四川省成都市高考数学二轮复习 小专题练习(1)集合的运算写作素养攻略 新人教A版
- 格式:doc
- 大小:160.01 KB
- 文档页数:3
考前回归知识必备*1 集合与常用逻辑用语集合与常用逻辑用语集合概念一组对象的全体.,x A x A∈∉。
元素特点:互异性、无序性、确定性。
关系子集x A x B A B∈⇒∈⇔⊆。
A∅⊆;,A B B C A C⊆⊆⇒⊆n个元素集合子集数2n。
真子集00,,x A x B x B x A A B∈⇒∈∃∈∉⇔⊂相等,A B B A A B⊆⊆⇔=运算交集{}|,x xB x BA A∈∈=且()()()U U UC A B C A C B=()()()U U UC A B C A C B=()U UC C A A=并集{}|,x xB x BA A∈∈=或补集{}|Ux x UC A x A∈=∉且常用逻辑用语命题概念能够判断真假的语句。
四种命题原命题:若p,则q原命题与逆命题,否命题与逆否命题互逆;原命题与否命题、逆命题与逆否命题互否;原命题与逆否命题、否命题与逆命题互为逆否。
互为逆否的命题等价。
逆命题:若q,则p否命题:若p⌝,则q⌝逆否命题:若q⌝,则p⌝充要条件充分条件p q⇒,p是q的充分条件若命题p对应集合A,命题q对应集合B,则p q⇒等价于A B⊆,p q⇔等价于A B=。
必要条件p q⇒,q是p的必要条件充要条件p q⇔,,p q互为充要条件逻辑连接词或命题p q∨,,p q有一为真即为真,,p q均为假时才为假。
类比集合的并且命题p q∧,,p q均为真时才为真,,p q有一为假即为假。
类比集合的交非命题p⌝和p为一真一假两个互为对立的命题。
类比集合的补量词全称量词∀,含全称量词的命题叫全称命题,其否定为特称命题。
存在量词∃,含存在量词的命题叫特称命题,其否定为全称命题。
向量OZ向量OZ的模叫做复数的模,向量既有大小又有方向的量,表示向量的有向线段的长度叫做该向量的模。
0向量0与任一非零向量共线】方向相同或者相反的两个非零向量叫做平行向量,也叫共线向量。
,a b 的夹角记为,a b >。
2017届高三数学二轮复习高考小题专攻练1 集合、常用逻辑用语、向量、复数、算法、合情推理理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017届高三数学二轮复习高考小题专攻练1 集合、常用逻辑用语、向量、复数、算法、合情推理理新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017届高三数学二轮复习高考小题专攻练1 集合、常用逻辑用语、向量、复数、算法、合情推理理新人教版的全部内容。
高考小题专攻练 1。
集合、常用逻辑用语、向量、复数、算法、合情推理小题强化练,练就速度和技能,掌握高考得分点!一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M=,N=,则M∩N= ()A。
B。
C. D。
【解析】选A。
因为M中不等式的解为—2≤x≤2,即M=.同样N=,则M∩N=。
2.已知向量a=(4,2),b=(x,3),且a∥b,则x的值是( )A.-6B.6C.-D.【解析】选B.因为向量a=(4,2),b=(x,3),且a∥b,所以4×3-2x=0,解得x=6。
3.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n边形内角和是(n-2)·180°。
小题专项练习(一)集合与常用逻辑用语一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·成都经开区实验中学4月月考]已知集合A={-3,-2,-1,0,1,2},B ={x|x2≤3},则A∩B=()A.{0,2} B.{-1,0,1}C.{-3,-2,-1,0,1,2} D.[0,2]2.[2019·宁夏六盘山第三次模拟]集合A={y|y=2x,x∈R},B={(x,y)|y=x2,x∈R},以下正确的是()A.A=B B.A∪B=RC.A∩B=∅D.2∈B3.[2019·天津河北区质量检测]命题p:“∀x≥0,2x>x2”的否定綈p为()A.∃x0≥0,2x0<x20B.∀x≥0,2x<x2C.∃x0≥0,2x0≤x20D.∀x≥0,2x≤x24.[2019·天津南开中学第五次月考]“lg x,lg y,lg z成等差数列”是“y2=xz”成立的() A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件5.[2019·4月优质错题重组卷]已知命题p:∀x∈R,x2+x-1>0;命题q:∃x∈R,sin x +cos x=2,则下列判断正确的是()A.綈p是假命题B.q是假命题C.p∨(綈q)是真命题D.(綈p)∧q是真命题6.[2019·湖北宜昌调研]下列命题正确的是()A.命题“p∧q”为假命题,则命题p与命题q都是假命题B.命题“若x=y,则sin x=sin y”的逆否命题为真命题C.“am2<bm2”是“a<b”成立的必要不充分条件D.命题“存在x0∈R,使得x20+x0+1<0”的否定是“对任意x∈R,均有x2+x+1<0”7.[2019·江南十校冲刺联考]设集合A={y|y=-e x+4},B={x|y=lg[(x+2)(3-x)]},则下列关系正确的是()A.A⊆B B.A∩B=∅C.∁R A⊆∁R B D.∁R B⊆A8.[2019·四川蓉城四月联考]下列有关命题的说法一定正确的是()A.命题“∀x∈R,sin x≥1”的否定是“∃x0∈R,sin x0≤1”B.若向量a∥b,则存在唯一的实数λ,使得a=λbC.若函数f(x)在R上可导,则f′(x0)=0是x0为函数极值点的必要不充分条件D.若“p∨q”为真命题,则“p∧(綈q)”也为真命题9.[2019·哈尔滨第六中学第三次模拟考试]甲乙丙丁四名同学参加某次过关考试,甲乙丙三个人分别去老师处问询成绩,老师给每个人只提供了其他三人的成绩.然后,甲说:我们四个人中至少两人不过关;乙说:我们四人中至多两人不过关;丙说:甲乙丁恰好有一人过关.假设他们说的都是真的,则下列结论正确的是()A.甲没过关B.乙过关C .丙过关D .丁过关10.[2019·高考冲刺卷一]设集合A ={x |x (x +3)<0},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ y =lg x +21-x ,则A ∩B 等于( )A .(-3,1)B .(0,1)C .(-1,3)D .(-2,0)11.[2019·河南洛阳第三次统一考试]下列叙述中正确的个数是( )①将一组样本数据中的每个数据都加上同一个常数后,方差不变;②命题p :∀x ∈[0,1],e x ≥1,命题q :∃x 0∈R ,x 20+x 0+1<0,则p ∧q 为真命题;③“cos α≠0”是“α≠2k π+π2(k ∈Z )的必要而不充分条件”;④将函数y =sin2x 的图象向左平移5π12个单位长度得到函数y =sin ⎝⎛⎭⎫π6-2x 的图象.A .1B .2C .3D .412.对于非空集合P ,Q ,定义集合间的一种运算“≯”:P ≯Q ={x |x ∈(P ∪Q ),且x ∉(P ∩Q )},如果P ={x |1≤3x ≤9},Q ={x |y =x -1},则P ≯Q =( )A .[1,2]B .[0,1]∪[2,+∞)C .[0,1]∪(2,+∞)D .[0,1)∪(2,+∞)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上. 课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
专题01 集合与简易逻辑【训练目标】1、 掌握集合及相关的概念,注意集合的三个性质,注意空集的定义及性质;2、 掌握集合间的关系判断方法,会根据集合元素的个数求子集的个数,真子集的个数;会根据集合间的关系求参数的取值X 围;3、 掌握集合的交并补运算,在运算时能正确的理解集合的含义,能看懂维恩图;4、 掌握四种命题的写法及相互间的关系;5、 理解充分条件,必要条件的含义,能正确的判断条件;掌握充分条件,必要条件与集合间的关系的联系;6、 能理解特称命题与全称命题,能正确的对它们进行否定;7、 能正确的判断复合命题的真假。
【温馨小提示】本专题虽然难度不大,但在高考中属于必考题,一般集合,简易逻辑各一题,拿下这10分是不容置疑的,需要同学们在训练时多总结,对照训练目标进行练习。
【名校试题荟萃】1、(“永安一中、德化一中、漳平一中”三校联考)已知集合,则AB =( ) .A {1,3}.B {1,3,9}.C {3,9,27}.D {1,3,9,27}【答案】A2、(某某省某某市第一中学2019届高三上学期第三次月考)已知集合{}2,3,4A =,集合,则集合B 可能为()A .{}1,2,3B .{}1,2,5C .{}2,3,5D .{}0,1,5【答案】B【解析】由于并集是指两集合的元素放在一起组成的集合,相同的元素只保留一个,显然只有B 符合。
3、(某某省某某市第六中学2019届高三12月月考数学(文)试题)已知集合,,则=B A ( )A. {}1,0,1-B. {}2,1,0C. {}1,0D.{}2,1 【答案】C【解析】解指数不等式可确定集合,再根据交集的定义知由两集合的公共元素组成的集合=B A {}1,0。
4、(某某省某某市第六中学2019届高三12月月考数学(理)试题)已知集合,集合,则图中的阴影部分表示的集合是( )A .[1,3]B .(1,3]C .{1,2,3}-D .{1,0,2,3}- 【答案】C5、(某某省某某市遂川中学2018届高三上学期第六次月考文数试卷)设全集I 是实数集R ,与都是I 的子集(如图所示),则阴影部分所表示的集合为( )A. B. C. D.【答案】A【解析】由于且10x -≠,则,则维恩图所表示的。
限时速解训练四 不等式及线性规划(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的) 1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥-1,2x -y ≤1,y ≤1,则z =3x -y 的最小值为( )A .-7B .-1C .1D .2解析:选A.画出可行域如图中阴影部分所示,平移直线3x -y =0,可知直线z =3x -y 在点A (-2,1)处取得最小值,故z min =3×(-2)-1=-7,选A.4.不等式组⎩⎪⎨⎪⎧5x +3y ≤15,y ≤x +1,x -5y ≤3表示的平面区域的面积为( )A .7B .5C .3D .14解析:选A.作出可行域如图所示.可得A ⎝ ⎛⎭⎪⎫32,52,B (-2,-1),所以不等式组 ⎩⎪⎨⎪⎧5x +3y ≤15,y ≤x +1,x -5y ≤3表示的平面区域的面积为12×4×52+12×4×1=7,故选A.5.若a ,b ,c 为实数,则下列命题为真命题的是( ) A .若a >b ,则ac 2>bc 2B .若a <b <0,则a 2>ab >b 2C .若a <b <0,则1a <1bD .若a <b <0,则b a >a b解析:选B.选项A 错,因为c =0时不成立;选项B 正确,因为a 2-ab =a (a -b )>0,ab -b 2=b (a -b )>0,故a 2>ab >b 2;选项C 错,应为1a >1b ;选项D 错,因为b a -a b =b 2-a2ab=b +a b -a ab <0,所以b a <ab.6.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( ) A .80元 B .120元 C .160元D .240元解析:选C.设底面矩形的一条边长是x m ,总造价是y 元,把y 与x 的函数关系式表示出来,再利用均值(基本)不等式求最小值.由题意知,体积V =4 m 3,高h =1 m ,所以底面积S =4 m 2,设底面矩形的一条边长是x m ,则另一条边长是4xm ,又设总造价是y 元,则y =20×4+10×⎝ ⎛⎭⎪⎫2x +8x ≥80+202x ·8x=160,当且仅当2x =8x,即x =2时取得等号,故选C.7.若ax 2+bx +c <0的解集为{x |x <-2,或x >4},则对于函数f (x )=ax 2+bx +c 应有( )A .f (5)<f (2)<f (-1)B .f (5)<f (-1)<f (2)C .f (-1)<f (2)<f (5)D .f (2)<f (-1)<f (5)解析:选B.∵ax 2+bx +c <0的解集为{x |x <-2,或x >4},∴a <0,而且函数f (x )=ax2+bx +c 的图象的对称轴方程为x =4-22=1,∴f (-1)=f (3).又∵函数f (x )在[1,+∞)上是减函数,∴f (5)<f (3)<f (2),即f (5)<f (-1)<f (2),故选B. 8.若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0)C .[-3,0]D .(-3,0]解析:选D.当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,k 2-4×2k ×⎝ ⎛⎭⎪⎫-38<0,解得-3<k <0.综上,满足不等式2kx 2+kx-38<0对一切实数x 都成立的k 的取值范围是(-3,0],故选D. 9.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x ≥1,y ≥x -1,x +3y -5≤0,那么点P 到直线3x -4y -13=0的距离的最小值为( ) A.115 B .2 C.95D .1解析:选B.在坐标平面内画出题中的不等式组表示的平面区域及直线3x -4y -13=0,结合图形(图略)可知,在该平面区域内所有的点中,到直线3x -4y -13=0的距离最近的点是(1,0).又点(1,0)到直线3x -4y -13=0的距离等于|3×1-4×0-13|5=2,即点P 到直线3x -4y -13=0的距离的最小值为2,选B.10.设实数x ,y 满足⎩⎪⎨⎪⎧y ≤2x +2,x +y -2≥0,x ≤2,则y -1x +3的取值范围是( )A. ⎝⎛⎦⎥⎤-∞,-15∪[1,+∞) B. ⎣⎢⎡⎦⎥⎤13,1C.⎣⎢⎡⎦⎥⎤-15,13D.⎣⎢⎡⎦⎥⎤-15,1解析:选 D.作出不等式组⎩⎪⎨⎪⎧y ≤2x +2,x +y -2≥0,x ≤2,表示的区域如图所示,从图可看出,y -1x +3表示过点P (x ,y ),A (-3,1)的直线的斜率,其最大值为k AD =6-12+3=1,最小值为k AC =0-12+3=-15,故选D. 11.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞)D .(-1,0)解析:选C.f ′(x )=2x -2-4x=2x 2-x -2x,由f ′(x )>0得2x 2-x -2x>0,解得-1<x <0或x >2,又f (x )的定义域为(0,+∞), ∴f ′(x )>0的解集为{x |x >2},故选C.12.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6, x ≥0,x +6, x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:选A.由题意得⎩⎪⎨⎪⎧x ≥0,x 2-4x +6>3或⎩⎪⎨⎪⎧x <0,x +6>3,解得-3<x <1或x >3.二、填空题(把答案填在题中横线上)13.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 214.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出可行域,w =4x·2y=22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51215.已知函数f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x (x -2),则不等式xf (x )>0的解集为________.解析:当x >0时,由条件xf (x )>0得f (x )>0,即x (x -2)>0⇒x >2.因为f (x )为奇函数,图象关于原点对称,则当x <0时,由xf (x )>0得f (x )<0,则由图象(图略)可得x <-2.综上,xf (x )>0的解集为(-∞,-2)∪(2,+∞). 答案:(-∞,-2)∪(2,+∞) 16.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝⎛⎦⎥⎤-∞,-14∪[1,+∞)。
第1课时 集合的运算一.课题:集合的概念二.教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问题,掌握集合问题的常规处理方法.三.教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用.四.教学过程:(一)主要知识:1.集合、子集、空集的概念;2.集合中元素的3个性质,集合的3种表示方法;3.若有限集A 有n 个元素,则A 的子集有2n 个,真子集有21n -,非空子集有21n -个,非空真子集有22n -个.(二)主要方法:1.解决集合问题,首先要弄清楚集合中的元素是什么;2.弄清集合中元素的本质属性,能化简的要化简;3.抓住集合中元素的3个性质,对互异性要注意检验;4.正确进行“集合语言”和普通“数学语言”的相互转化.(三)例题分析:例1.已知集合2{1}P y x ==+,2{|1}Q y y x ==+,2{|1}E x y x ==+,2{(,)|1}F x y y x ==+,{|1}G x x =≥,则( D )解法要点:弄清集合中的元素是什么,能化简的集合要化简. 例2.设集合{},,P x y x y xy =-+,{}2222,,0Q x y x y =+-,若P Q =,求,x y 的值及集合P 、Q . 解:∵P Q =且0Q ∈,∴0P ∈. (1)若0x y +=或0x y -=,则220x y -=,从而{}22,0,0Q x y =+,与集合中元素的互异性矛盾,∴0x y +≠且0x y -≠;(2)若0xy =,则0x =或0y =.当0y =时,{},,0P x x =,与集合中元素的互异性矛盾,∴0y ≠;当0x =时,{,,0}P y y =-,22{,,0}Q y y =-,由P Q =得220y y y y y -=⎧⎪=-⎨≠⎪⎩ ① 或220y y y y y -=-⎧⎪=⎨≠⎪⎩ ② 由①得1y =-,由②得1y =,∴{01x y ==-或{01x y ==,此时{1,1,0}P Q ==-. 例3.设集合1{|,}24k M x x k Z ==+∈, 1{|,}42k N x x k Z ==+∈,则 ( B )解法一:通分; 解法二:从14开始,在数轴上表示. 例4.若集合{}2|10,A x x ax x R =++=∈,集合{}1,2B =,且A B ⊆,求实数a 的取值范围. 解:(1)若A φ=,则240a ∆=-<,解得22a -<<;(2)若1A ∈,则2110a ++=,解得2a =-,此时{1}A =,适合题意;(3)若2A ∈,则22210a ++=,解得52a=-,此时5{2,}2A =,不合题意; 综上所述,实数m 的取值范围为[2,2)-. 例5.设2()f x x px q =++,{|()}A x x f x ==,{|[()]}B x f f x x ==,(1)求证:A B ⊆;(2)如果{1,3}A =-,求B .(四)巩固练习:1.已知2{|2530}M x x x =--=,{|1}N x mx ==,若N M ⊆,则适合条件的实数m 的集合P 为1{0,2,}3-;P 的子集有 8 个;P 的非空真子集有 6 个. 2.已知:2()f x x ax b =++,{}{}|()22A x f x x ===,则实数a 、b 的值分别为2,4-. 3.调查100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么既带感冒药又带胃药的人数的最大值为 75 ,最小值为 55 .4.设数集3{|}4M x m x m =≤≤+,1{|}3N x n x n =-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做集合{}|x a x b ≤≤的“长度”,那么集合M N I 的长度的最小值是112. 五.课后作业:《优化设计》P4 基础过关教学反思:1. 对于集合问题,要正确地认识和理解集合语言,并能够将集合语言、图形语言,符号语言进行相互的转化。
专题二集合与常用逻辑用语、不等式、函数与导数第一讲集合与常用逻辑用语1.集合的概念、运算(1)集合元素的三个特性:确定性、互异性、无序性,是判断某些对象能否构成一个集合或判断两集合是否相等的依据.(2)集合的表示方法:列举法、描述法、图示法.(3)集合间的关系:子集、真子集、空集、集合相等,在集合间的运算中要注意空集的情形.(4)重要结论A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.2.命题(1)两个命题互为逆否命题,它们有相同的真假性;(2)含有量词的命题的否定:∀x∈M,p(x)的否定是∃x∈M,綈p(x);∃x∈M,p(x)的否定是∀x∈M,綈p(x).3.充要条件1.(2013·辽宁)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B等于() A.(0,1) B.(0,2] C.(1,2) D.(1,2]答案 D解析A={x|1<x<4},B={x|x≤2},∴A∩B={x|1<x≤2}.2. (2013·北京)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件. 3. (2013·四川)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B答案 D解析 命题p :∀x ∈A,2x ∈B 是一个全称命题,其命题的否定綈p 应为∃x ∈A,2x ∉B ,选D. 4. (2013·天津)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③答案 C解析 对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确.5. (2013·四川)设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的所有点中,若点P到点P 1,P 2,…,P n 的距离之和最小,则称点P 为点P 1,P 2,…,P n 的一个“中位点”.例如,线段AB 上的任意点都是端点A 、B 的中位点.现有下列命题: ①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A,B,C,D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是________.(写出所有真命题的序号)答案①④解析∵|CA|+|CB|≥|AB|,当且仅当点C在线段AB上等号成立,即三个点A,B,C,∴点C在线段AB上,∴点C是A,B,C的中位点,故①是真命题.如图(1),在Rt△ABC中,∠C=90°,P是AB的中点,CH⊥AB,点P,H不重合,则|PC|>|HC|.又|HA|+|HB|=|P A|+|PB|=|AB|,∴|HA|+|HB|+|HC|<|P A|+|PB|+|PC|,∴点P不是点A,B,C的中位点,故②是假命题.如图(2),A,B,C,D是数轴上的四个点,若P点在线段BC上,则|P A|+|PB|+|PC|+|PD|=|AD|+|BC|,由中位点的定义及①可知,点P是点A,B,C,D的中位点.显然点P有无数个,故③是假命题.如图(3),由①可知,若点P是点A,C的中位点,则点P在线段AC上,若点P是点B,D的中位点,则点P在线段BD上,∴若点P是点A,B,C,D的中位点,则P是AC,BD的交点,∴梯形对角线的交点是梯形四个顶点的唯一中位点,故④是真命题.题型一集合的概念与运算问题例1(1)(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为() A.1 B.2 C.3 D.4(2)定义A-B={x|x∈A且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M等于()A.M B.N C.{1,4,5} D.{6}审题破题(1)先对集合A、B进行化简,注意B中元素的性质,然后根据子集的定义列举全部适合条件的集合C即可.(2)透彻理解A -B 的定义是解答本题的关键,要和补集区别开来. 答案 (1)D (2)D解析 (1)由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)N -M ={x |x ∈N 且x ∉M }. ∵2∈N 且2∈M ,∴2∉N -M ; 3∈N 且3∈M ,∴3∉N -M ; 6∈N 且6∉M ,∴6∈N -M . ∴故N -M ={6}.反思归纳 (1)解答集合间关系与运算问题的一般步骤:先正确理解各个集合的含义,认清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解. (2)两点提醒:①要注意集合中元素的互异性;②当B ⊆A 时,应注意讨论B 是否为∅.变式训练1 (2013·玉溪毕业班复习检测)若集合S ={x |log 2(x +1)>0},T =⎩⎨⎧⎭⎬⎫x |2-x 2+x <0,则S ∩T 等于( )A .(-1,2)B .(0,2)C .(-1,+∞)D .(2,+∞)答案 D解析 S ={x |x +1>1}={x |x >0}, T ={x |x >2或x <-2}. ∴S ∩T ={x |x >2}. 题型二 命题的真假与否定问题 例2 下列叙述正确的个数是( )①l 为直线,α、β为两个不重合的平面,若l ⊥β,α⊥β,则l ∥α;②若命题p :∃x 0∈R ,x 20-x 0+1≤0,则綈p :∀x ∈R ,x 2-x +1>0;③在△ABC 中,“∠A =60°”是“cos A =12”的充要条件;④若向量a ,b 满足a ·b <0,则a 与b 的夹角为钝角. A .1 B .2 C .3 D .4审题破题 判定叙述是否正确,对命题首先要分清命题的条件与结论,再结合涉及知识进行判定;对含量词的命题的否定,要改变其中的量词和判断词. 答案 B解析 对于①,直线l 不一定在平面α外,错误;对于②,命题p 是特称命题,否定时要写成全称命题并改变判断词,正确;③注意到△ABC 中条件,正确;④a ·b <0可能〈a ,b 〉=π,错误.故叙述正确的个数为2.反思归纳 (1)命题真假的判定方法:①一般命题p 的真假由涉及到的相关知识辨别;②四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律;③形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定.(2)区分命题的否定和否命题;含一个量词的命题的否定一定要改变量词. 变式训练2 给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >cb”的逆否命题;④若命题p :∀x ∈R ,x 2+1≥1,命题q :∃x ∈R ,x 2-x -1≤0,则命题p ∧綈q 是真命题.其中真命题只有( )A .①②③B .①②④C .①③④D .②③④答案 A解析 ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④中綈q :∀x ∈R ,x 2-x -1>0,由于x 2-x -1=⎝⎛⎭⎫x -122-54,则存在x 值使x 2-x -1≤0,故綈q 为假命题,则p ∧綈q 为假命题. 题型三 充要条件的判断问题例3 (1)甲:x ≠2或y ≠3;乙:x +y ≠5,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件(2)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎣⎡⎭⎫12,+∞ D .(-∞,0)∪⎝⎛⎭⎫12,+∞ 审题破题 (1)利用逆否命题判别甲、乙的关系;(2)转化为两个集合间的包含关系,利用 数轴解决.答案 (1)B (2)A解析 (1)“甲⇒乙”,即“x ≠2或y ≠3”⇒“x +y ≠5”,其逆否命题为:“x +y =5”⇒“x =2且y =3”显然不正确.同理,可判断命题“乙⇒甲”为真命题.所以甲是乙的必要不充分条件.(2)綈p :|4x -3|>1;綈q :x 2-(2a +1)x +a (a +1)>0, 解得綈p :x >1或x <12;綈q :x >a +1或x <a .若綈p ⇐綈q ,则⎩⎪⎨⎪⎧ a ≤12a +1>1或⎩⎪⎨⎪⎧a <12a +1≥1,即0≤a ≤12.反思归纳 (1)充要条件判断的三种方法:定义法、集合法、等价命题法;(2)判断充分、必要条件时应注意的问题:①要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ;②要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.变式训练3 (1)(2012·山东)设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由题意知函数f (x )=a x 在R 上是减函数等价于0<a <1,函数g (x )=(2-a )x 3在R 上是增函数等价于0<a <1或1<a <2,∴“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件. (2)设A ={x |xx -1<0},B ={x |0<x <m },若B 是A 成立的必要不充分条件,则m 的取值范围是( )A .m <1B .m ≤1C .m ≥1D .m >1答案 D解析 xx -1<0⇔0<x <1.由已知得,0<x <m ⇒0<x <1, 但0<x <1⇒0<x <m 成立. ∴m >1.典例 设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0.其中正确命题的个数是( )A .0B .1C .2D .3解析 ①m =1时,l ≥m =1且x 2≥1, ∴l =1,故①正确. ②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确. ③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确. 答案 D得分技巧 创新性试题中最常见的是以新定义的方式给出试题,这类试题要求在新的情境中使用已知的数学知识分析解决问题,解决这类试题的关键是透彻理解新定义,抓住新定义的本质,判断给出的各个结论,适当的时候可以通过反例推翻其中的结论. 阅卷老师提醒 在给出的几个命题中要求找出其中正确命题类的试题实际上就是一个多项选择题,解答这类试题时要对各个命题反复进行推敲,确定可能正确的要进行严格的证明,确定可能错误的要举出反例,这样才能有效避免答错试题.1. 已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若A ∩B =B ,则a 等于( )A .-12或1 B .2或-1C .-2或1或0D .-12或1或0答案 D解析 依题意可得A ∩B =B ⇔B ⊆A . 因为集合A ={x |x 2+x -2=0}={-2,1},当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D.2. (2013·浙江)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ= π2”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 φ=π2⇒f (x )=A cos ⎝⎛⎭⎫ωx +π2=-A sin ωx 为奇函数, ∴“f (x )是奇函数”是“φ=π2”的必要条件.又f (x )=A cos(ωx +φ)是奇函数⇒f (0)=0⇒φ=π2+k π(k ∈Z )⇒φ=π2.∴“f (x )是奇函数”不是“φ=π2”的充分条件.3. (2012·辽宁)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))·(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 答案 C解析 根据全称命题的否定是特称命题知. 綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0.4. 已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围为( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)答案 C解析 由P ={x |x 2≤1}得P ={x |-1≤x ≤1}. 由P ∪M =P 得M ⊆P .又M ={a },∴-1≤a ≤1. 5. 下列命题中错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .若x ,y ∈R ,则“x =y ”是“xy ≤⎝⎛⎭⎫x +y 22中等号成立”的充要条件 C .已知命题p 和q ,若p ∨q 为假命题,则命题p 与q 中必一真一假 D .对命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,x 2+x +1≥0 答案 C解析 易知选项A ,B ,D 都正确;选项C 中,若p ∨q 为假命题,根据真值表,可知p ,q 必都为假,故C 错.专题限时规范训练一、选择题1. (2013·陕西)设全集为R ,函数f (x )=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 答案 D解析 由题意得M =[-1,1],则∁R M =(-∞,-1)∪(1,+∞).2. (2013·山东)给定两个命题p ,q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由题意知:綈p ⇐q ⇔(逆否命题)p ⇒綈q .3. (2012·湖南)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α ≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 由命题与其逆否命题之间的关系可知,原命题的逆否命题是:若tan α≠1,则α≠π4.4. (2012·湖北)命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0D ∈∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30D ∈QC .∀xD ∈R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3D ∈Q 答案 D解析 “∃”的否定是“∀”,x 3∈Q 的否定是x 3D ∈Q .命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是“∀x ∈∁R Q ,x 3D ∈”.5. 设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 C解析 A ={x |x -2>0}={x |x >2}=(2,+∞),B ={x |x <0}=(-∞,0),∴A ∪B =(-∞,0)∪(2,+∞),C ={x |x (x -2)>0}={x |x <0或x >2}=(-∞,0)∪(2,+∞).A ∪B =C .∴“x ∈A ∪B ”是“x ∈C ”的充要条件. 6. 下列关于命题的说法中错误的是( )A .对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”D .若p ∧q 为假命题,则p ,q 均为假命题 答案 D解析 对于A ,命题綈p :∀x ∈R ,均有x 2+x +1≥0,因此选项A 正确.对于B ,由x =1可得x 2-3x +2=0;反过来,由x 2-3x +2=0不能得知x =1,此时x 的值可能是2,因此“x =1”是“x 2-3x +2=0”的充分不必要条件,选项B 正确.对于C ,原命题的逆否命题是:“若x ≠1,则x 2-3x +2≠0”,因此选项C 正确.7. 已知p :2xx -1<1,q :(x -a )(x -3)>0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A .(-∞,1)B .[1,3]C .[1,+∞)D .[3,+∞)答案 C解析 2xx -1-1<0⇒x +1x -1<0⇒(x -1)(x +1)<0⇒p :-1<x <1.当a ≥3时,q :x <3或x >a ;当a <3时,q :x <a 或x >3.綈p 是綈q 的必要不充分条件,即p 是q 的充分不必要条件,即p ⇒q 且q ⇒p ,从而可推出a 的取值范围是a ≥1. 8. 下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数 答案 D解析 对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,由A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题.综上所述,选D.二、填空题9. 已知集合A ={x ∈R ||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于________.答案 3解析 A ={x ∈R ||x -1|<2}={x ∈R |-1<x <3},集合A 中包含的整数有0,1,2,故A ∩Z ={0,1,2}.故A ∩Z 中所有元素之和为0+1+2=3.10.设集合M ={y |y -m ≤0},N ={y |y =2x -1,x ∈R },若M ∩N ≠∅,则实数m 的取值范围是________.答案 (-1,+∞)解析 M ={y |y ≤m },N ={y |y >-1},结合数轴易知m >-1.11. 已知命题p :“∀x ∈[1,2],12x 2-ln x -a ≥0”是真命题,则实数a 的取值范围是________. 答案 ⎝⎛⎦⎤-∞,12 解析 命题p :a ≤12x 2-ln x 在[1,2]上恒成立,令f (x )=12x 2-ln x ,f ′(x )=x -1x=(x -1)(x +1)x ,当1<x <2时,f ′(x )>0,∴f (x )min =f (1)=12,∴a ≤12. 12.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.(写出所有真命题的序号)答案 ①④解析 对于①,当数列{a n }是等比数列时,易知数列{a n a n +1}是等比数列;但当数列 {a n a n +1}是等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确.对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确.对于③,当m =3时,相应的两条直线垂直;反过来,当这两条直线垂直时,不一定能得出m =3,也可能得出m =0,因此③不正确.对于④,由题意,得b a =sin B sin A =3,当B =60°时,有sin A =12,注意到b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°或B =120°,因此④正确.三、解答题13.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B . (1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解 A ={x |-1<x ≤5},(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},故4是方程-x 2+2x +m =0的一个根,∴有-42+2×4+m =0,解得m =8.此时B ={x |-2<x <4},符合题意.因此实数m 的值为8.14.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p ∨q 为真命题,p ∧q为假命题,求a 的取值范围.解 由命题p :1∈A ,得⎩⎪⎨⎪⎧ -2-a <1,a >1.解得a >1. 由命题q :2∈A ,得⎩⎪⎨⎪⎧-2-a <2,a >2.解得a >2. 又∵p ∨q 为真命题,p ∧q 为假命题,即p 真q 假或p 假q 真,当p 真q 假时,⎩⎪⎨⎪⎧ a >1,a ≤2,即1<a ≤2, 当p 假q 真时,⎩⎪⎨⎪⎧a ≤1,a >2,无解. 故所求a 的取值范围为(1,2].。
2021年高考数学专题复习第1讲集合的概念与运算练习新人教A版[考情展望] 1.给定集合,直接考查集合的交、并、补集的运算.2.与方程、不等式等知识相结合,考查集合的交、并、补集的运算.3.利用集合运算的结果,考查集合间的基本关系.4.以新概念或新背景为载体,考查对新情境的应变能力.一、集合的基本概念1.集合中元素的三个特性:确定性、互异性、无序性.2.元素与集合的关系:属于或不属于,表示符号分别为∈和∉.3.常见数集的符号表示:集合自然数集正整数集整数集有理数集实数集表示N N+(N*) Z Q R 集合的三种表示方法:列举法、描述法、描述法的一般形式的结构特征在描述法的一般形式{x∈I|p(x)}中,“x”是集合中元素的代表形式,I是x的范围,“p(x)”是集合中元素x的共同特征,竖线不可省略.二、集合间的基本关系1.子集:若对∀x∈A,都有x∈B,则A⊆B或B⊇A.2.真子集:若A⊆B,但∃x∈B,且x∉A,则A B或B A.3.相等:若A⊆B,且B⊆A,则A=B.4.空集的性质:∅是任何集合的子集,是任何非空集合的真子集.子集与真子集的快速求解法一个含有n个元素的集合有2n个子集,有2n-1个真子集,有2n-2个非空真子集.三、集合的基本运算1.集合间的两个等价转换关系(1)A∩B=A⇔A⊆B;(2)A∪B=A⇔B⊆A.2.集合间运算的两个常用结论:(1)∁U(A∩B)=(∁U A)∪(∁U B);(2)∁U(A∪B)=(∁U A)∩(∁U B).1.已知集合A={0,1},则下列式子错误的是( )A.0∈A B.{1}∈AC.∅⊆A D.{0,1}⊆A【解析】∵{1}⊆A,∴{1}∈A错误,其余均正确.【答案】 B2.已知集合A={x|x>1},B={x|-1<x<2},则A∩B=( )A.{x|-1<x<2} B.{x|x>-1}C.{x|-1<x<1} D.{x|1<x<2}【解析】∵A={x|x>1},B={x|-1<x<2},∴如图所示,A∩B={x|1<x<2}.【答案】 D3.已知集合M ={1,2,3},N ={x ∈Z |1<x <4},则( ) A .M ⊆N B .N =M C .M ∩N ={2,3}D .M ∪N =(1,4)【解析】 ∵N ={x ∈Z |1<x <4}={2,3}, ∴M ∩N ={2,3}. 【答案】 C4.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4【解析】 ∵A ={0,2,a },B ={1,a 2},A ∪B ={0,1,2,4,16},∴⎩⎪⎨⎪⎧a 2=16,a =4.∴a =4,故选D.【答案】 D5.(xx·山东高考)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )=( )A .{3}B .{4}C .{3,4}D .∅【解析】 ∵U ={1,2,3,4},∁U (A ∪B )={4}, ∴A ∪B ={1,2,3}.又∵B ={1,2},∴{3}⊆A ⊆{1,2,3}. 又∁U B ={3,4},∴A ∩(∁U B )={3}. 【答案】 A6.(xx·江苏高考)集合{-1,0,1}共有________个子集. 【解析】 由于集合中有3个元素,故该集合有23=8(个)子集. 【答案】 8考向一 [001] 集合的基本概念(1)(xx·山东高考)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9(2)(xx·柳州模拟)已知集合A ={m +2,2m 2+m ,-3},若3∈A ,则m 的值为________. 【思路点拨】 (1)用列举法把集合B 中的元素一一列举出来.(2)先由m +2=3或2m 2+m =3求得m 的值,再检验集合中的元素是否满足互异性. 【尝试解答】 (1)方法一: 当x =0,y =0时,x -y =0; 当x =0,y =1时,x -y =-1; 当x =0,y =2时,x -y =-2; 当x =1,y =0时,x -y =1; 当x =1,y =1时,x -y =0; 当x =1,y =2时,x -y =-1; 当x =2,y =0时,x -y =2; 当x =2,y =1时,x -y =1;当x =2,y =2时,x -y =0.根据集合中元素的互异性知,B 中元素有0,-1,-2,1,2,共5个.方法二:如下表所示:∴x -y 的值只有-2(2)∵3∈A ,∴m +2=3或2m 2+m =3,解得m =1或m =-32.当m =1时,m +2=2m 2+m =3,不满足集合元素的互异性,当m =-32时,A =⎩⎨⎧⎭⎬⎫-3,12,3满足题意.故m =-32.【答案】 (1)C (2)-32规律方法1 1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其它的集合.2.对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性. 对点训练 (1)(xx·深圳模拟)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10(2)已知集合A ={x |ax 2-3x +2=0},若A =∅,则实数a 的取值范围为________. 【解析】 (1)因为A ={1,2,3,4,5},所以集合A 中的元素都为正数,若x -y ∈A ,则必有x -y >0,即x >y .当y =1时,x 可取2,3,4,5,共有4个数; 当y =2时,x 可取3,4,5,共有3个数; 当y =3时,x 可取4,5,共有2个数; 当y =4时,x 只能取5,共有1个数; 当y =5时,x 不能取任何值.综上,满足条件的实数对(x ,y )的个数为4+3+2+1=10,即集合B 中的元素共有10个,故选D.(2)∵A =∅,∴方程ax 2-3x +2=0无实根, 当a =0时,x =23不合题意,当a ≠0时,Δ=9-8a <0,∴a >98.【答案】 (1)D (2)⎝ ⎛⎭⎪⎫98,+∞ 考向二 [002] 集合间的基本关系(1)已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 014+b 2 014=________.(2)已知集合A ={x |x 2-3x -10≤0},B ={x |m +1≤x ≤2m -1},若A ∪B =A ,则实数m 的取值范围是________.【思路点拨】 (1)0∈⎩⎨⎧⎭⎬⎫a ,b a,1,则b =0,1∈{a 2,a,0},则a 2=1,a ≠1,从而a ,b可求.(2)A ∪B =A ⇒B ⊆A ,分B =∅和B ≠∅两种情况求解. 【尝试解答】 (1)由已知得b a=0及a ≠0,所以b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 014+b2 014=(-1)2 014=1.(2)A ={x |x 2-3x -10≤0}={x |-2≤x ≤5}, 又A ∪B =A ,所以B ⊆A .①若B =∅,则2m -1<m +1,此时m <2.②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为m ≤3. 【答案】 (1)1 (2)(-∞,3] 规律方法2 1.解答本例2时应注意两点:一是A ∪B =A ⇒B ⊆A ;二是B ⊆A 时,应分B =∅和B ≠∅两种情况讨论.2.已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常合理利用数轴、Venn 图化抽象为直观.对点训练 (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)若集合M ={x |x 2+x -6=0},N ={x |ax +2=0,a ∈R },且M ∩N =N ,则实数a 的取值集合是________.【解析】 (1)由x 2-3x +2=0得x =1或x =2, ∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)因为M ∩N =N ,所以N ⊆M .又M ={-3,2}, 若N =∅,则a =0.若N ≠∅,则N ={-3}或N ={2}.所以-3a +2=0或2a +2=0,解得a =23或a =-1.所以a 的取值集合是⎩⎨⎧⎭⎬⎫-1,0,23.【答案】 (1)D (2)⎩⎨⎧⎭⎬⎫-1,0,23考向三 [003] 集合的基本运算(1)(xx·湖南师大附中模拟)设集合A ={1,2,3,5,7},B ={x ∈Z |1<x ≤6},全集U =A ∪B ,则A ∩(∁U B )等于( )A .{1,4,6,7}B .{2,3,7}C .{1,7}D .{1}(2)(xx·烟台模拟)设全图1-1-1集U=R,M={x|x2+3x<0},N={x|x<-1},则图1-1-1中阴影部分表示的集合为( )A.{x|x≥-1} B.{x|-3<x<0}C.{x|x≤-3} D.{x|-1≤x<0}【思路点拨】(1)求B→求A∪B→求∁U B→求A∩(∁U B).(2)求M→分析阴影区域表示的集合→借助数轴求该集合.【尝试解答】(1)∵B={x∈Z|1<x≤6}={2,3,4,5,6}.又A={1,2,3,5,7} .∴A∪B={1,2,3,4,5,6,7}.∴∁U B={1,7}.∴A∩(∁U B)={1,7}.(2)∵M={x|x2+3x<0}={x|-3<x<0},N={x|x<-1}∴∁U N={x|x≥-1}.又由Venn图可知,该阴影部分表示的集合为M∩(∁U N).所以M∩(∁U N)={x|-1≤x<0}.【答案】(1)C (2)D规律方法3 1.求解本例2的关键是明确阴影区域元素的属性.2.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.对点训练(1)(xx·浙江高考)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁R S)∪T=( )A.(-2,1] B.(-∞,-4]C.(-∞,1] D.[1,+∞)图1-1-2(2)如图1-1-2,已知U={1,2,3,4,5,6,7,8,9,10},集合A={2,3,4,5,6,8},B={1,3,4,5,7},C={2,4,5,7,8,9},用列举法写出图中阴影部分表示的集合为________.【解析】(1)因为S={x|x>-2},所以∁R S={x|x≤-2}.而T={x|-4≤x≤1},所以(∁R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1}.(2)由图可知,该阴影部分表示的集合为A∩C∩(∁U B).又A∩C={2,4,5,8},∁U B={2,6,8,9,10},故A∩C∩(∁U B)={2,8}.【答案】(1)C (2){2,8}思想方法之一数形结合思想在集合中的妙用数形结合思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维相结合,使问题化难为易、化抽象为具体.数形结合思想在集合中的应用具体体现在以下三个方面:(1)利用Venn图,直观地判断集合的包含或相等关系.(2)利用Venn图,求解有限集合的交、并、补运算.(3)借助数轴,分析无限集合的包含或相等关系或求解集合的交、并、补运算结果及所含参变量的取值范围问题.————[1个示范例] ————[1个对点练] ————(xx·天津高考)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.【解析】∵A={x|-5<x<1},B={x|(x-m)(x-2)<0},且A∩B={x|-1<x<n}.如图所示由图可知A∩B={x|-1<x<1},故n=1,m=-1.,设A={x|-2<x<-1,或x>1},B={x|x2+ax+b≤0}.已知A∪B={x|x>-2},A∩B={x|1<x≤3},则a=________,b=________.【解析】如图所示.设想集合B所表示的范围在数轴上移动,显然当且仅当B覆盖住集合{x|-1≤x≤3}时符合题意.根据一元二次不等式与一元二次方程的关系,可知-1与3是方程x2+ax+b=0的两根,∴a=-(-1+3)=-2,b=(-1)×3=-3.【答案】-2 -321908 5594 喔37004 908C 邌21015 5217 列KJ=21630 547E 呾26011 659B 斛33432 8298 芘!40745 9F29 鼩30838 7876 硶 5。
专题一 集合与简易逻辑考向一 集合的运算【高考改编☆回顾基础】1.【补集运算】【2017·改编】已知U =R ,集合A ={x |x <-2或x >2},则∁U A =________. 【答案】 [-2,2]【解析】因为A ={x |x <-2或x >2},所以∁U A =∁R A ={x |-2≤x ≤2},即∁U A =[-2,2].2. 【集合与不等式相结合】【2017课标1,理1】已知集合A={x|x<1},B={x|31x <},则( ) A .{|0}A B x x =<B .A B =RC .{|1}AB x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<, 所以{|1}{|0}{|0}AB x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.3.【集合元素的属性】【2017课标3,理1】已知集合A={}22(,)1x y x y +=│,B={}(,)x y y x =│,则A B 中元素的个数为( ) A .3B .2C .1D .0【答案】B4.【集合运算】【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A.{}1,3-B.{}1,0C.{}1,3D.{}1,5 【答案】C 【解析】【命题预测☆看准方向】集合在高考中主要考查三方面内容:一是考查集合的概念、集合间的关系;二是考查集合的运算和集合语言的运用,常以集合为载体考查函数、不等式、解析几何等知识;三是以创新题型的形式考查考生分析、解决集合问题的能力.预计2018年的高考将会继续保持稳定,坚持考查集合运算,命题形式会更加灵活、新颖.试题类型一般是一道选择题或填空题,多与函数、方程、不等式、解析几何等综合考查.【典例分析☆提升能力】【例1】设A ={}2430x x x -+≤,B ={}230x x -<,则图中阴影部分表示的集合为( )A .3(3,)2--B .3(3,)2-C .3[1,)2D .3(,3)2【答案】C【趁热打铁】【2017某某,理1】设函数x 2y=4-的定义域A ,函数y=ln(1-x)的定义域为B ,则A B ⋂=( ) (A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.【例2】【2018届某某省鄂东南联盟期中】对于任意两集合,定义且,记,则__________.【答案】 【解析】,,所以【趁热打铁】设R U =,已知集合}1|{≥=x x A ,}|{a x x B >=,且R B A C U = )(,则实数a 的取值X 围是( )A .)1,(-∞B .]1,(-∞C .),1(+∞D .),1[+∞ 【答案】A【解析】由}1|{≥=x x A 有{}1U C A x x =<,而R B A C U = )(,所以1a <,故选A.【方法总结☆全面提升】在进行集合的交、并、补运算中可依据元素的不同属性采用不同的方法求解,常用到的技巧有: (1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用Venn 图求解;(4)注意转化关系(U C A)∩B=B ⇔B ⊆U C A,A ∪B=B ⇔A ⊆B,U C (A ∩B )=(U C A )∪(U C B ), U C (A ∪B )=(U C A )∩(U C B )等.注意两个问题:(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果. (2)对于给出已知集合,进行交集、并集与补集运算时,可以直接根据它们的定义求解,也可以借助数轴、韦恩(Venn)图等图形工具,运用分类讨论、数形结合等思想方法,直观求解.【规X 示例☆避免陷阱】【典例】已知集合23100,121{|}{|,}A x x x B x m x m A B A =--≤=+≤≤-⋃=若,某某数m 的取值X 围. 【规X 解答】,.A B A B A ⋃=∴⊆23{|}{10025,|}A x x x x x =--≤=-≤≤【反思提高】造成本题失分的根本原因是易于忽视“空集是任何集合的子集”这一性质.当题目中出现,,A B A B A A B B ⊆⋂=⋃=时,注意对A 进行分类讨论,即分为A φ=和A φ≠两种情况讨论.【误区警示】(1)在进行集合的运算时要尽可能地借助韦恩(Venn)图和数轴使抽象问题直观化.一般地,集合元素离散时用韦恩(Venn)图表示;集合元素连续时用数轴表示,用数轴表示时需注意端点值的取舍.(2) 空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.在解决有关A B ⋂∅=的问题时,往往忽略空集的情况,一定要先考虑()A B ∅或=是否成立,以防漏解.另外要注意分类讨论和数形结合思想的应用.(3)五个关系式U UA B A B A A B B B A ⊆⋂⋃⊆,=,=,以及()U A B ⋂∅=是两两等价的.对这五个式子的等价转换,常使较复杂的集合运算变得简单.考向二 简易逻辑 【高考改编☆回顾基础】1.【四种命题及其关系】【2017课标1,理3】设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B【解析】2. 【三角函数与充要条件相结合】【2017·某某卷改编】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的条件.(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 【答案】充分而不必要条件 【解析】πππ||012126θθ-<⇔<<1sin 2θ⇒<,但10,sin 2θθ=<,不满足ππ||1212θ-<,所以是充分不必要条件.3.【全称命题与复合命题】【2017某某卷改编】已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是.①∧p q ②⌝∧p q ③⌝∧p q ④⌝⌝∧p q 【答案】②故填②.4.【全称命题与特称命题】【2016某某卷改编】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是 . A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x < C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】*x n ∃∈∀∈,R N ,使得2n x <【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故填*x n ∃∈∀∈,R N ,使得2n x <.【命题预测☆看准方向】常用逻辑用语的考查一般以一个选择题或一个填空题的形式出现,以集合、函数、数列、三角函数、不等式、立体几何中的线面关系、平面解析几何中的线线关系、直线与圆的位置关系等为载体,考查充要条件或命题的真假判断等,难度一般不大.预测2018年将对其中的一或二个知识点予以考查.【典例分析☆提升能力】【例1】【2018届某某省某某市12月模拟】已知l ,m 是空间两条不重合的直线,α是一个平面,则“m α⊥,l 与m 无交点”是“//l m ,l α⊥”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B【趁热打铁】设R y x ∈,,则"22"≥≥y x 且是"4"22≥+y x 的().A 充分不必要条件.B 必要不充分条件.C 充要条件.D 既不充分又不必要条件【答案】A【解析】由"22"≥≥y x 且可得"4"22≥+y x ,但"4"22≥+y x 不一定能够得到"22"≥≥y x 且 故选A .【例2】命题:“00x ∃>,使002()1xx a ->”,这个命题的否定是( ) A .0x ∀>,使2()1xx a ->B .0x ∀>,使2()1xx a -≤ C .0x ∀≤,使2()1xx a -≤D .0x ∀≤,使2()1xx a -> 【答案】B【解析】由已知,命题的否定为0x ∀>,2(1xx a ⋅-≤使),故选B. 【例3】【2018届某某市第一次调研】设命题p :1x ∀<,21x <,命题q :00x ∃>,0012xx >,则下列命题中是真命题的是A. p q ∧B. ()p q ⌝∧C. ()p q ∧⌝D. ()()p q ⌝∧⌝ 【答案】B【解析】当2x =-时,241x =>,显然命题p 为假命题; 当01x =时,01221x x =>=,显然命题q 为真命题; ∴p ⌝为真命题,q ⌝为假命题 ∴()p q ⌝∧为真命题 故选:B【趁热打铁】已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ).A p q ∧.B p q ⌝∧⌝.C p q ⌝∧.D p q ∧⌝【答案】D【解析】由题设可知:p 是真命题,q 是假命题;所以,p ⌝是假命题,q ⌝是真命题; 所以,p q ∧是假命题,p q ⌝∧⌝是假命题,p q ⌝∧是假命题,p q ∧⌝是真命题;故选D.【方法总结☆全面提升】(1)命题真假的判定方法:①一般命题p 的真假由涉及的相关知识进行辨别;②四种命题的真假的判断根据:一个命题和它的逆否命题同真假,它的逆命题跟否命题同真假; ③形如p ∨q ,p ∧q ,⌝p 命题的真假根据真值表判定;④全称命题与特称命题的否定:全称命题():,p x M p x ∀∈,其否定形式是()00,x M p x ∃∈⌝;特称命题()00:,p x M p x ∃∈,其否定形式是(),x M p x ∀∈⌝.(2) 一些常用的正面叙述的词语及它们的否定词语表:(3) 充分条件、必要条件判断的定义法:先判断p q ⇒与q p ⇒是否成立,然后再确定p 是q 的什么条件. (4)用集合的观点看充分条件、必要条件:A ={x|x 满足条件p},B ={x|x 满足条件q},(1)如果A ⊆B ,那么p 是q 的充分不必要条件;(2)如果B ⊆A ,那么p 是q 的必要不充分条件;(3)如果A =B ,那么p 是q 的充要条件;(4)如果A B ⊂≠,且B A ⊂≠,那么p 是q 的既不充分也不必要条件. (5)对于充分条件、必要条件的判断要注意以下几点:①要弄清先后顺序:“A 的充分不必要条件是B”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A.②要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以尝试通过举出恰当的反例来说明.③要注意转化:若⌝p 是⌝q 的必要不充分条件,则p 是q 的充分不必要条件;若⌝p 是⌝q 的充要条件,那么p 是q 的充要条件.④要善于利用集合间的包含关系判断:若A B ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件.【规X 示例☆避免陷阱】【典例】已知p :“向量a 与向量b 的夹角θ为钝角”是q :“a b •<0”的条件.【反思提高】判断条件与结论之间的关系时要从两个方向判断,解答本题易于判断一个方向就下结论,忽视对“a b •<0”成立时能否导出“向量a 与向量b 的夹角为钝角”的判断.充要条件的判断三种常用方法:(1)利用定义判断.如果已知p q ⇒,则p 是q 的充分条件,q 是p 的必要条件;(2)利用等价命题判断;(3) 把充要条件“直观化”,如果p r ⇒,可认为p 是q 的“子集”;如果q p ⇒,可认为p 不是q 的“子集”,由此根据集合的包含关系,可借助韦恩图说明. 【误区警示】(1)区分命题的否定和否命题的不同,否命题是对命题的条件和结论都否定,而命题的否定仅对命题的结论否定.(2)p 或q 的否定:¬p 且¬q ;p 且q 的否定:¬p 或¬q .(3)“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .。
小专题练习:(1)集合的运算
一、考点导向
了集集合的含义,理解集合间包含与相等的含义,理解两个集合的并集与交集的含义,会用集合的语言(列举法、描述法、Venn 图)表达数学对象或数学内容。
二、考点测评(20分钟完成,选择题的答案写在题号前,小组改错。
以后同。
)
1.集合A={x|1<x<4},B={x|x 2-2x-3>0},则A∩B=
A .(1,4)
B .(3,4)
C . (1,3)
D .(1,2)
2.全集U={x∈R|x 2≤4},A={x∈R||x+1|≤1}的补集CuA=
A .{x∈R |0<x<2}
B .{x∈R |0≤x<2}
C .{x∈R |0<x≤2}
D .{x∈R |0≤x≤2}
3.集合{}
{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件 A C B ⊆⊆的集合C 的个数为
A .1
B .2
C .3
D .4 4.集合
={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--, 且=(1,)A B n -I ,则=m _____,=n _____.
5. A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},(u ðB )∩A={9}, 则A=_____.
6. 设集合2{60}P x x x =--<,{23}Q x a x a =≤≤+.
(1)、若P Q P ⋃=,求实数a 的取值范围;
(2)、若P Q ⋂=∅,求实数a 的取值范围。
说明:选择题每小题5分、填空题每小题4分(保留必要的解题过程),解答题每小题12
分(写出必要的证明过程或演算步骤),卷面分0-3分,满分38分。
以后同。
三、考点演练 我的成果:_____.
1.集合{1,2,3,4,5}A =,{(,)
,,}B x y x A y A x y A =∈∈-∈,则B 中元素的个数为 A .3 B .6 C .8 D .10
2.全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则
=B A C U Y )( A .{}1,2,4 B .{}2,3,4 C .{}0,2,4 D .{}0,2,3,4
3.集合{{},1,,A B m A B A ==⋃=,则m =
A .0
B .0或3
C .1
D .1或3
4.全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =, 则=)()(B C A C U U Y _______.
5. 设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a=______.
6. 已知集合A ={|(2)[(31)]0}x x x a --+<,B =22{|0}(1)x a
x x a -<-+.
(1)、当a =2时,求A I B ;
(2)、求使B ⊆A 的实数a 的取值范围.
四、自我反思
1、考点梳理:
2、错题总结:
小专题练习:(1)集合的运算
二、考点测评参考答案:
1、B .
2、C .
3、D .
4、1-,1。
5、{3,9}。
6、解:(1)由题意知:{23}P x x =-<<,Q P Q P ⋃=,Q P ∴⊆. ①当Q =∅时,得23a a >+,解得3a >.
②当Q ≠∅时,得2233a a -<≤+<,解得10a -<<.
综上,(1,0)(3,)a ∈-⋃+∞.
(2)①当Q =∅时,得23a a >+,解得3a >;
②当Q ≠∅时,得23,
3223a a a a ≤+⎧⎨+≤-≥⎩或,解得
3
532a a ≤-≤≤或. 综上,3
(,5][,)2a ∈-∞-⋃+∞.
三、考点演练参考答案:
1、D .
2、C.
3、B .
4、{a, c, d}。
5、1.
6、解:(1)当a =2时,A =(2,7),B =(4,5),则A I B =(4,5).
(2)由题: B =(2a ,a 2+1)。
当a <1
3时,A =(3a +1,2) 要使B ⊆A ,必须2231
12a a a ≥+⎧⎨+≤⎩,此时a =-1;
当a =1
3时,A =Φ,使B ⊆A 的a 不存在;
当a >1
3时,A =(2,3a +1)要使B ⊆A ,必须222
131a a a ≥⎧⎨+≤+⎩
,此时1≤a ≤3.
综上可知,使B ⊆A 的实数a 的取值范围为[1,3]∪{-1} 。