高考数学集合的概念及运算
- 格式:pptx
- 大小:399.76 KB
- 文档页数:16
数学高考集合大题知识点数学是一门抽象思维和逻辑推理的学科,而在数学的高考中,集合题是不可或缺的一部分。
集合是一种数学构造,是由一定规则下的对象的聚集体。
在高考中,集合大题常常要求考生运用集合的基本概念和运算性质解决问题。
下面我们来详细讨论一下数学高考集合大题的知识点。
一、集合的基本概念集合的基本概念包括元素、空集和全集。
元素是构成集合的个体,可以是数、字母、图形等;空集指没有任何元素的集合;全集是指讨论问题所涉及的所有个体所构成的集合。
二、集合的表示方法集合可以通过两种方式表示:列举法和描述法。
列举法是将集合的元素一一列举出来并用大括号括起来,例如{1, 2, 3};描述法是通过描述集合元素的某种特点或性质来表示集合,例如{x|x是正整数且小于4}表示集合{1, 2, 3}。
三、包含关系和子集集合A包含集合B表示为B⊆A,当且仅当集合B的所有元素都是集合A的元素。
如果集合B是集合A的子集且集合A不等于集合B,表示为B⊂A。
例如,对于集合A={1, 2, 3, 4}和集合B={1, 2}来说,B⊆A,但B⊂A。
四、集合的运算常见的集合运算有并、交、差和补运算。
并运算表示将两个集合中的元素合并成一个集合。
用符号∪表示,例如集合A={1, 2, 3},集合B={2, 3, 4},则A∪B={1, 2, 3, 4}。
交运算表示取两个集合中共同具有的元素构成的集合。
用符号∩表示,例如集合A={1, 2, 3},集合B={2, 3, 4},则A∩B={2, 3}。
差运算是将一个集合中减去另一个集合的元素后所得到的集合。
用符号-表示,例如集合A={1, 2, 3},集合B={2, 3, 4},则A-B={1}。
补运算表示一个集合与全集的差集。
用符号'表示,例如集合A={1, 2, 3},全集U={1, 2, 3, 4, 5},则A'={4, 5}。
五、集合的应用集合的概念和运算在实际生活中有着广泛的应用。
高考数学第一题集合题目:高考数学第一题集合正文:一、集合的基础概念集合是数学中的一种基本概念,它是由若干确定的元素组成的总体。
在高考数学中,我们常常会遇到关于集合的问题。
下面,就让我们一起来了解一些关于集合的基础知识。
1.1 集合的定义与表示法集合是由若干确定的元素组成的总体,我们通常用大写字母A、B等来表示集合。
而集合中的元素则用小写字母a、b等表示。
例如,我们可以表示一个集合A={1, 2, 3, 4},其中元素1、2、3、4都属于集合A。
1.2 集合的性质集合有一些基本性质,包括空集、全集、子集、真子集等。
空集是不包含任何元素的集合,用符号∅表示;全集则是指某一给定范围内的元素构成的集合,用符号U表示;而子集是指一个集合中的所有元素都是另一个集合的元素,用符号⊆表示。
如果一个集合是另一个集合的子集,并且两个集合不相等,则称这个子集为真子集。
1.3 常见的集合运算在高考数学中,我们会遇到一些常见的集合运算,包括并、交、差、补等。
集合的并是指包含两个或更多个集合中的所有元素的新集合,用符号∪表示;集合的交则是指两个或更多个集合中共有的元素构成的新集合,用符号∩表示;而集合的差是指从一个集合中减去另一个集合的所有元素所构成的新集合,用符号−表示;集合的补是指给定集合中不属于另一个集合的元素所构成的新集合,用符号'表示。
二、高考数学集合题的解题方法在高考数学中,集合题是一种常见的考点。
下面,我们来了解一些常用的解题方法。
2.1 集合图示法集合图示法是一种直观的解题方法,它通过用图形的方式表示集合,帮助我们更清晰地理解和解题。
例如,我们可以通过用圆形来表示集合,用交叉部分表示集合的交,用圆周上未填充的部分表示集合的差等。
2.2 元素法元素法是一种逐个检查集合元素的解题方法。
通过逐个检查集合元素是否符合给定条件,我们可以确定一个集合的内容。
例如,当解决集合的并、交、差等问题时,我们可以逐个检查集合中的元素,再通过运算规则得出结果。
考点一集合的概念与运算知识梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N+(或N*)Z Q R(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.2.集合间的基本关系关系自然语言符号语言V enn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B(或B A)集合相等集合A,B中元素完全相同或集合A,B互为子集A=B3.全集与补集(1)如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U表示;(2) 对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.4.集合的运算集合的并集集合的交集集合的补集图形符号A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}∁U A={x|x∈U,且x∉A} 5.集合关系与运算的常用结论(1)子集个数公式:若有限集A中有n个元素,则A的子集个数为2n个,非空子集个数为2n -1个,真子集有2n-1个.(2) A∩B=A⇔A⊆B,A∪B=B⇔A⊆B.(3)(∁U A)∩(∁U B)=∁U(A∪B),(∁U A)∪(∁U B)=∁U(A∩B) .典例剖析题型一集合的基本概念例1已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是答案 5解析列表根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.变式训练已知集合A={0,1,2},B={(x,y)|x∈A,y∈A,x-y∈A},则集合B中有________个元素.答案 6解析因为x-y∈A,∴x≥y.当x=0时,y=0;当x=1时,y=0或y=1;当x=2时,y=0,1,2.故集合B={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B中有6个元素.解题要点研究集合问题,通常从代表元素入手,考查其所代表的是数还是点,如果代表元素是数x,则是数集,如果代表元素是数对(x,y),则是点集.在列举集合的元素时可借助表格,或根据元素特征分类列举,列举时应做到不重不漏.例2 设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.答案 2解析 因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,且由a 在分母的位置可知a ≠0,所以a +b =0,则ba =-1,所以a =-1,b =1.所以b -a =2.变式训练 已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 答案 -32解析 因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不符合题意,舍去; 当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意,所以m =-32.解题要点 对于含字母参数的集合,应准确进行分类讨论,列出方程或方程组求出字母参数的值.需要特别注意的是,求出字母参数值后,还要检验是否违反了集合中元素的互异性. 题型二 集合间的基本关系例3 集合A ={-1,0,1},A 的子集中,含有元素0的子集共有 个 答案 4解析 根据题意,在集合A 的子集中,含有元素0的子集有{0}、{0,1}、{0,-1}、{-1,0,1},共四个.变式训练 设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有 个 答案 6解析 集合{1,2,3}的所有子集共有23=8(个),其中一个奇数元素也没有的集合有两个:∅和{2},故满足要求的集合M 共有8-2=6(个).解题要点 解题关键是弄清符合题意的集合其元素应满足的条件.在元素较少时可以采取穷举法列出所有满足条件的集合. 例4 设,若,则a 的取值范围是 .答案解析 根据题意作图:由图可知,,则只要即可,即a 的取值范围是.变式训练 已知集合()2{|540},,,A x x x B a A B =-+≤=-∞⊆,则a 的取值范围是 . 答案 (4,)+∞解析 []2{|540}1,4A x x x =-+≤=,∵,根据题意作图:由图可知,只要即可,即a 的取值范围(4,)+∞.解题要点 对于这类用不等式表示的数集之间的包含关系时,常常借助数轴进行求解.在解题时应注意端点是否可以取到. 题型三 集合的基本运算例5 已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________. 答案 5解析 A ∪B ={1,2,3,4,5},共有5个元素.变式训练 已知集合A ={x |x 2-x -2≤0},集合B 为整数集,则A ∩B 等于________. 答案 {-1,0,1,2}解析 A ={x |x 2-x -2≤0}={x |-1≤x ≤2},B 为整数集,A ∩B ={-1,0,1,2}.解题要点 求解集合交、并首先应对各个集合进行化简,准确弄懂集合中的元素,求并集时相同的元素只算一个.例6 已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B ) =________. 答案 {x |0<x <1}解析 ∵A ={x |x ≤0},B ={x |x ≥1}, ∴A ∪B ={x |x ≤0或x ≥1}, 在数轴上表示如图.∴∁U (A ∪B )={x |0<x <1}.变式训练 已知集合A ={x |x 2-2x >0},B ={x |-<x <},则A ∪B =________.答案 R解析 ∵x (x -2)>0,∴x <0或x >2. ∴集合A 与B 可用数轴表示为:由图象可以看出A ∪B =R .解题要点 集合的基本运算是历年高考的热点,常与不等式的解集、函数的定义域、值域相结合命题,解题时先求出各个集合,然后借助数轴求交并是基本方法.当堂练习1. 已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()UA B =________.2.若集合M ={-1,0,1},N ={0,1,2},则M ∩N 等于________. 3.已知{菱形},{正方形},{平行四边形},则之间的关系为_______4.已知集合A ={(x ,y )|-1≤x ≤1,0≤y <2,x 、y ∈Z },用列举法可以表示集合A 为________. 5.设集合M ={0,1,2},N ={x |x 2-3x +2≤0},则M ∩N = .课后作业1.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________. 2.设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =________. 3.已知集合M ={x |-3<x ≤5},N ={x |x <-5或x >4},则M ∪N 等于________. 4.若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a =________. 5.已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则UA B ()= ________.6.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则AB =________.7.满足条件{0,2}∪M ={0,1,2}的所有集合M 的个数为________. 8.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =________. 9.设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则A ∩(∁U B )等于________.10.已知A ={3,5,6,8}且集合B 满足A ∩B ={5,8},A ∪B ={2,3,4,5,6,7,8},则这样的集合B 有________个.11.若集合A ={x |-5<x <2},B ={x |-3<x <3},则A ∩B 等于 .12.已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为 13. 已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.当堂练习答案1. 答案 {4}解析 因为A ∪B ={1,2,3},全集U ={1,2,3,4},所以U (A ∪B )={4}.2.答案 {0,1}解析 由集合M ={-1,0,1},N ={0,1,2},得到M ∩N ={0,1}. 3.答案4.答案 {(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1)}解析 集合A 表示不等式组⎩⎪⎨⎪⎧-1≤x ≤1,x ∈Z ,0≤y <2,y ∈Z 确定的平面区域上的格点集合,所以用列举法表示集合A 为{(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1)}. 5.答案 {1,2}解析 由x 2-3x +2=(x -1)(x -2)≤0,解得1≤x ≤2,故N ={x |1≤x ≤2},∴M ∩N ={1,2}.课后作业答案1.答案 (2,3)解析 ∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}=(2,3). 2.答案 {-2,0,2}解析 先确定两个集合的元素,再进行并集运算.集合M ={0,-2},N ={0,2}, 故M ∪N ={-2,0,2}. 3.答案 {x |x <-5或x >-3}解析 在数轴上表示集合M 和N ,如图所示,则数轴上方所有“线”下面的部分就是M ∪N ={x |x <-5或x >-3}. 4.答案 4解析 a =0时,ax 2+ax +1=0无解,此时,A =∅,不合题意;a ≠0时,由题意得方程ax 2+ax +1=0有两个相等实根,则⎩⎪⎨⎪⎧Δ=a 2-4a =0a ≠0,解得a =4.5.答案 {0,2,4}解析 ∵UA ={0,4},U AB ()={0, 2,4}.6.答案 {1,4}解析 ∵x =n 2,n ∈A ,∴x =1,4,9,16. ∴B ={1,4,9,16}.∴A ∩B ={1,4}. 7.答案 4解析 由题可知集合M 中必有1,满足条件的M 可以为{1},{0,1},{2,1},{0,1,2}共4个. 8.答案 0或3解析 ∵A ∪B =A ,∴B ⊆A ,∵A ={1,3,m },B ={1,m },∴m ∈A ,故m =m 或m =3,解得m =0或m =3或m =1,又根据集合元素的互异性m ≠1,所以m =0或m =3. 9.答案 {1}解析 ∵∁U B ={1,5,6},∴A ∩(∁U B )={1,2}∩{1,5,6}={1}. 10.答案 4解析 ∵A ∩B ={5,8},∴5,8∈B ,又∵A ∪B ={2,3,4,5,6,7,8}而A ={3,5,6,8}, ∴2,4,7∈B ,∴3,6可以属于B ,也可不属于B . ∴这样的B 有22=4(个). 11.答案 {x |-3<x <2}解析 由题意,得A ∩B ={x |-5<x <2}∩{x |-3<x <3}={x |-3<x <2}. 12.答案 2解析 A ={…,5,8,11,14,17…},B ={6,8,10,12,14},集合A ∩B 中有两个元素. 13. 答案 -3≤a <-12解析 ∵B ={x |x <-1或x >5},A ∪B =R , ∴⎩⎪⎨⎪⎧2a <-1,a +8≥5, 解得-3≤a <-12.。
高考数学冲刺集合的基本概念与运算规则高考数学冲刺:集合的基本概念与运算规则在高考数学的众多知识点中,集合是一个基础且重要的部分。
对于即将面临高考的同学们来说,熟练掌握集合的基本概念与运算规则,不仅能够在高考中轻松应对相关题目,也为后续学习更复杂的数学知识奠定了坚实的基础。
一、集合的定义集合,简单来说,就是把一些确定的、不同的对象汇集在一起,组成的一个整体。
这些对象被称为集合的元素。
比如,一个班级里的所有同学可以组成一个集合,班级里的每一位同学就是这个集合的元素;自然数也可以组成一个集合,每一个自然数就是这个集合中的元素。
集合通常用大写字母来表示,如 A、B、C 等;元素则用小写字母表示,如 a、b、c 等。
如果一个元素 a 属于集合 A,我们就记作 a∈A;如果元素 b 不属于集合 A,就记作 b∉A。
二、集合的表示方法1、列举法就是把集合中的元素一一列举出来。
比如,由数字 1、2、3 组成的集合,可以表示为{1, 2, 3}。
2、描述法通过描述元素所具有的共同特征来表示集合。
比如,所有小于 5 的自然数组成的集合,可以表示为{x | x 是小于 5 的自然数}。
3、图示法包括韦恩图(Venn Diagram),用封闭的曲线来表示集合以及集合之间的关系。
三、集合的分类1、有限集集合中的元素个数是有限的。
比如,由 10 个苹果组成的集合就是有限集。
2、无限集集合中的元素个数是无限的。
比如,所有自然数组成的集合就是无限集。
3、空集不含任何元素的集合,记作∅。
四、集合间的关系1、子集如果集合 A 中的所有元素都属于集合 B,那么集合 A 叫做集合 B 的子集,记作 A⊆B。
例如,集合 A ={1, 2},集合 B ={1, 2, 3},则 A 是 B 的子集。
特别地,任何集合都是它自身的子集。
2、真子集如果集合 A 是集合 B 的子集,并且 B 中至少有一个元素不属于 A,那么集合 A 叫做集合 B 的真子集,记作 A⊂B。
集合、简易逻辑(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N 表示自然数集,N 或N 表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a与集合M 的关系是a M ,或者a M ,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x| x 具有的性质} ,其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集( ).【1.1.2 】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图A B(1)A A子集B (或A)A中的任一元素都属于B(2) A(3)若A B且B C ,则A C(4)若A B且B A,则A BA(B)B A或真子集A B(或B A ) A B,且 B 中至少有一元素不属于 AA(1) A(为非空子集)(2)若A B且B C ,则A CB A集合相等A BA中的任一元素都属于B,B 中的任一元素都属于 A(1)A B(2)B AA(B)n(7)已知集合A有n(n 1) 个元素,则它有2个子集,它有2n 1个真子集,它有2n 1个非空子集,它有2n 2非空真子集.集合的基本运算1. 集合运算:交、并、补.交:A I B { x | x A,且x B}并:A U B{ x | x A或x B}补:C 且A { x U , x A} U2. 主要性质和运算律(1)包含关系:A A, A,A U , C A U ,UA B,BC A C; A I B A, A I B B; A U B A, A U B B.(2)等价关系: A B A I B A A U B B C U A U B U(3)集合的运算律:交换律: A B B A; A B B A.结合律: ( A B) C A (B C); (A B) C A (B C)分配律:. A (B C) (A B) ( A C); A (B C) ( A B) (A C)0-1 律:I A , U A A,U I A A,U U A U等幂律: A A A, A A A.求补律:A∩C U A=φ A ∪C U A=U C U U=φC Uφ=U反演律:C U(A∩B)= (C U A)∪( C U B) C U(A∪B)= (C U A)∩( C U B)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高职高考数学集合知识点数学作为一门基础学科,无论是在学术还是就业方面都占据着重要地位。
在高职高考中,数学是必考科目之一,其中集合是数学中的重要概念之一,也是考试中经常涉及的知识点之一。
在本文中,将对高职高考数学中的集合知识点进行详细论述。
一、集合的基本概念集合是数学中的一种基本概念,它是由确定的、互不相同的元素组成的整体。
集合中的元素可以是任意事物,可以是数字、字母、词语甚至是其他集合。
一般用大写字母表示集合,用大括号{}表示集合的元素。
例如,集合A={1, 2, 3}表示一个包含元素1、2、3的集合。
二、集合的运算集合的运算是对集合进行操作,常见的集合运算包括并集、交集、差集和补集。
1. 并集:两个集合A和B的并集,表示为A∪B,表示A和B的所有元素的总和,但不重复计算相同的元素。
例如,集合A={1, 2, 3},集合B={3, 4, 5},则A∪B={1, 2, 3, 4, 5}。
2. 交集:两个集合A和B的交集,表示为A∩B,表示A和B共有的元素。
例如,集合A={1, 2, 3},集合B={3, 4, 5},则A∩B={3}。
3. 差集:两个集合A和B的差集,表示为A-B,表示A中去除掉和B共有的元素后剩下的元素。
例如,集合A={1, 2, 3},集合B={3, 4, 5},则A-B={1, 2}。
4. 补集:对于给定的集合A,补集表示A在全集中没有的元素所组成的集合,一般用A’或A^c表示。
例如,集合A={1, 2, 3},全集为{1, 2, 3, 4, 5},则A’={4, 5}。
三、集合的性质集合具有一些基本的性质,通过了解这些性质可以更好地理解集合的运算。
1. 交换律:对于任意两个集合A和B,A∪B=B∪A,A∩B=B∩A。
即并集和交集的运算顺序可以交换,不会影响结果。
2. 结合律:对于任意三个集合A、B和C,(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。
即并集和交集的运算可以按照括号任意组合,结果不会改变。
高考数学集合知识点集合是高中数学中的一个重要概念,也是高考中必考内容之一。
掌握集合的相关知识点对于提高数学成绩至关重要。
本文将介绍高考数学中与集合相关的知识点,帮助考生系统地理解和掌握。
一、集合的基本概念集合是指由各种对象组成的整体,这些对象称为集合的元素。
通常用大写字母A、B、C等表示集合,用小写字母a、b、c等表示集合的元素。
集合内的元素可以是数、图形、对象等各种各样的事物。
二、集合的表示方法1. 列举法:直接列举出集合中的元素,用花括号{}括起来。
例如,集合A={1, 2, 3}表示A是包含1、2和3三个元素的集合。
2. 描述法:通过一定的条件来描述集合中的元素。
例如,集合B={x|x是正整数,且x<10}表示B是由小于10的正整数组成的集合。
三、集合的运算1. 交集:给定两个集合A和B,它们的交集记作A∩B,表示同时属于A和B的元素组成的集合。
2. 并集:给定两个集合A和B,它们的并集记作A∪B,表示属于A或B中的元素组成的集合。
3. 差集:给定两个集合A和B,A减去B的差集记作A-B,表示属于A但不属于B的元素组成的集合。
4. 补集:给定一个全集U以及一个集合A,称全集U中属于A'而不属于A的元素组成的集合为集合A的补集,记作A'。
四、集合的性质1. 互斥:两个集合A和B没有相同的元素,即A∩B=∅。
2. 包含与被包含:集合A包含于集合B,即A⊆B,表示A中的任意元素也属于B;集合A被集合B包含,即B⊇A。
3. 子集与真子集:若集合A包含于集合B,且A≠B,则称A 为B的子集,记作A⊂B;若A⊂B且存在x∈B,但x∉A,则称A 为B的真子集,记作A⊊B。
4. 幂集:给定一个集合A,A的所有子集所构成的集合称为A 的幂集,记作P(A)。
例如,若A={1, 2},则P(A)={{},{1},{2},{1,2}}。
五、常用定理与应用1. 德摩根定律:对于任意的集合A和B,有以下关系成立:(1)(A∪B)'=A'∩B'(2)(A∩B)'=A'∪B'2. 分配律:对于任意的集合A、B和C,有以下关系成立:(1)A∩(B∪C)=(A∩B)∪(A∩C)(2)A∪(B∩C)=(A∪B)∩(A∪C)六、集合在高考中的应用1. 题型一:集合的基本运算高考中常会出现对两个或三个集合进行并、交、差等运算的求解题目。