80°,∠AOB=30°,OB 是∠AOC 的平分线,则∠AOC 的度数为_________,∠COD 的度数为___________.9.钟表8时30分时,时针与分针所成的角为 度10.南偏东80°的射线与西南方向的射线组成的角(小于平角)的度数是 11.将一副三角板.....如图摆放,若∠BAE=135 °17′,则∠CAD 的度数是 。
12.如图所示,将一平行四边形纸片ABCD 沿AE ,EF 折叠,使点E ,B 1,C 1在同一条直线上,则∠AEF =________.三、解答题13.如图,已知点C 、点D 分别在AOB ∠的边上,请根据下列语句画出图形: (1)作AOB ∠的余角AOE ∠; (2)作射线DC 与OE 相交于点F ; (3)取OD 的中点M ,连接CM . ABDCCA14.如图所示,直线AB、CD相交于点O,且∠BOC=80°,OE平分∠BOC.OF为OE的反向延长线.求∠2和∠3的度数,并说明OF是否为∠AOD的平分线.15.如图所示,五条射线OA、OB、OC、O D、OE组成的图形中共有几个角?如果从O点引出n 条射线,能有多少个角?你能找出规律吗?16.如图,∠AO B=90º,∠AOC=30º,且OM平分∠BOC,ON平分∠AOC,(1)求∠MON的度数.(2)若∠AOB=α其他条件不变,求∠MON的度数.(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数(4)从上面结果中看出有什么规律?参考答案一、选择题3.D 【解析】A中∠1=∠2,B中∠1<∠2,C中∠1<∠2.5. B6. A【解析】所求夹角为:6°×25-1()2︒×25-30°×2=77.5°7. D【解析】如图,∠BOD=90°+90°-α=180°-α8.C【解析】如图,∠BOC=180°-40°-2×28º46′=82º28′.二、填空题9. 54°14′40″10.144°42′11.60°,20°【解析】∠AOC=2×∠AOB=60°,∠DOC=∠AOD-∠AOC=20°12.75°【解析】1()2︒×30+30°×2=75°13.125°【解析】45°+80°=125°14.44°43′【解析】∠DAE=∠BAE-∠BAD=135 °17′-90°= 45°17′,∠CAD=90°-45°17′=44°43′16.90°【解析】由折线知∠A′BC=∠ABC,∠EBD=∠DBE′.三、解答题17.解:如图所示:18.解:因为∠BOC =80°,OE 平分∠BOC 所以∠1=12∠BOC =12×80°=40° 又因为CD 是直线, 所以∠2+∠BOC =180°, 所以∠2=180°-80°=100°同理∠2+∠AOD =180°,∠1+∠2+∠3=180° 所以∠AOD =80°,∠3=40° 所以∠3=12∠AOD ,所以OF 是∠AOD 的平分线 19.解:如图,图中5条射线共有角的个数:4+3+2+1=10; 如果从O 点共引出n 条射线,共有角的个数:n(n-1)(n-1)+(n-2)++3+2+1=2. 20.解:(1)∵∠AOB=90°,∠AOC=30°, ∴∠BOC=120°∵OM 平分∠BOC ,ON 平分∠AOC ∴∠COM=60°,∠CON=15° ∴∠MON=∠COM-∠CON=45°. (2)∵∠AOB=α,∠AOC=30°, ∴∠BOC=α+30°∵OM 平分∠BOC ,ON 平分∠AOC∴∠COM=2α+15°,∠CON=15° ∴∠MON=∠COM-∠CON=2α.(3)∵∠AOB=90°,∠AOC=β, ∴∠BOC=90°+β∵OM 平分∠BOC ,ON 平分∠AOC ∴∠COM=45°+2β ,∠CON= 2β. ∴∠MON=∠COM -∠CON=45°. (4)从上面的结果中,发现:后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!人教版七年级数学上册《4.3.2角的比较与运算》课时练一、选择题1.用一副三角板(两块)画角,不可能画出的角的度数是()A .15°B .55°C .75°D .135°2.如图,点O 在直线AB 上,射线OC 平分,若35COB Ð=,则AOD Ð等于()A .35°B .70°C .110°D .145°3.在AOB Ð的内部任取一点C ,似做OC 测一定存在()A .AOB AOC Ð>ÐB .BOC AOB Ð=ÐC .BOC AOCÐ>ÐD .AOC BOCÐ>Ð4.如图,已知,OB OC 是AOD Ð的三等分线(即,OB OC 把AOD Ð分成了三个相等的角),下列说法错误的是()A .1132AOD Ð=Ð=ÐB .123AOD Ð+Ð=Ð-ÐC .2233AOD Ð+Ð=ÐD .2321AOC Ð=Ð=Ð5.在∠AOB 的内部任取一点C ,做射线OC ,则一定存在()A .∠AOB>∠AOCB .∠AOC>∠AOBC .∠BOC>∠AOCD .∠AOC>∠BOC6.已知∠AOB=20°,∠BOC=65°,∠AOC=45°,那么()A .射线OB 在∠AOC 外部B .射线OB 在∠AOC 内部C .射线OB 与射线OA 重合D .射线0B 与射线OC 重合7.下列说法错误的是()A .角的大小与角的边画出部分的长短没有关系;B .角的大小与它们的度数大小是一致的;C .角的和差倍分的度数等于它们的度数的和差倍分;D .若∠A+∠B>∠C ,那么∠A 一定大于∠C 。
人教版七年级数学上册《4.3.2 角的比较与运算》课时练1.在∠AOB的内部取一点C,作射线OC,则一定存在()A.∠AOB>∠AOC B.∠AOC>∠BOCC.∠BOC>∠AOC D.∠AOC=∠BOC2.如图所示,若∠AOB=∠COD,则()第2题图A.∠1>∠2 B.∠1=∠2C.∠1<∠2 D.∠1与∠2的大小关系不能确定3.如图,OC为∠AOB内的一条射线,下列条件中不能确定OC平分∠AOB的是()A.∠AOC=∠BOCB.∠AOB=2∠AOCC.∠AOC+∠COB=∠AOBD.∠BOC=12∠AOB 第3题图4.如图,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C.30°D.70°第4题图5.借助一副三角尺,你能画出下面哪个度数的角?()A.65°B.75°C.85°D.95°6.已知∠AOB=30°,∠BOC=45°,则∠AOC等于()A.15°B.75°C.15°或75°D.不能确定7.如图所示,(1)∠BAC=____________+____________;(2)∠ABE=____________+____________;(3)∠2=________-________-________;(4)∠ADB=____________-____________.第7题图8.如图所示,已知∠AOD=120°,∠AOC=2∠AOB=60°,那么∠BOD=_______度.第8题图9.计算下列各题.(1)98°45′36″+71°22′34″=____________;(2)52°37′-31°45′12″=____________;(3)13°24′15″×5=____________;(4)58°34′16″÷4=____________.10.如图,∠BOA=90°,OC平分∠BOA,OA平分∠COD,求∠BOD的大小.第10题图11.如图所示,已知∠AOC=∠BOD=100°,且∠AOB∶∠AOD=2∶7,求∠BOC和∠COD的度数.第11题图12.如图,OC,OD是∠AOB内的两条射线,OM平分∠AOC,ON平分∠DOB,∠AOB=120°,∠MON=80°,则∠COD=__________.第12题图13.如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有________个小于平角的角;(2)若∠AOC=50°,则∠COE的度数为________,∠BOE的度数为________;(3)猜想:OE是否平分∠BOC?请通过计算说明你猜想的结论的正确性.第13题图14.一题多变:(1)如图1,已知∠AOB=80°,OC是∠AOB的平分线,OD平分∠BOC,OE平分∠AOC,求∠DOE的度数;(2)如图2,在(1)中,把“OC是∠AOB的平分线”改为“OC为∠AOB 内任意一条射线”,其他条件不变,试求∠DOE的度数;(3)如图3,在(1)中,把“OC是∠AOB的平分线”改为“OC是∠AOB 外的一条射线(点A与点C在直线OB同侧)”,其他条件不变,能否求出∠DOE的度数,说明理由;(4)在(3)中,若把“∠AOB=80°”改为“∠AOB=α”,其他条件不变,求此时∠DOE的度数,从中你得出什么规律?第14题图参考答案1—5.ABCDB6.C7.(1)∠1∠2(2)∠ABD∠DBE(3)∠BAD∠1∠3(4)∠ADC∠BDC8.1509.(1)170°8′10″(2)20°51′48″(3)67°1′15″(4)14°38′34″10.因为OC平分∠BOA,所以∠AOC=12∠ABO.因为∠AOB=90°,所以∠AOC=12×90°=45°.因为OA平分∠COD,所以∠AOD=∠AOC=45°.所以∠BOD=∠AOB+∠AOD=90°+45°=135°.11.设∠AOB和∠AOD分别为2x°、7x°,由题意,得2x+100=7x,解得x=20.则∠AOB=40°,∠AOD=140°.所以∠BOC=∠AOC-∠AOB=60°,∠COD=∠BOD-∠BOC=40°.12.40°13.(1)9(2)65°65°(3)结论:OE平分∠BOC.设∠AOC=2α.因为OD平分∠AOC,∠AOC=2α,所以∠AOD=∠COD=12∠AOC=α.因为∠DOE=90°,所以∠COE=∠DOE-∠COD=90°-α.因为∠BOE=180°-∠DOE-∠AOD=180°-90°-α=90°-α,所以∠COE=∠BOE,即OE平分∠BOC.14.(1)因为OD平分∠BOC,OE平分∠AOC,所以∠DOC=12∠BOC,∠COE=12∠AOC,又因为∠DOE=∠DOC+∠COE,所以∠DOE=12(∠BOC+∠AOC)=12∠AOB=40°;(2)同(1)的求法可知,∠DOE=40°;(3)可以.理由如下:因为OE平分∠AOC,OD平分∠BOC,所以∠AOE=12∠AOC,∠COD=12∠BOC,所以∠DOE=∠COD-∠COE=12(∠BOC-∠AOC)=12∠AOB=40°;(4)∠DOE=12α.规律:不管射线OC在∠AOB的内部还是外部,都有∠DOE=12α.。
4.3.2角的比较与运算1.如图,在∠AOB内部任取一点C,连接OC,则下列结论一定成立的是()A.∠AOC>∠BOCB.∠BOC<∠AOBC.∠AOC<∠BOCD.∠BOC>∠AOB2.如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是()A.∠AOD>∠BOCB.∠AOD<∠BOCC.∠AOD=∠BOCD.无法确定3.∠α和∠β的顶点和一边都重合,另一边都在公共边的同侧,且∠α>∠β,那么∠α的另一边落在∠β的 ()A.另一边上B.内部C.外部D.内部或另一边上4.小明同学用一副三角尺画出了许多不同度数的角,但下列哪个度数的角画不出来()A.135°B.120°C.75°D.25°5.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°6.已知∠AOB=60°,∠AOC=∠AOB,射线OD平分∠BOC,则∠COD的度数为()A.20°B.40°C.20°或30°D.20°或40°7.角α,β都是钝角,甲、乙、丙、丁四人计算(α+β)的结果依次为12°,44°,66°,88°,其中只有一人计算正确,那么算出正确答案的是()A.甲B.乙C.丙D.丁8.如图,∠AOC为直角,OC是∠BOD的平分线,且∠AOB=34°,则∠AOD的度数为()A.124°B.136°C.146°D.158°8.已知三条不同的射线OA,OB,OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC;②∠AOB=2∠AOC;③∠AOC+∠BOC=∠AOB;④∠BOC=∠AOB.A.1个B.2个C.3个D.4个10.如图点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.11.如图,O是直线AB上的一点,OC,OD,OE是从点O引出的三条射线,且∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,则∠5=°.12.比较两个角的大小,有以下两种方法:①用量角器量度两个角的大小,用度数表示,则度数大的角大;②构造图形,若一个角能包含(或覆盖)另一个角,则这个角大.对于如图4-3-11所示给定的∠ABC与∠DEF,用以上两种方法分别比较它们的大小.图4-3-1113.如图,∠ABC是平角,过点B作一条射线BD将∠ABC分成∠DBA和∠DBC,当∠DBA是什么角时,满足下列要求:(1)∠DBA<∠DBC;(2)∠DBA>∠DBC;(3)∠DBA=∠DBC.14.计算:(1)48°39'+67°31'; (2)78°-47°34'56″;(3)22°16'×5; (4)42°15'÷5.15.计算:(1)40°26'+30°30'30″÷6;(2)13°53'×3-32°5'31″.16.如图已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC的度数.17.如图∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE,求∠COE的度数.18.如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)若∠AOB=α,其他条件不变,求∠MON的度数;(3)若∠AOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从上面的结果中,你得出了什么结论?答案1.B2.C3.C4.D5.C6.D7.B8.C9.A10.9011.6012.解:①用量角器量度∠ABC=50°,∠DEF=70°,所以∠DEF>∠ABC.②如图:把∠ABC的边BC和∠DEF的边EF重合,使点B和点E重合,BA和DE在EF的同侧, 从图形上可以看出∠DEF能包含∠ABC,即∠DEF>∠ABC.13.解:(1)当∠DBA是锐角时,∠DBC是钝角,满足∠DBA<∠DBC.(2)当∠DBA是钝角时,∠DBC是锐角,满足∠DBA>∠DBC.(3)当∠DBA是直角时,∠DBA=∠DBC=90°,满足∠DBA=∠DBC.14.解:(1)48°39'+67°31'=116°10'.(2)78°-47°34'56″=30°25'4″.(3)22°16'×5=111°20'.(4)42°15'÷5=8°27'.15.解:(1)40°26'+30°30'30″÷6=40°26'+5°5'5″=45°31'5″.(2)13°53'×3-32°5'31″=41°39'-32°5'31″=9°33'29″.16.解:因为OE平分∠AOB,OF平分∠BOC,所以∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC.因为∠BOF=∠EOF-∠BOE=60°-45°=15°,所以∠BOC=2∠BOF=30°.所以∠AOC=∠BOC+∠AOB=30°+90°=120°.17.解:因为∠AOB=90°,OC平分∠AOB,所以∠BOC=∠AOB=45°.因为∠BOD=∠COD-∠BOC=90°-45°=45°,∠BOD=3∠DOE,所以∠DOE=15°.所以∠COE=∠COD-∠DOE=90°-15°=75°. 18.解:(1)因为∠AOB=90°,∠AOC=30°, 所以∠BOC=120°.因为OM 平分∠BOC ,ON 平分∠AOC , 所以∠COM=60°,∠CON=15°. 所以∠MON=∠COM-∠CON=45°. (2)因为∠AOB=α,∠AOC=30°, 所以∠BOC=α+30°.因为OM 平分∠BOC ,ON 平分∠AOC , 所以∠COM=+15°,∠CON=15°. 所以∠MON=∠COM-∠CON=. (3)因为∠AOB=90°,∠AOC=β, 所以∠BOC=90°+β.因为OM 平分∠BOC ,ON 平分∠AOC , 所以∠COM=45°+,∠CON=. 所以∠MON=∠COM-∠CON=45°.(4)从上面的结果中,得出以下结论:∠MON 的度数始终等于∠AOB 的度数的一半,而与∠AOC 的度数无关.1、在最软入的时候,你会想起谁。
2022-2023学年人教版七年级数学上册《4.3.2角的比较与运算》知识点分类练习题(附答案)一.角平分线1.如图,下列结论中,不能说明射线OC平分∠AOB的是()A.∠AOC=∠BOC B.∠AOB=2∠BOCC.∠AOB=2∠AOC D.∠AOC+∠BOC=∠BOA2.如图所示,∠AOB=156°,OD是∠AOC的平分线,OE是∠BOC的平分线,那么∠DOE 等于()A.78°B.80°C.88°D.90°3.一个钝角的平分线和这个角的一边形成的角一定是()A.锐角B.钝角C.直角D.平角4.如图,∠AOB是直角,OE平分∠AOC,OD平分∠BOC.求∠EOD的度数.5.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB 和∠AOC的度数.6.如图,点O为直线AB上的一点,∠BOC=42°,∠COE=90°,且OD平分∠AOC,求∠AOE和∠DOE的度数.7.如图,OC是∠AOB的平分线,∠BOD=∠COD,∠BOD=15°,则∠AOD=()A.45°B.55°C.65°D.75°8.如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD 的平分线,∠MON等于度.9.如图,OC平分∠AOB,若∠BOC=23°,则∠AOB=度.10.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125°D.145°11.如图,∠AOC与∠BOC的度数比为5:2,OD平分∠AOB,若∠COD=15°,求∠AOB 的度数.12.已知在平面内,∠AOB=60°,OD是∠AOB的角平分线,∠BOC=20°,则∠COD 的度数是.二.角的计算13.不能用一副三角板拼出的角是()A.150°B.105°C.15°D.110°14.如图,是一副三角板重叠而成的图形,则∠AOD+∠BOC=°.15.如图,已知∠AOB=90°,OD平分∠AOC,OE平分∠BOC.(1)若∠DOB=15°,求∠DOE的度数;(2)若∠DOB=x,此时∠DOE=.(1)解:∵∠AOB=90°,∠DOB=15°,∴∠1=.又∵OD平分∠AOC,∴.请继续完成求∠DOE度数的推理过程:16.如图,∠DOC=∠BOD,OB平分∠AOC.(1)若∠DOC=20°,求∠BOD和∠AOC的度数;(2)若∠DOC=α,则∠AOD=°.17.如图,已知O是直线AB上的一点,∠COD是直角,OE平分∠AOD.(1)如图1,若∠COE=35°,求∠DOB的度数;(2)若将图1中的∠COD放置到图2所示的位置,其他条件不变,若∠COE=β,求∠DOB的度数.(根据图形中角的关系进行推理和计算,并用含β的代数式表示出∠DOB)18.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A.36°B.45°C.60°D.72°19.平面内有公共端点的三条射线OA,OB,OC,构成的角∠AOB=30°,∠BOC=70°,OM和ON分别是∠AOB和∠BOC的角平分线,则∠MON的度数是.20.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为.21.如图:已知直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=32°,求∠BOE的度数;(2)若∠BOD:∠BOC=2:7,求∠BOD的度数.22.如图,点O为直线AC上任意一点,∠AOB=78°,OD平分∠AOB,OE在∠BOC内,∠BOE=∠EOC.求∠EOC及∠DOC的度数.23.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.24.如图,OE为∠AOD的平分线,∠EOC,∠COD=18°,求:∠AOD的大小.三.比较角的大小25.将钝角,直角,平角,锐角由小到大依次排列,顺序是.26.比较大小:52°52′52.52°.(填“>”、“<”或“=”)27.如图,正方形网格中每个小正方形的边长都为1,则∠α与∠β的大小关系为()A.∠α<∠βB.∠α=∠βC.∠α>∠βD.无法估测28.把一副三角尺如图所示拼在一起.(1)写出图中∠A、∠B、∠BCD、∠D、∠AED的度数;(2)用小于号“<”将上述各角连接起来.29.如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?参考答案一.角平分线1.解:A、∵∠AOC=∠BOC,∴OC平分∠AOB,故A正确;B、∵∠AOB=2∠BOC,∠AOB=∠AOC+∠BO,C∴∠AOC=∠BOC,故B正确;C、∵∠AOB=2∠BOC,∠AOB=∠AOC+∠BOC,∴∠AOC=∠BOC,故C正确;D、∵∠AOC+∠BOC=∠AOB,∠AOC不一定等于∠BOC,故D错误;故选:D.2.解:∵OD是∠AOC的平分线,∴∠COD=∠AOC,同理,∠COE=∠BOC,又∵∠AOB=∠AOC+∠BOC,∴∠DOE=∠COD+∠COE=∠AOB=×156°=78°.故选:A.3.解:设这个角的度数是α°,则90<α<180,两边都除以2得:45<α<90,即是锐角.故选:A.4.解:∵OD平分∠BOC,∴∠DOC=∠BOC,∵OE平分∠AOC,∴∠COE=∠COA,∴∠EOD=∠DOC+∠COE=(∠BOC+∠COA)=∠AOB,∵∠AOB是直角,∴∠EOD=45°.5.解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°6.解:∵点O为直线AB上的一点,∠BOC=42°,∴∠AOC=180°﹣42°=138°,∵OD平分∠AOC,∴∠COD=∠AOD=∠AOC=69°,∵∠COE=90°,∴∠DOE=90°﹣69°=21°,∴∠AOE=∠AOD﹣∠DOE=48°.7.解:∵∠BOD=∠COD,∠BOD=15°,∴∠COD=3∠BOD=45°,∴∠BOC=45°﹣15°=30°,∵OC是∠AOB的角平分线,∴∠BOC=∠AOC=30°,∴∠AOD=75°.故选:D.8.解:∵∠AOB是平角,∠AOC=30°,∠BOD=60°,∴∠COD=90°(互为补角)∵OM,ON分别是∠AOC,∠BOD的平分线,∴∠MOC+∠NOD=(30°+60°)=45°(角平分线定义)∴∠MON=90°+45°=135°.故答案为135.9.解:∵OC平分∠AOB,且∠BOC=23°,∴∠AOB=2∠BOC=46°.∴∠AOB=46°.故答案为46.10.解:如图,设∠MOC的平分线为OE,∠DON的平分线为OF,∵∠MOC=64°,∠DON=46°,∴∠MOE=∠MOC=×64°=32°,∠NOF=∠DON=×46°=23°,∴∠EOF=180°﹣∠MOE﹣∠NOF=180°﹣32°﹣23°=125°.故选:C.11.解:设∠AOC=5x,则∠BOC=2x,∠AOB=7x,∵OD平分∠AOB,∴∠BOD=∠AOB=x,∵∠COD=∠BOD﹣∠BOC∴15°=x﹣2x,解得x=10°,∴∠AOB=7×10°=70°.12.解:①OC在∠AOB外,如图1,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D+∠BOC=30°+20°=50°;②OC在∠AOB内,如图2,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D﹣∠BOC=30°﹣20°=10°.故答案为:50°或10°.二.角的计算13.解:A、150°可以用90°与60°角拼出;B、105°可以用60°与45°角拼出;C、15°可以用30°与45°角拼出;D、110°不能拼出.故选:D.14.解:∵∠AOD+∠BOC=∠AOB+∠COB+∠DOC+∠COB+∠COD,∵∠AOC=∠BOD=90°,∴∠AOD+∠BOC=180°.故答案为180.15.解:(1)∵∠AOB=90°,∠DOB=15°,∴∠1=90°﹣∠DOB=90°﹣15°=75°.又∵OD平分∠AOC,∴∠1=∠COD=∠AOC,∴∠AOC=2∠1=150°,∵∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=150°﹣90°=60°,∵OE平分∠BOC,∴∠3=∠BOC=30°,∴∠DOE=∠DOB+∠3=15°+30°=45°;故答案为:90°﹣∠DOB=90°﹣15°=75°;∠1=∠COD=∠AOC,(2)∵∠AOB=90°,∠DOB=x,∴∠1=90°﹣∠DOB=90°﹣x.又∵OD平分∠AOC,∴∠1=∠COD=∠AOC,∴∠AOC=2∠1=180°﹣2x,∵∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=180°﹣2x﹣90°=90°﹣2x,∵OE平分∠BOC,∴∠3=∠BOC=45°﹣x,∴∠DOE=∠DOB+∠3=x+45°﹣x=45°.故答案为:45°.16.解:(1)∵∠DOC=∠BOD,∠DOC=20°,∴∠BOD=3∠DOC=60°,∴∠BOC=∠BOD﹣∠DOC=60°﹣20°=40°,∵OB平分∠AOC,∴∠AOC=2∠BOC=80°,答:∠BOD和∠AOC的度数分别为60°,80°;(2)∵∠DOC=∠BOD,∴∠BOD=3∠DOC=3α°,∴∠BOC=∠BOD﹣∠DOC=3α°﹣α°=2α°,∵OB平分∠AOC,∴∠AOC=2∠BOC=4α°,∴∠AOD=∠DOC+∠AOC=5α°,故答案为:5α.17.解:(1)∵∠COE=35°,∠COD是直角,∴∠DOE=∠COD﹣∠COE=55°,∵OE平分∠AOD,∴∠AOD=2∠DOE=110°,∴∠DOB=180°﹣∠AOD=70°;(2)∵∠COD是直角,∠COE=β,∴∠DOE=∠COE﹣∠COD=β﹣90°,∵OE平分∠AOD,∴∠AOD=2∠DOE=2β﹣180°,∴∠DOB=180°﹣∠AOD=360°﹣2β.18.解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE为∠BOC的平分线,∴∠COE=∠BOC=18°,∴∠DOE=∠COD﹣∠COE=90°﹣18°=72°,故选:D.19.解:有两种情况,(1)射线OA在∠BOC的内部,∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BON=∠BOC=×70°=35°,∠BOM=∠AOB=×30°=15°,∴∠MON=∠BON﹣∠BOM=35°﹣15°=20°.(2)射线OA在∠BOC的外部.∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BON=∠BOC=×70°=35°,∠BOM=∠AOB=×30°=15°,∴∠MON=∠BON+∠BOM=35°+15°=50°.故答案为:20°或50°.20.解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故答案为:28°或112°.21.解:(1)∵∠COE=90°,∠AOC=32°,∴∠BOE=180°﹣∠AOC﹣∠COE=180°﹣32°﹣90°=58°;(2)∵∠BOD:∠BOC=2:7,∠BOD+∠BOC=180°,∴∠BOD=40°.22.解:∵∠AOB=78°,OD平分∠AOB∴,∴∠DOC=180°﹣∠AOD=180°﹣39°=141°;∵,∴∠EOC====68°.23.解:∵∠COD=∠AOD=120°,∴∠AOC=120°,∵∠AOB=∠AOC,∴∠AOB=40°,∴∠COB=80°.24.解:∵∠COD=∠EOC,∠COD=18°,∴∠EOC=72°;∵OE平分∠AOD,∴∠DOE=∠AOE,∵∠EOC=72°,∠COD=18°,∴∠DOE=54°,则∠AOD=2∠DOE=108°.三.比较角的大小25.解:将钝角,直角,平角,锐角由小到大依次排列,顺序是锐角<直角<钝角<平角,故答案为:锐角<直角<钝角<平角.26.解:∵0.52×60=31.2,0.2×60=12,∴52.52°=52°31′12″,52°52′>52°31′12″,故答案为:>.27.解:将∠α平移,使∠α与∠β两个角的顶点重合,∠α下边的一条边与∠β下边的一条边重合,可得:∠α上面的一条边在∠β的内部,所以∠α<∠β,故选:A.28.解:(1)∠A=30°,∠B=90°,∠BCD=150°,∠D=45°,∠AED=135°;(2)∠A<∠D<∠B<∠AED<∠BCD.29.解:7+6+5+4+3+2+1==28,一般地如果MOG小于180,且图中一共有几条射线,则一共有:(n﹣1)+(n﹣2)+…+2+1=.。
4.3角、4.4角的比较一、单选题1.如图,下午2点30分时,分针与时针所成角的度数为( )A.90°B.120°C.105°D.135°2.计算15234'︒⨯的结果是( )A.61°B.60.92°C.6032'︒D.6132︒'3.下列说法正确的是( )A.平角的终边和始边不一定在一条直线上B.角的边越长,角越大C.大于直角的角叫做钝角D.两个锐角的和不一定是钝角4.如图所示,下列说法错误的是( )A.DAO ∠就是DAC ∠B.COB ∠就是O ∠C.2∠就是OBC ∠D.CDB ∠就是1∠5.如图,AM 为BAC ∠的平分线,下列等式错误的是( )A.12BAC BAM ∠=∠B.BAM CAM ∠=∠C.2BAM CAM ∠=∠D.2CAM BAC ∠=∠6.如图,AOC ∠为直角,OC 是BOD ∠的平分线,且57.65AOB ∠=︒,则AOD ∠的度数是( )A.12220'︒B.12221'︒C.12222'︒D.12223'︒7.如图,130AOB ∠=︒,射线OC 是AOB ∠内部任意一条射线,,OD OE 分别是AOC ∠,BOC ∠的平分线,下列叙述正确的是( )A.DOE ∠的度数不能确定B.65AOD BOE EOC COD DOE ∠+∠=∠+∠=∠=︒C.2BOE COD ∠=∠D.12AOD EOC ∠=∠ 8.如图,AOB ∠是平角,30AOC ∠=︒,60BOD ∠=︒,,OM ON 分别是AOC ∠,BOD ∠的平分线,MON ∠等于( )A.90°B.135°C.150°D.120°9.如图所示,OB ,OC 是AOD ∠内的任意两条射线,OM 平分AOB ∠,ON 平分COD ∠,若MON α∠=,BOC β∠=,则表示AOD ∠的代数式是( )A.2αβ-B.αβ-C.αβ+D.以上都不正确二、填空题10.如图,O是直线AB上的一点,OD是COA∠的平分线,则∠的平分线,OE是BOC∠+∠=______________度.AOD BOE11.已知100∠∠=,则BOCAOC AOB∠的度数是____________.∠=︒,:2:5AOB12.如图,直线AB与CD相交于点O,EO CD∠:AOC∠ =4:5,则∠.若BOE⊥于点O,OF平分AOC∠为______________°.EOF三、解答题13.如图,90∠,ON平分AOC∠=︒,且OM平分BOC∠.AOBAOC∠=︒,30(1)求MON∠的度数.(2)若AOBα∠的度数.∠=,其他条件不变,求MON(3)若AOCβ∠=(β为锐角),其他条件不变,求MON∠的度数.(4)从上面的结果中可以看出什么规律?参考答案1.答案:C解析:下午2点30分时,时针与分针所指的位置相隔3.5个大格(钟面上每个大格为30°),故分针与时针所成角的度数为3.530105⨯︒=︒.2.答案:D解析:1523460926132'''⨯==.故选D.3.答案:D解析:平角的终边和始边在一条直线上,故A 错误;角的大小与边长短无关,故B 错误;钝角是大于直角且小于平角的角,故C 错误.4.答案:B解析:A 中,DAO ∠与DAC ∠的顶点相同,角的两边也相同,所以DAO ∠就是DAC ∠,正确;B 中,因为以O 为顶点的角不止一个,所以不能用O ∠表示以O 为顶点的角,错误;C 中,2∠与OBC ∠的顶点相同,角的两边也相同,所以2∠就是OBC ∠,正确;D 中,因为CDB ∠与1∠的顶点相同,角的两边也相同,所以CDB ∠就是1∠,正确.5.答案:C解析:因为AM 为BAC ∠的平分线,所以12BAM CAM BAC ∠=∠=∠,22BAC CAM BAM ∠=∠=∠.故C 错误.6.答案:B解析:因为AOC ∠为直角,57.65AOB ∠=︒,所以9057.6532.35BOC ∠=︒-︒=︒.因为OC 是BOD ∠的平分线,所以32.35DOC COB ∠=∠=︒.所以9032.35122.3512221AOD '∠=︒+︒=︒=︒.7.答案:B解析:因为,OD OE 分别是,AOC BOC ∠∠的平分线,所以AOD COD ∠=∠,EOC BOE ∠=∠.又因为130AOD BOE EOC COD AOB ∠+∠+∠+∠=∠=︒,所以65AOD BOE EOC COD DOE ∠+∠=∠+∠=∠=︒.故选B.8.答案:B解析:因为30AOC ∠=︒,60BOD ∠=︒,,OM ON 分别是,AOC BOD ∠∠的平分线,所以()13060452AOM BON ∠+∠=⨯︒+=︒︒.因为AOB ∠是平角,所以180AOB ∠=︒.所以18045135MON ∠=︒-︒=︒.9.答案:A解析:MON α∠=,BOC β∠=,MON BOC CON BOM αβ∴∠-∠=∠+∠=-. 又OM 平分AOB ∠,ON 平分COD ∠,AOM BOM ∴∠=∠,CON DON ∠=∠.()2AOD MON DON AOM MON CON BOM ααβαβ∴∠=∠+∠+∠=∠+∠+∠=+-=-.10.答案:90解析:AOB ∠是平角,OD 是COA ∠的平分线,OE 是BOC ∠的平分线,1180902AOD BOE ∴∠+∠=⨯=.11.答案:60°或140°解析:因为100AOB ∠=︒,:2:5AOC AOB ∠∠=,所以40AOC ∠=︒.如图,①若OC 在OA 左边,则40100140BOC ∠=︒+︒=︒;②若OC 在OA 右边,则1004060BOC ∠=︒-︒=︒.12.答案:解析:因为EO CD ⊥,所以90COE ∠=°,所以0 90A C BOE ∠+∠=︒,又因为:04:5BOE A C ∠∠=,所以AOC ∠ =50°,又因为OF 平分AOC ∠,所以COF ∠=25°,所以2590 115EOF COF COE ∠=∠+∠=︒+︒=°. 13.答案:解:(1)因为90AOB ∠=︒,30AOC ∠=︒,所以120BOC ∠=︒,因为OM 平分BOC ∠,ON 平分AOC ∠,所以60COM ∠=︒,15CON ∠=︒,所以45MON COM CON ∠=∠-∠=︒.(2)因为AOB α∠=,30AOC ∠=︒,所以30BOC α∠=+︒.因为OM 平分BOC ∠,ON 平分AOC ∠, 所以152COM α∠=+︒,15CON ∠=︒, 所以2MON COM CON α∠=∠-∠=.(3)因为90AOB ∠=︒,AOC β∠=,所以90BOC β∠=+.因为OM 平分BOC ∠,ON 平分AOC ∠, 所以452COM β∠=+,2CON β∠=,所以45MON COM CON ∠=∠-∠=︒.(4)从上面的结果中,发现MON ∠的大小只和AOB ∠的大小有关,与AOC ∠的大小无关.。
七年级数学上册角的比较与运算课时练习题
一、选择题(每题3分)
1.如图,O是直线AB上的一点,过点O任意作射线OC, OD平分ZAOC, OE 平分ZBOC,则ZDOEO
A.一定是钝角
B. 一定是锐角
C. 一定是直角
D.都有可能
【答案】C
【解析】
试题分析:直接利用角平分线的性质得出ZAOD=ZDOC, ZBOE=ZCOE,进而得出答案.
解:TOD 平分ZAOC, OE 平分ZBOC,
Λ ZAOD=ZDOC, ZBOE=ZCOE,
ΛZD0E=× 180° =90° ,
故选:C.
考点:角平分线的定义.
2.两个锐角的和不可能是()
A.锐角
B.直角
C.钝角
D.平角
【答案】D
【解析】
试题分析:因为等于0。
小于90°的角是锐角,所以两个锐角的和不可能是180°,所以D正确,故选:D.
考点:锐角
3.己知ZAOB=50o , ZCOB=30°,则ZAoC 等于()
A. 80o
B. 20o
C. 80o或20°
D.无法确定
【答案】C
【解析】
试题分析:本题需要分两种情况进行讨论:当射线OC在ZAoB 内部时,则ZAoC=50° -30° =20°;当射线OC在ZAOB外部时,则ZAOC=50° +30°
=80° .
考点:角度的计算
4.如图,将一副三角板的直角顶点重合放置于处(两块三角板可以在同一平面内自由转动),则下列结论一定成立的是()
A.ZBAE>ZDAC
B.ZBAE-ZDAC=45°
C.ZBAE+ZDAC=180o
D.ZBAD≠ZEAC
【答案】C.
【解析】
试题解析:因为是直角三角板,所以ZBAC=ZDAE=90° ,
所以ZBAD+ ZDAC+ ZCAE+ ZDAC=ISO o ,
即ZBAE+ZDAC二180° .
故选C.
考点:角的计算.
5.如图,己知ZAOB= α , ZBOC= β , OM 平分ZAOC, ON 平分ZBOC,则ZMoN的度数是()
A. β
B. ( a - β )
C. a
D. a - β
【答案】C.
试题分析:,平分,,
平分,,
故选C.
考点:1、角平分线的定义;2、角的计算.
6.己知,ZAOC=90°,且ZAOB: ZAOC=2: 3,则ZBOC 的度数为()
A. 30o
B. 150o
C. 30°或150°
D. 90°
【答案】C.
【解析】
试题分析:当在内部时,当在外部时,故选C.
考点:角的计算.
7.用一副三角板可以画出一些指定的角,下列各角中,不能用一副三角板画出的是()
A、15o B. 75o C. 85o D. 105°
【答案】C
【解析】
试题分析:一副三角板中的度数有:90°、60°、45°、30° ; 用三角板画出角,无非是用角度加减法,根据选项一一分析,排除错误答案.
解:A、15。
的角,45° - 30° =15° ;
B、75°的角,45。
+30° =75° ;
C、85°的角,不能直接利用三角板画出;
D、105°的角,45° +60° =105° .
考点:角的计算.
8.把一个半圆对折两次(如图),折痕OA与OB的夹角为()
A. 45o
B. 60o
C. 90α
D. 120°
【答案】C
【解析】
试题分析:把一个半圆对折后,圆心角是180°的,即90°,对折两次,圆心角是90°的,即45° ,由此即可确定角的度数.
解:把一个半圆对折两次后展开(如图),
ZAOD= ZDoC= ZCOE= ZEOB=45o ;
ZAoC=ZDOE=ZCOB=90° ;
故选:C.
考点:角的计算.
二、填空题(每题3分)
9.如图,直线AB、CD相交于点0, OE平分ZBOD,若ZAOD=2 ZDOB,则ZEOB=.
【答案】30°
【解析】
试题分析:根据ZAoD+ZBOD二180° , ZAOD=2ZBOD,则ZBOD=60°,根据角平分线的性质可得:ZEOB=60o ÷2=30o .
考点:角度的计算
10.已知OC 平分ZAOB,若ZAOB=60o , ZCOD=IO O,则ZAoD 的度数为.
【解析】
试题分析:利用角的和差关系计算.根据题意可得此题要分两种情况,一种【答案】20°或40° .
是OD在ZAOC内部,另一种是ODZBOC内部.
解:分两种情况进行讨论:
①如图1,射线OD在ZAoC的内部,
TOC 平分ZAOB,
・•・ ZAOC=ZBOC,
V ZAOB=60° ,
Λ ZAOC=ZBOC=30α ,
又V ZCOD=IO O ,
:.ZAOD=ZAOC ・ ZCOD=20° ;
②如图2,射线OD在ZCOB的内部,
TOC 平分ZAOB,
・•・ ZAOC=ZBOC,
V ZAOB=60° ,
Λ ZAOC=ZBOC=30° ,
又V ZCOD=IO o ,
Λ ZAOD=ZAOC+ZCODMO o ;
综上所述,ZAOD=20°或40°
故答案为20°或40° .
考点:角平分线的定义.
11.比较大小:52° 52, 52. 52° .(填“>”、“<”或“=”)
【答案】>
【解析】
试题分析:将角的度数换算成度分秒的形式,再进行比较即可得出结论、解:VO. 52X60=31.2, 0.2X60=12,
Λ52. 52°二52° 31' 12",
52° 52' >52o 31, 12",
故答案为:>.
考点:角的大小比较;度分秒的换算•
12.ZAOB=80o , ZBOC=30o , OD 是ZAOC 的平分线,则ZCOD=.
【答案】25°或55°
【解析】
试题分析:根据题意画出图形,再利用角平分线的性质得岀答案.
解:如图1, V ZAOB=80α , ZBoC=30° ,
Λ ZAOC=50° ,
TOD是ZAOC的平分线,
Λ ZCOD=ZAOC=25° ,
如图2, V ZAOB=80o , ZBoC=30° ,
Λ ZAOC=IIO o ,
TOD是ZAOC的平分线,
Λ ZCOD=ZAOC=55° ,
故答案为:25°或55° .
考点:角平分线的定义.
三解答题
13.(8 分)如图,ZAOB=IIO O , ZCOD=70o , OA 平分ZEOC, OB 平分ZDOF,求ZEoF的大小.
【答案】150° .
【解析】
试题分析:由ZAOB=IIO O , ZCOD=70°,易得
ZAOC+ZBODMO o,由角平分线定义可得ZAoE+ZBOF二40°,那么ZEOF= ZAOB+ ZA0E+B0F.
解:V ZAOB=IIO O , ZCOD=70°
・•・ ZAOC+ZBOD= ZAOB ・ ZCOD=40°
TOA 平分ZEOC, OB 平分ZDOF
Λ ZAOE=Z A0C, ZBOF=ZBOD
・・・ ZAoE+ZBOF二40°
・•・ ZEOF二ZAoB+ZA0E+ZBOF二150° .
故答案为:150° .
考点:角平分线的定义.
14.(8分)如图,0为直线AB上一点,OD平分ZAOC, ZDOE=.
⑴若ZAOC=,求出ZBoD的的度数;
(2)试判断OE是否平分ZBOC,并说明理由.
【答案】(1)、155° ;(2)、证明过程见解析.
【解析】
试题分析:(1)、根据角平分线的性质求出ZAoD的度数,然后求出ZBOD的度数;(2)、根据等式的性质进行说明.
试题解析:(1)、TOD平分
ZAOCZAOC=50° Λ ZAOD=50o ÷2=25°
:• ZBOD=ISO0 -ZAOD=I80° -25o =155o
、V ZDOE=90o・•・ ZCOE+ZCOD二90° ZBoE+ZAOD二90°∙.∙ ZCOD=ZA0DΛ ZCOE=ZBOE/.OE 平分ZBOC.
考点:角平分线的性质.。