2019年南江中学高考数学选择题专项训练(一模)
- 格式:doc
- 大小:405.78 KB
- 文档页数:10
第I卷(选择题满分60分)一、选择题(本大题共12小题,每小题5分,共60分)r、Z [、X1 •已知集合A = {x|log2(x+l)<l},B = k - >1[,则A B=( )(3丿-XA. (—1,0)B. (―oo,0)C.(0,1)D. (l,4~oo)2.下列函数中,既是偶函数,又在区间(0,-boo)单调递减的函数是()A. y = -x3B. y = ]n xC. y = cosxD. y = 2*cin x3•函数的图象可能是()4.设d〉0且Q工1,贝ij “函数/(兀)=ci x在R上是减函数”是“函数g(兀)=(2 —Q*在尺上递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4 2 |5.已知。
=2弓,方=45,(? = 253 ,贝9( )A. c<a<bB. a<b<cC. b<a<cD. b<c<a6.若实数d,方满足2" =3,3" =2,则函数f(x) = a x^x-b的零点所在的区间是()A. (―2,—1)B. (-l,0)C.(0,1)D. (1,2)7.已知命题p:u3x0e/?,使得xj + 2關+ l<0成立”为真命题,则实数。
满足( )A. [-L1)B. (—00,—l)k_J(l,+oo)C. (1,+ 8)D. (―oo,—1)8.定义在/?上的奇函数/(尢)满足/(尢-4) = -/(兀),且在区间[0,2]上递增,贝9()A. /(-25)</(ll)</(80)B. /(80)</(11)</(-25)C. /(-25) </(80) </(I 1)D. /(I 1) < /(80) < /(-25)9.已知函数y = /(x+l)是定义域为/?的偶函数,M/(x)在[l, + oo)上单调递减,则不等式10•若曲线Q:y = a^(x>0)与曲线C 2:y = e x 存在公共点,则d 的取值范围是()11. 函 数/(x) = 2m^ - 3nx" +10(m > 0, M > 0)有 两 个 不同的 零点,则5(lgm)2 +9(lgn)2 的最小值是()12. 函数/(兀)是定义在(0,+oo )上的可导函数,导函数记为/(X ),当X 〉0且兀H1时,2/E + U 〉0,若曲线y = f (x )在x = l 处的切线斜率为一纟,则/(1)=() x-\52 3 4 A. —B. —C. —D. 1 5 5 5 第II 卷(非选择题满分90分)二、填空题(每小题5分,共20分)13. 任意幕函数都经过定点则函数/(x ) = n4-\og a (x-m )(6? >^1)经过定点 _____ . 14. __________________________________________________ 函数/(x ) = \nx-ax 在[l, + oo )上递减,则d 的取值范围是 ___________________________ .w' — x — 2 兀 > 0 . '■的零点个数为. x~ +2x,x<0丫2 _1_ y 1 16. 若函数/(兀)满足:办w 7?, /(兀)+ /(-%) = 2,则函数g (兀)=—-—— + f (兀)的最大 x +\值与最小值的和为.三、解答题(本大题共6个小题,共70分)17. (本小题满分10分)已知命题〃:方程x 2+ax + — = 0有两个不相等的负实数根;命题q :关于。
2019年南江县长赤中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第 1 题:来源:辽宁省辽河油田第二高级中学2018_2019学年高二数学上学期期中试题理抛物线:的焦点坐标是()A. B. C. D.【答案】C第 2 题:来源:湖南省桃江县第一中学2018_2019学年高二数学下学期期中试题理有6个人排成一排照相,要求甲、乙、丙三人站在一起,不同的排法种数为()A.24 B.72 C. 144 D.288【答案】C第 3 题:来源:辽宁省六校协作体2018_2019学年高二数学上学期期中试题理已知不等式的解集为,则不等式的解集为( ) A. 或 B.C. D. 或【答案】A第 4 题:来源:河北省唐山一中2016_2017学年高二数学3月月考试题理“”是“函数的值不小于4”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A第 5 题:来源:(通用版)2019版高考数学二轮复习4套“12+4”限时提速练检测理(普通生,含解析)若n的展开式中所有项的系数的绝对值的和为243,则n的展开式中第3项的系数为( ) A.80 B.-80C.40 D.-40【答案】C 令x=1,y=-1,得3n=243,故n=5,所以T3=C x32=40x3y-2,故选C.第 6 题:来源:四川省双流县2017_2018学年高二数学上学期开学考试试题试卷及答案若圆与圆()的公共弦长为,则实数为()A.1 B.2 C. D.【答案】A第 7 题:来源:浙江省温州市“十五校联合体”2018_2019学年高一数学上学期期中联考试题已知函数(其中)的图象如图所示,则函数的图象是( )-1 -1 -1 -1【答案】 A第 8 题:来源:吉林省梅河口市2016_2017学年高一数学下学期期中试题试卷及答案理数列是递减的等差数列,的前项和是,且,有以下四个结论①;②若对任意都有成立,则的值等于7或8时;存在正整数,使;④存在正整数,使.其中所有正确结论的序号是()A.①②B.①②③C.②③④D.①②③④【答案】 D第 9 题:来源:广东省湛江市普通高中2018届高考数学一轮复习模拟试题试卷及答案03下列命题中为真命题的是A.若B.直线为异面直线的充要条件是直线不相交C.“”是“直线与直线互相垂直”的充要条件D.若命题,则命题的否定为:“”【答案】D第 10 题:来源:河南省郑州市2016_2017学年高一数学下学期期末试卷及答案把黑、红、白3张纸牌分给甲、乙、丙三人,每人一张,则事件“甲分得黑牌”与“乙分得黑牌”是()A.对立事件 B.必然事件C.不可能事件 D.互斥但不对立事件【答案】D.第 11 题:来源:河北省永年县2017_2018学年高一数学12月月考试题试卷及答案已知空间四边形ABCD的四边相等,则它的对角线AC,BD的关系是( )A.垂直但不相交 B.相交但不一定垂直C.垂直且相交 D.不垂直也不相交【答案】A第 12 题:来源:湖北省天门市、潜江市、应城市2018_2019学年高一数学下学期期中联考试题已知是锐角,那么2是A.第一象限 B.第二象限 C.小于的正角 D.第一象限或第二象限【答案】C第 13 题:来源:浙江省温州市“十五校联合体”2018_2019学年高一数学上学期期中联考试题已知集合,则 ( )A. B. C.D.【答案】C第 14 题:来源: 2017_2018学年高中数学第四章圆与方程章末综合测评1试卷及答案已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )A.内切 B.相交C.外切 D.相离【答案】B第 15 题:来源:甘肃省武威市2016_2017学年高二数学下学期期末考试试题理试卷及答案若(),则的值为( )A. 2 B.0 C.-1 D.-2【答案】C第 16 题:来源:湖南省邵东县2018届高三数学第一次月考试卷及答案理三个数a=0.32,,c=20.3之间的大小关系是().A.a<c<b B.a<b<cC.b<a<c D.b<c<a【答案】C第 17 题:来源:黑龙江省齐齐哈尔市2017_2018学年高二数学9月月考试题试卷及答案已知,应用秦九韶算法计算时的值时,的值为 ( ).27 .11 .109 .36【答案】B第 18 题:来源:吉林省实验中学2018_2019学年高二数学上学期期中试题文若中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()A.+=1 B.+=1 C.+=1 D.+=1【答案】D第 19 题:来源: 2019高考数学一轮复习第10章概率统计和统计案例章末总结分层演练文20180910111一只红铃虫的产卵y和温度x有关,根据收集的数据散点分布在曲线y=c1ec2x的周围,若用线性回归模型建立回归关系,则应作下列哪个变换( )A.t=ln x B.t=x2C.t=ln y D.t=ey【答案】C.由y=c1ec2x得c2x=ln=ln y-ln c1,令t=ln y,得t=c2x+ln c1,故选C.第 20 题:来源:西藏日喀则市2017_2018学年高二数学上学期期中试题试卷及答案在△ABC中,已知,B=,C=,则等于A. B. C. D.【答案】A第 21 题:来源:港澳台侨2017届高三数学11月月考试题B卷及答案在中,若,三角形的面积,则三角形外接圆的半径为()A. B.2 C.D.4【答案】B第 22 题:来源:黑龙江省哈尔滨市第三中学校2018_2019学年高二数学上学期第一次阶段性测试试题理(含解析)若点满足,点在圆上,则的最大值为A. B. C. D.【答案】A【详解】根据所给不等式组,画出可行域如下图所示因为在圆上,所以即求可行域内到点距离加半径即可由图可知,可行域内点(1,1)到点(-2,3)的距离最大,所以,所以PQ最大值为5+1=6所以选A第 23 题:来源:聊城市2017年高考数学理科模拟试卷(一)含答案解析已知集合,,则()A. B. C. D.【答案】D第 24 题:来源: 2017年高中数学第一章坐标系第二章参数方程综合质量评估(含解析)新人教A版选修4_4已知直线l1的极坐标方程为ρsin=2016,直线l2的参数方程为(t为参数)则l1与l2的位置关系为( )A.垂直B.平行C.相交但不垂直D.重合【答案】A.由ρsin=2016,得ρ=2016,ρsinθ-ρcosθ=2016,所以y-x=2016,即y=x+2016,把直线l2的参数方程化为普通方程为==-1,即y=-x,所以·=1×(-1)=-1,所以l1⊥l2.第 25 题:来源:四川省雅安市2016_2017学年高二数学3月月考试题试卷及答案理德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数被称为狄利克雷函数,其中为实数集,为有理数集,则关于函数有如下四个命题:①;②函数是偶函数;③任取一个不为零的有理数,对任意的恒成立;④存在三个点,使得为等边三角形.其中真命题的个数是()A.1 B.2 C.3D.4【答案】C【解析】试题分析:由题意知,,故,故①是假命题;当时,,则;当时,,则,故函数是偶函数,②是真命题;任取一个一个不为零的有理数,都有,故③是真命题;取点,,,是等边三角形,故④是真命题.考点:1、函数的周期性;2、特称命题的真假判断;3、分段函数.第 26 题:来源:湖北省宜昌市2016_2017学年高二数学下学期期中试题试卷及答案理圆与圆的位置关系为()A. 内切B. 外切C. 相交D. 外离【答案】B【解析】圆的圆心,半径,圆的圆心,半径,,所以两圆外切,故选B.第 27 题:来源:湖南省浏阳市2016_2017学年高二数学下学期第一次阶段性测试试题试卷及答案理已知函数y=f(x)是定义在上的偶函数,且当x>0时,则一定成立的是()【答案】A第 28 题:来源:河南省洛阳市2016_2017学年高二数学下学期期末试卷理试卷及答案命题“若a>b,则ac>bc”的逆否命题是()A.若a>b,则ac≤bc B.若ac≤bc,则a≤bC.若ac>bc,则a>b D.若a≤b,则ac≤bc【答案】B.第 29 题:来源:广东省湛江市普通高中2018届高考数学一轮复习模拟试题试卷及答案03已知函数()A. B. C. D.【答案】D第 30 题:来源:甘肃省武威市第六中学2018_2019学年高一数学下学期第三次学段考试试题已知倾斜角为450的直线经过A(2,4),B(1,m)两点,则m=( )A. 3B.-3 C. 5 D.-1【答案】A第 31 题:来源:山东省师大附中2019届高三数学第五次模拟考试试题理若函数与都在区间上单调递减,则的最大值为()A. B. C. D.【答案】B第 32 题:来源:湖南省衡阳市2017_2018学年高二数学上学期第一次月考试题(实验班)理试卷及答案下列命题中错误的是()A.若p∨q为真命题,则p∧q为真命题B.“x>5”是“x2﹣4x﹣5>0”的充分不必要条件C.命题p:∃x0∈R,x02+x0﹣1<0,则¬p:∀x∈R,x2+x﹣1≥0D.命题“若x2﹣3x+2=0,则x=1或x=2”的逆否命题为“若x≠1且x≠2,则x2﹣3x+2≠0”【答案】A第 33 题:来源:高中数学第三章导数及其应用3.1导数3.1.1函数的平均变化率课后训练新人教B版选修1_120171101231已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy),则=( )A.4 B.4xC.4+2Δx D.4+2(Δx)2【答案】C第 34 题:来源:河北省武邑中学2018_2019学年高二数学下学期开学考试试题理已知函数(,且)在R上单调递减,且关于的方程恰好有两个不相等的实数解,则的取值范围是A. B. C.{} D.{}【答案】C第 35 题:来源: 2019高考数学一轮复习第10章概率统计和统计案例第4讲用样本估计总体分层演练文2018091017若正数2,3,4,a,b的平均数为5,则其标准差的最小值为( )A. 2 B.C.3 D.【答案】B.由已知得2+3+4+a+b=5×5,整理得a+b=16.其方差s2=[(5-2)2+(5-3)2+(5-4)2+(5-a)2+(5-b)2]=[64+a2+b2-10(a+b)]=(a2+b2-96)=[a2+(16-a)2-96]=(2a2-32a+160)=(a2-16a)+32=(a-8)2+,所以当a=8时,s2取得最小值,最小值为,此时标准差为.故选B.第 36 题:来源:山东省济南市2017_2018学年高二数学上学期开学考试试题试卷及答案某人朝正东方向走x km后,向右转150°,然后朝新方向走3km,结果他离出发点恰好km,那么x 的值为()A. B.2 C.2或 D.3【答案】C第 37 题:来源:四川省新津县2018届高三数学10月月考试题理试卷及答案中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”.其大意为:“有一个走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人第五天走的路程为()A. 48里B. 24里C. 12里D. 6里【答案】C第 38 题:来源: 2019高中数学第二章点、直线、平面之间的位置关系单元测试(二)新人教A 版必修2如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n等于()A.8 B.9 C.10D.11【答案】A【解析】如图,取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EFH平行,其余4个平面与EFH相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.故选A.第 39 题:来源:四川省成都市郫都区2017_2018学年高二数学上学期第一次月考试题试卷及答案理设a∈R ,则“a=1”是“直线l1:与直线l2:x+(a+1)y+4=0平行”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】A第 40 题:来源:内蒙古包头市第四中学2018_2019学年高二数学上学期期中模拟测试试题(二)等差数列前项和,,当取最小值时,()A.9 B.8 C.7D.6【答案】D。
2019年数学高考一模试卷附答案一、选择题1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( )A . 1.2308ˆ.0yx =+ B .0.0813ˆ.2yx =+ C . 1.234ˆyx =+ D . 1.235ˆyx =+ 2.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .3.某学校开展研究性学习活动,某同学获得一组实验数据如下表: x 1.99 3 4 5.16.12 y1.54.04 7.51218.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .22y x =-B .1()2xy =C .2y log x =D .()2112y x =- 4.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( ) A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<5.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③6.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .22y x =±C .3y x =±D .2y x =±7.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=,22MF NF =,则双曲线C 的离心率为( ). A .2B .3C .5D .68.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2π)的部分图象如图所示,则ω、φ的值分别是( )A .2,-3πB .2,-6π C .4,-6πD .4,3π 9.在ABC 中,若 13,3,120AB BC C ==∠=,则AC =( )A .1B .2C .3D .410.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( ) A .1x <-或4x >B .0x 或2x -C .0x <或2x >D .12x -或3x 11.已知锐角三角形的边长分别为2,3,x ,则x 的取值范围是( ) A 513x << B 135x < C .25x <<D 55x <<12.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( ) A .3B .2C .6D .5二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ . 14.设25a b m ==,且112a b+=,则m =______. 15.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.16.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.17.371()x x+的展开式中5x 的系数是 .(用数字填写答案)18.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.19.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________. 20.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 .三、解答题21.选修4-5:不等式选讲 设函数()|2||1|f x x x =-++.(1)求()f x 的最小值及取得最小值时x 的取值范围; (2)若集合{|()10}x f x ax +->=R ,求实数a 的取值范围.22.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.23.四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,3BAD π∠=,PAD ∆是等边三角形,F 为AD 的中点,PD BF ⊥.(1)求证:AD PB ⊥; (2)若E 在线段BC 上,且14EC BC =,能否在棱PC 上找到一点G ,使平面DEG ⊥平面ABCD ?若存在,求四面体D CEG -的体积. 24.选修4-5:不等式选讲:设函数()13f x x x a =++-. (1)当1a =时,解不等式()23f x x ≤+;(2)若关于x 的不等式()42f x x a <+-有解,求实数a 的取值范围.25.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率; 已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】 【分析】由题意得在线性回归方程ˆy bx a =+中 1.23b =,然后根据回归方程过样本点的中心得到a 的值,进而可得所求方程.【详解】设线性回归方程ˆy bx a =+中,由题意得 1.23b =, ∴ 1.23ˆy x a =+.又回归直线过样本点的中心()4,5, ∴5 1.234a =⨯+, ∴0.08a =,∴回归直线方程为 1.2308ˆ.0yx =+. 故选A . 【点睛】本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.2.A解析:A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值, 因此函数()1,0122,0xxx f x x >⎧=⊕=⎨≤⎩, 只有选项A 中的图象符合要求,故选A.3.D解析:D 【解析】 【分析】根据,x y 的数值变化规律推测二者之间的关系,最贴切的是二次关系. 【详解】根据实验数据可以得出,x 近似增加一个单位时,y 的增量近似为2.5,3.5,4.5,6,比较接近()2112y x =-,故选D.【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.4.B解析:B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<< {}2M N x x ∴⋃=≥-本题正确选项:B 【点睛】本题考查集合运算中的并集运算,属于基础题.5.A解析:A 【解析】 【分析】分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解. 【详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A. 【点睛】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.6.A解析:A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以12||F F ==c ⇒=因为2521a x a =-=⇒=,所以b =所以双曲线的渐近线方程为by x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a== 故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.8.A解析:A 【解析】 【分析】由函数f (x )=2sin (ωx+φ)的部分图象,求得T 、ω和φ的值. 【详解】由函数f (x )=2sin (ωx+φ)的部分图象知,3T 5π412=-(π3-)3π4=, ∴T 2πω==π,解得ω=2; 又由函数f (x )的图象经过(5π12,2),∴2=2sin (25π12⨯+φ), ∴5π6+φ=2kππ2+,k∈Z, 即φ=2kππ3-, 又由π2-<φπ2<,则φπ3=-; 综上所述,ω=2、φπ3=-. 故选A . 【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题.9.A解析:A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.10.C解析:C 【解析】 【分析】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,题目可以转化为找x≤-12或x≥3的必要不充分条件条件,依次分析选项即可得答案. 【详解】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,则2x 2-5x-3≥0⇔x≤12-或3x ,所以可以转化为找x≤-12或x≥3的必要不充分条件; 依次选项可得:x 1<-或x 4>是12x ≤-或x≥3成立的充分不必要条件; x 0≥或x 2≤-是12x ≤-或x≥3成立的既不充分也不必要条件x 0<或x 2>是12x ≤-或x≥3成立的必要不充分条件;x≤-12或x≥3是12x ≤-或x≥3成立的充要条件;【点睛】本题考查了充分必要条件,涉及一元二次不等式的解答,关键是正确解不等式2x 2-5x-3≥0.11.A解析:A 【解析】试题分析:因为三角形是锐角三角形,所以三角形的三个内角都是锐角,则设边3对的锐角为角α,根据余弦定理得22223cos 04x xα+-=>,解得x >x 边对的锐角为β,根据余弦定理得22223cos 012x β+-=>,解得0x <<x 的取值范x << A. 考点:余弦定理.12.D解析:D 【解析】由题意可知双曲线的渐近线一条方程为b y x a =,与抛物线方程组成方程组2,1b y xa y x ⎧=⎪⎨⎪=+⎩消y 得,2210,()40b b x x a a -+=∆=-=,即2()4b a =,所以e == D. 【点睛】双曲线22221x y a b-=(0a >,0b >)的渐近线方程为b y x a =±.直线与抛物线交点问题,直线与抛物线方程组方程组,当直线与抛物线对称轴平行时,直线与抛物线相交,只有一个交点.当直线与抛物线对称轴不平行时,当>0∆时,直线与抛物线相交,有两个交点. 当0∆=时,直线与抛物线相切,只有一个交点. 当∆<0时,直线与抛物线相离,没有交点.二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.14.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力 10【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,10m m m m a b+=+==∴= 10 【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.15.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A 时取得最小值由解得代入计算所以的最小值为故答案为解析:-1 【解析】 【分析】画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数1z x y 2=-+的最小值. 【详解】画出约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域如图所示,由图形知,当目标函数1z x y 2=-+过点A 时取得最小值,由{x 0x y 10=--=,解得()A 0,1-,代入计算()z 011=+-=-,所以1z x y 2=-+的最小值为1-. 故答案为1-.【点睛】本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.16.【解析】【分析】【详解】试题分析:当时的最大值为令解得所以a 的取值范围是考点:利用导数判断函数的单调性 解析:1(,)9-+∞ 【解析】【分析】【详解】 试题分析:2211()2224f x x x a x a ⎛⎫=-++=--++ ⎪⎝⎭'.当23x ⎡⎫∈+∞⎪⎢⎣⎭,时,()f x '的最大值为22239f a ⎛⎫=+ ⎪⎝⎭',令2209a +>,解得19a >-,所以a 的取值范围是1,9⎛⎫-+∞ ⎪⎝⎭. 考点:利用导数判断函数的单调性.17.【解析】由题意二项式展开的通项令得则的系数是考点:1二项式定理的展开式应用解析:35【解析】 由题意,二项式371()x x +展开的通项372141771()()r r r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =. 考点:1.二项式定理的展开式应用.18.【解析】依题意可得焦点的坐标为设在抛物线的准线上的射影为连接由抛物线的定义可知又解得点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用考查了学生数形结合思想和转化与化归思想设出点在抛物线的准【解析】依题意可得焦点F 的坐标为04a ⎛⎫ ⎪⎝⎭,, 设M 在抛物线的准线上的射影为K ,连接MK 由抛物线的定义可知MF MK =13FM MN =∶∶KN KM ∴=∶又01404FN K a a--==-,FN KN K KM ==-4a-∴=-a =点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用,考查了学生数形结合思想和转化与化归思想,设出点M 在抛物线的准线上的射影为K ,由抛物线的定义可知MF MK =,再根据题设得到KN KM =∶,然后利用斜率得到关于a 的方程,进而求解实数a 的值19.【解析】【分析】由圆的几何性质得圆心在的垂直平分线上结合题意知求出的垂直平分线方程令可得圆心坐标从而可得圆的半径进而可得圆的方程【详解】由圆的几何性质得圆心在的垂直平分线上结合题意知的垂直平分线为令 解析:22(2)10x y -+=.【解析】【分析】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,求出AB 的垂直平分线方程,令0y =,可得圆心坐标,从而可得圆的半径,进而可得圆的方程.【详解】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,AB 的垂直平分线为24y x =-,令0y =,得2x =,故圆心坐标为(2,0),所以圆的半径=22(2)10x y -+=.【点睛】本题主要考查圆的性质和圆的方程的求解,意在考查对基础知识的掌握与应用,属于基础题.20.【解析】试题分析:设等比数列的公比为由得解得所以于是当或时取得最大值考点:等比数列及其应用解析:64【解析】试题分析:设等比数列的公比为q ,由132410{5a a a a +=+=得,2121(1)10{(1)5a q a q q +=+=,解得18{12a q ==.所以2(1)1712(1)22212118()22n n n n n n n n a a a a q --++++-==⨯=,于是当3n =或4时,12na a a 取得最大值6264=.考点:等比数列及其应用三、解答题21.(1)min ()3f x =,此时x ∈[]1,2-(2)()1,2-【解析】【分析】(1)利用绝对值不等式公式进行求解;(2)集合(){}10x f x ax R +-=表示x R ∀∈,()1f x ax >-+,令()1g x ax =-+, 根据几何意义可得()y f x =的图像恒在()y g x =图像上方,数形结合解决问题.【详解】解(1)因为()()21213x x x x -++≥--+=,当且仅当()()210x x -+≤,即12x -≤≤时,上式“=”成立,故函数()21f x x x =++-的最小值为3,且()f x 取最小值时x 的取值范围是[]1,2-.(2)因为(){}10x f x ax R +-=,所以x R ∀∈,()1f x ax >-+. 函数()21f x x x =-++化为()21,13,1221,2x x f x x x x -+<-⎧⎪=-≤≤⎨⎪->⎩.令()1g x ax =-+,其图像为过点()0,1P ,斜率为a -的一条直线.如图,()2,3A ,()1,3B -.则直线PA 的斜率131120k -==-, 直线PB 的斜率231210k -==---. 因为()()f x g x >,所以21a -<-<,即12a -<<,所以a 的范围为()1,2-.【点睛】本题考查了绝对值不等式问题与不等式恒成立问题,不等式恒成立问题往往可以借助函数的图像来研究,数形结合可以将抽象的问题变得更为直观,解题时应灵活运用.22.(1)3x +y +2=0;(2)(x -2)2+y 2=8.【解析】【分析】(1) 直线AB 斜率确定,由垂直关系可求得直线AD 斜率,又T 在AD 上,利用点斜式求直线AD 方程;(2)由AD 和AB 的直线方程求得A 点坐标,以M 为圆心,以AM 为半径的圆的方程即为所求.【详解】(1)∵AB 所在直线的方程为x -3y -6=0,且AD 与AB 垂直,∴直线AD 的斜率为-3. 又∵点T (-1,1)在直线AD 上,∴AD 边所在直线的方程为y -1=-3(x +1), 即3x +y +2=0.(2)由360320x y x y --=⎧⎨++=⎩,得02x y =⎧⎨=-⎩, ∴点A 的坐标为(0,-2),∵矩形ABCD 两条对角线的交点为M (2,0),∴M 为矩形ABCD 外接圆的圆心,又|AM |()()22200222-++= ∴矩形ABCD 外接圆的方程为(x -2)2+y 2=8.【点睛】本题考查两直线的交点,直线的点斜式方程和圆的方程,考查计算能力,属于基础题.23.(1)证明见解析;(2)112. 【解析】【分析】(1)连接PF ,BD 由三线合一可得AD ⊥BF ,AD ⊥PF ,故而AD ⊥平面PBF ,于是AD ⊥PB ;(2)先证明PF ⊥平面ABCD ,再作PF 的平行线,根据相似找到G ,再利用等积转化求体积.【详解】连接PF ,BD,∵PAD ∆是等边三角形,F 为AD 的中点,∴PF ⊥AD ,∵底面ABCD 是菱形,3BAD π∠=,∴△ABD 是等边三角形,∵F 为AD 的中点,∴BF ⊥AD ,又PF ,BF ⊂平面PBF ,PF ∩BF =F ,∴AD ⊥平面PBF ,∵PB ⊂平面PBF ,∴AD ⊥PB .(2)由(1)得BF ⊥AD ,又∵PD ⊥BF ,AD ,PD ⊂平面PAD ,∴BF ⊥平面PAD ,又BF ⊂平面ABCD ,∴平面PAD ⊥平面ABCD ,由(1)得PF ⊥AD ,平面PAD ∩平面ABCD =AD ,∴PF ⊥平面ABCD ,连接FC 交DE 于H,则△HEC 与△HDF 相似,又1142EC BC FD ==,∴CH=13CF , ∴在△PFC 中,过H 作GH //PF 交PC 于G ,则GH⊥平面ABCD ,又GH ⊂面GED ,则面GED⊥平面ABCD ,此时CG=13CP, ∴四面体D CEG -的体积111311223382312D CEG G CED CED V V S GH PF --==⋅=⨯⨯⨯⨯⨯=. 所以存在G 满足CG=13CP, 使平面DEG ⊥平面ABCD ,且112D CEG V -=. 【点睛】 本题考查了线面垂直的判定与性质定理,面面垂直的判定及性质的应用,考查了棱锥的体积计算,属于中档题.24.(1)15[,]42(2)(5,3)-【解析】【分析】(1)通过讨论x 的范围,求出不等式的解集即可;(2)问题等价于关于x 的不等式14x x a ++-<有解,()min 14x x a++-<,求出a的范围即可.【详解】解:(1)()1323f x x x a x =++-≤+可转化为 14223x x x ≥⎧⎨-≤+⎩或114223x x x -<<⎧⎨-≤+⎩或12423x x x ≤-⎧⎨-≤+⎩, 解得512x ≤≤或114x ≤<或无解. 所以不等式的解集为15,42⎡⎤⎢⎥⎣⎦. (2)依题意,问题等价于关于x 的不等式14x x a ++-<有解,即()min 14x x a ++-<,又111x x a x x a a ++-≥+-+=+,当()()10x x a +-≤时取等号.所以14a +<,解得53a -<<,所以实数a 的取值范围是()5,3-.【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用。
四川省南江中学2018-2019学年上学期期中高考数学模拟题班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知一三棱锥的三视图如图所示,那么它的体积为()A.13B.23C.1D.22.已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是( )ABCD3.执行如图所示的程序,若输入的3x ,则输出的所有x的值的和为()A.243B.363C.729D.1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力. 4. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.5. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ).A. ]210,1(B. ]537,1(C. ]210,537[ D. ),210[+∞第Ⅱ卷(非选择题,共100分)6. 设集合A ={x |x =2n -1,n ∈Z },B ={x |(x +2)(x -3)<0},则A ∩B =( ) A .{-1,0,1,2} B .{-1,1} C .{1}D .{1,3}7. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力. 8. 已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( ) A .c a b >> B .a c b >> C .a b c >> D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力. 9. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.10.已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||||PF PA 的值最小时,PAF ∆的 面积为( )A.2B.2C.D. 4【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力. 11.执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.12.已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A .716-B .916-C .12-D .14-二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知函数21,0()1,0x x f x x x ⎧-≤=⎨->⎩,()21xg x =-,则((2))f g = ,[()]f g x 的值域为 .【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.14.当0,1x ∈()时,函数()e 1xf x =-的图象不在函数2()g x x ax =-的下方,则实数a 的取值范围是___________.【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.15.若全集,集合,则16.函数的最小值为_________.三、解答题(本大共6小题,共70分。
2019年高考数学模拟试卷(一)(文科)注意事项:1.本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分。
答卷前,考生务必将自己的 姓名、准考证号填写在本试卷和答题卡相应位置上。
2•回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需 改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第n 卷时,将答案写在答题卡上,写在本试卷上无效。
4•考试结束后,将本试卷和答题卡一并交回。
要求的。
3 .长方体内部挖去一部分的三视图如图所示,则此几何体的体积为A . 16— 3 8C . 16 —3、选择题:本题共12小题,每5分,在每小题给出的四个选项中,只有一项是符合题目已知集合A {1,2} , B {xZ |0 x 2},则 A BA. {0}B. {2}C . {0,1,3,4}D .已知i 为虚数单位,复数 z i (2i),则|z|B . .3C. ■■ 5D . 340 B . 3 32 D .—34.若 a (1,1), b A . a 3b(1, 1), c ( 2,4),则以a、b为基底表示的c等于B. a 3b C . 3a b D . 3a b高三数学(文)试题(第1页共10页)5.已知x, y满足x y 1,则z2x y的最小值为y 131A •—B •-C. 3D. 3226 •已知某程序框图如图所示,则执行该程序后输出的结果是彳1A • 1B •-2C. 1 D • 27 •朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升”。
其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升”,在该问题中第3天共分发了多少升大米?A • 192B. 213 C . 234D.2558 •定义在R上的函数f(x)在(4,)上为减函数,且函数y f(x4)为偶函数,则A • f(2) f(3)B. f (3)f(6) C . f(3) f(5)D.f(2) f(5)9 .若过点(2,0)有两条直线与圆x2y 2x 2y m 1 0相切,则实数m的取值范围是高三数学(文)试题(第2页共10页)B • (-1,+ )C・(-1,0)D・(-1,1)A • ( - ,-1)高三数学(文)试题(第3页共10页)高三数学(文)试题 (第3页共10页)10.把边长为3的正方形ABCD 沿对角线AC 对折,使得平面 ABC 平面ADC ,则三棱锥D ABC 的外接球的表面积为11•某次比赛结束后,记者询问进入决赛的甲、乙、丙、丁四名运动员最终冠军的获得者,甲说:我没有获得冠军;乙说:丁获得了冠军;丙说:乙获得了冠军;丁说:我没有获得冠军,这时裁判过来说:他们四个人中只有一个人说的是假话,成立的是13题〜第21题为必考题,每个试题考生都必须做答。
2019年高考数学一模试题(及答案)一、选择题1.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( )A .14-B .14C .23-D .232.若43i z =+,则zz=( ) A .1B .1-C .4355i + D .4355i - 3.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .4.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0D .存在x 0∈R ,使得x 02<05.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A .13B .12 C .23 D .346.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥7.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( ) A .6B .8C .26D .428.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}9.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .410.sin 47sin17cos30cos17-A .32-B .12-C .12D .3211.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .12.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是15.在ABC 中,60A =︒,1b =3sin sin sin a b cA B C ________.16.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .17.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 18.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________. 19.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.20.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)三、解答题21.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.22.已知椭圆22221(0)x y a b a b +=>>的离心率为63,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为22. (1)求椭圆的方程;(2)如图,斜率为k 的直线l 过椭圆的右焦点F ,且与椭圆交与,A B 两点,以线段AB 为直径的圆截直线1x =所得的弦的长度为5,求直线l 的方程.23.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与11A B 所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面111A B C ,求线段BM 的长.24.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.25.商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (1) 求的值;(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.2.D解析:D 【解析】 【详解】由题意可得 :5z ==,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.3.A解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.4.D解析:D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .5.B解析:B 【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B. 【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.6.D解析:D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.7.D解析:D 【解析】 【分析】2a b+≤转化为指数运算即可求解。
陕西省榆林市玉林南江高级中学2019年高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列四个图象,只有一个符合y=|k1x+b1|+|k2x+b2|﹣|k3x+b3|(k1,k2k3∈R+,b1b2b3≠0)的图象,则根据你所判断的图象,k1、k2、k3之间一定满足的关系是()A.k1+k2=k3 B.k1=k2=k3 C.k1+k2>k3 D.k1+k2<k3参考答案:A【考点】3O:函数的图象.【分析】由于k1,k2,k3为正实数,考虑当x足够小时和当x足够大时的情形去掉绝对值符号,转化为关于x的一次函数,通过观察直线的斜率特征即可进行判断.【解答】解:y=|k1x+b1|﹣|k2x+b2|+|k3x+b3|(其中k1>0,k2>0,k3<0,b1,b2,b3为非零实数),当x足够小时,y=﹣(k1+k2﹣k3)x﹣(b1+b2﹣b3),当x足够大时,y=(k1+k2﹣k3)x+(b1+b2﹣b3),可见,折线的两端的斜率必定为相反数,此时只有第2个图象符合条件.此时k1+k2﹣k3=0,即k1+k2=k3 ,故选:A.2. 关于x的方程()|x|+a﹣1=0有解,则a的取值范围是()A.0≤a<1 B.﹣1<a≤0 C.a≥1D.a>0参考答案:A【考点】根的存在性及根的个数判断.【分析】若关于x的方程()|x|+a﹣1=0有解,则关于x的方程()|x|﹣1=﹣a有解,进而可得a的取值范围.【解答】解:若关于x的方程()|x|+a﹣1=0有解,则关于x的方程()|x|﹣1=﹣a有解,∵()|x|∈(0,1],∴()|x|﹣1=﹣a∈(﹣1,0],∴0≤a<1,故选:A3. 如果函数f(x)=(1﹣2a)x在实数集R上是减函数,那么实数a的取值范围是()A.(0,)B.(,+∞)C.(﹣∞,)D.(﹣,)参考答案:A【考点】函数单调性的判断与证明;函数单调性的性质.【分析】根据指数函数的单调性与底数之间的关系确定底数的取值范围,即可求出实数a 的取值范围.【解答】解:∵函数f(x)=(1﹣2a)x在实数集R上是减函数,∴0<1﹣2a<1,解得0,即实数a的取值范围是(0,).故选A.4. For positive numbers and the operation ▲is defined as▲,what is ▲(2,▲(2,2))? ()A. B. 1 C. D. E. 2 参考答案:C5. 与角终边相同的角的集合是A. B.C. D.参考答案:A6. 的值为A.B.C.D.参考答案:D7. 已知函数f(x)=,则f(f(﹣3))的值为()A.﹣3 B.1 C.3 D.21参考答案:B【考点】函数的值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用分段函数的性质求解.【解答】解:∵函数f(x)=,∴f(﹣3)=(﹣3)2﹣4×(﹣3)=21,f(f(﹣3))=f(21)=1.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.8. 在不同的位置建立坐标系用斜二测画法画同一正△ABC的直观图,其中直观图不是全等三角形的一组是()参考答案:C9. 过点且与直线平行的直线方程是()A.B.C.D.参考答案:A略10. 设,则()A. B. C. D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 若f(x)=x2+a,则下列判断正确的是()A.f()=B.f()≤C.f()≥D.f()>参考答案:B【考点】二次函数的性质.【分析】利用作差法,即可判断两个式子的大小.【解答】解:f()﹣==≤0,∴f()≤,故选:B.12. Cos75°sin15°-cos15°sin105°的值为。
2019年南江县第四中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第 1 题:来源:江西省南昌市2018届高三数学上学期第一次晚练试题理试卷及答案已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(┐q);④(┐p)∨q中,真命题是( )A.①③ B.①④ C.②③ D.②④【答案】C解析当x>y时,-x<-y,故命题p为真命题,从而┐p为假命题.当x>y时,x2>y2不一定成立,故命题q为假命题,从而┐q为真命题.由真值表知,①p∧q为假命题;②p∨q为真命题;③p∧(┐q)为真命题;④(┐p)∨q为假命题.故选C.第 2 题:来源:河北省石家庄市2016-2017学年高二数学上学期期末考试试题理试卷及答案中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如下图所示),表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如6613用算筹表示就是,则9117用算筹可表示为A.B.C.D.【答案】第 3 题:来源:高中数学第三章导数及其应用单元测试新人教B版选修1_120171101258函数y=x3在(1,1)处的切线方程为( )A.y=2x-1 B.y=xC.y=3x-2 D.y=4x-3【答案】C第 4 题:来源:西藏拉萨中学2018_2019学年高一数学上学期期中试题函数的定义域为A.RB.C.D.【答案】C第 5 题:来源:福建省霞浦县2018届高三数学上学期第二次月考试题理已知,且为第二象限角,则A. B. C. D.【答案】B第 6 题:来源:河北省故城县2017_2018学年高二数学9月月考试题试卷及答案已知数列{a n}的通项公式是,则S n 达到最小值时,n的值是()A.23 B.24 C.25 D.26 【答案】C第 7 题:来源:重庆市渝中区高一(上)期末数学试卷(含答案解析)已知a=sin153°,b=cos62°,,则()A.a>b>c B.c>a>b C.b>c>a D.c>b>a【答案】D【解答】解:a=sin153°=sin27°,b=cos62°=sin28°,>=1,∴c>b>a.第 8 题:来源:山东省实验中学2019届高三数学4月上旬质量检测试卷理(含解析)设A. B.C. D.【答案】B【解析】【分析】分别求解出两个集合,根据交集定义求解出结果.【详解】因为所以本题正确选项:【点睛】本题考查集合运算中的交集运算,属于基础题.第 9 题:来源:山东省济南市2017_2018学年高二数学上学期开学考试试题试卷及答案在△ABC中,若则A=( )A. B. C. D.第 10 题:来源:贵州省铜仁市第一中学2018_2019学年高一数学下学期开学考试试题已知函数,若函数有3个零点,则实数m的取值范围().A.(0,1)B. C.[1,2) D . (1, 2)【答案】C第 11 题:来源:湖北省黄冈中学2016-2017学年高二数学上学期期末模拟测试试题试卷及答案(1)理过双曲线的右焦点作一条直线,当直线斜率为1时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为A.B.C.D.第II卷【答案】C第 12 题:来源:福建省莆田市2018届高三数学上学期暑期考试试题理试卷及答案.已知集合,,若,则的取值范围是()【答案】D第 13 题:来源:湖北省孝感市七校教学联盟2017届高三数学上学期期末考试试题文一个棱长为4的正方体涂上红色后,将其切成棱长为1的小正方体,置于一密闭容器搅拌均匀,从中任取一个,则取到两面涂红色的小正方体的概率为()A. B. C. D.【答案】B第 14 题:来源:山东省师范大学附属中学2019届高三数学第四次模拟试卷理(含解析)设函数是定义在R上的奇函数,当时,,则A. 2B. 1C.D.【答案】C【解析】根据题意,由函数的解析式可得的值,结合函数的奇偶性可得的值,则有,结合函数的解析式计算可得答案.【详解】根据题意,当时,,则,又由函数为奇函数,则,,故选:C.【点睛】本题考查函数的奇偶性与函数值的计算,关键掌握函数奇偶性的定义,属于基础题.第 15 题:来源:河北省石家庄市第四中学2018_2019学年高二数学上学期期中试题.同时掷3枚硬币,那么互为对立事件的是A. 最少有1枚正面和最多有1枚正面B. 最少有2枚正面和恰有1枚正面C. 最多有1枚正面和最少有2枚正面D. 最多有1枚正面和恰有2枚正面【答案】C由题意知至少有一枚正面包括有一正两反,两正一反,三正三种情况,最多有一枚正面包括一正两反,三反,两种情况,故A不正确,最少有2枚正面包括两正一反,三正与恰有1枚正面是互斥事件,不是对立事件,故B不正确,最多一枚正面包括一正两反,三反,最少有2枚正面包括2正和三正,故C正确,最多一枚正面包括一正两反,三反与恰有2枚正面是互斥的但不是对立事件,故D不正确,故选C.第 16 题:来源:山东省济南市2017_2018学年高二数学上学期开学考试试题试卷及答案已知△ABC中,AB=6,∠A=30°,∠B=120°,则△ABC的面积为( )A.9 B.18 C.9 D.18【答案】C第 17 题:来源:江西省新余市2016_2017学年高一数学下学期期末试卷文(含解析).等于()A.1 B.﹣1 C. D.【答案】C【考点】GO:运用诱导公式化简求值.【分析】由题意利用诱导公式,求得要求式子的值.【解答】解:sin=sin=sin=,故选:C.第 18 题:来源: 2017年高中数学第一章计数原理单元测评1(含解析)新人教A版选修2_3一次考试中,要求考生从试卷上的9个题目中选出6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是( )A.40 B.74C.84 D.200【答案】B解析:可按包括前5个题的个数分类,共有不同的选法C C+C C+C C=74种.第 19 题:来源:广东省深圳市普通高中2017_2018学年高二数学下学期4月月考试题8201805241400复平面内点A、B、C对应的复数分别为i、1、4+2i,由A→B→C→D按逆时针顺序作平行四边形ABCD,则||等于( )A.5 B.C. D.【答案】B【解析】第 20 题:来源:山东省新泰二中2018_2019学年高二数学上学期第三次阶段性测试试题已知函数是定义在上的单调函数,且对任意的正数都有若数列的前项和为,且满足则为( )A. B. C. D.【答案】D第 21 题:来源:安徽省合肥市2018届高三数学上学期第一次月考试题试卷及答案理设、、是的三个内角,下列关系恒成立的是()A. B.C. D.【答案】B第 22 题:来源:湖北省天门市、潜江市、应城市2018_2019学年高一数学下学期期中联考试题下列不等式中,正确的是①②③A.①③B.①②C.②③ D.①②③【答案】 A第 23 题:来源:北京市2016_2017学年高二数学下学期期中试题理函数f(x)=3+x lnx的单调递增区间为A. (0,)B. (e,+∞)C. (,+∞)D. (,e]【答案】C第 24 题:来源: 2017届山西省三区八校高三第二次模拟数学(理)试题含答案已知椭圆的左焦点为,有一小球A从处以速度v开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,小球半径忽略不计),若小球第一次回到时,它所用的最长时间是最短时间的5倍,则椭圆的离心率为A. B. C. D.【答案】D第 25 题:来源:重庆市万州三中2018_2019学年高二数学下学期期中试题理复数在复平面内对应的点在第( )象限。
2019年数学高考第一次模拟试题含答案一、选择题1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( )A . 1.2308ˆ.0yx =+ B .0.0813ˆ.2yx =+ C . 1.234ˆyx =+ D . 1.235ˆyx =+ 2.设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<3.设ω>0,函数y=sin(ωx+3π)+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是 A .23B .43C .32D .34.如果42ππα<<,那么下列不等式成立的是( )A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<<5.函数()()2ln 1f x x x=+-的一个零点所在的区间是( ) A .()0,1B .()1,2C .()2,3D .()3,46.已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A .2,13⎡⎫⎪⎢⎣⎭B .12,32⎡⎤⎢⎥⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦7.函数()1ln 1y x x=-+的图象大致为( ) A . B .C .D .8.已知非零向量a b ,满足2a b =,且b a b ⊥(–),则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b =( )A .31,2⎛⎫⎪⎪⎝⎭B .13,22⎛⎫ ⎪⎪⎝⎭ C .133,44⎛⎫⎪⎪⎝⎭D .()1,010.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2π)的部分图象如图所示,则ω、φ的值分别是( )A .2,-3πB .2,-6π C .4,-6πD .4,3π 11.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( )A .1x <-或4x >B .0x 或2x -C .0x <或2x >D .12x -或3x 12.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220B .2755C .2125D .27220二、填空题13.曲线21y x x=+在点(1,2)处的切线方程为______________. 14.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.15.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且2EF ,现有如下四个结论:AC BE ①⊥;//EF ②平面ABCD ;③三棱锥A BEF -的体积为定值;④异面直线,AE BF 所成的角为定值,其中正确结论的序号是______.16.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 17.已知函数()sin ([0,])f x x x π=∈和函数1()tan 2g x x =的图象交于,,A B C 三点,则ABC ∆的面积为__________.18.在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠=点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==则AE AF ⋅的值为 . 19.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.20.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.三、解答题21.在平面直角坐标系中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,0≤α<π).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为244cos 2sin ρρθρθ-=-.(Ⅰ)写出曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,且AB 的长度为5l 的普通方程. 22.已知数列{}n a 满足1112,22n n n a a a ++==+. (1)设2nn n a b =,求数列{}n b 的通项公式;(2)求数列{}n a 的前n 项和n S ; (3)记()()211422nnn n n nn c a a +-++=,求数列{}n c 的前n 项和n T .23.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为()5,0,离心率为5.(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.24.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:附:参考数据与公式 6.92 2.63≈,若 ()2~,X Nμσ,则①()0.6827P X μσμσ-<+=;② (22)0.9545P X μσμσ-<+=;③ (33)0.9973P X μσμσ-<+=.(1)根据频率分布直方图估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ()2,N μσ,其中μ近似为年平均收入2,x σ 近似为样本方差2s ,经计算得:2 6.92s =,利用该正态分布,求:(i )在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii )为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少? 25.在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 20l ρθθ+-=,M 为l 3与C 的交点,求M 的极径.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由题意得在线性回归方程ˆy bx a =+中 1.23b =,然后根据回归方程过样本点的中心得到a 的值,进而可得所求方程.【详解】设线性回归方程ˆy bx a =+中,由题意得 1.23b =, ∴ 1.23ˆy x a =+.又回归直线过样本点的中心()4,5, ∴5 1.234a =⨯+, ∴0.08a =,∴回归直线方程为 1.2308ˆ.0yx =+. 故选A . 【点睛】本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.2.D解析:D 【解析】 【分析】 【详解】 因为,,所以,,且,所以,,所以,故选D.3.C解析:C 【解析】 函数sin 23y x πω⎛⎫=++ ⎪⎝⎭的图象向右平移43π个单位后44sin 2sin 23333w y w x wx ππππ⎡⎤⎛⎫⎛⎫=-++=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以有43332013222w kk k w w k w ππ=∴=>∴≥∴=≥ 故选C4.C解析:C 【解析】 【分析】分别作出角α的正弦线、余弦线和正切线,结合图象,即可求解. 【详解】如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT , 很容易地观察出OM MP AT <<,即cos sin tan ααα<<. 故选C.【点睛】本题主要考查了三角函数线的应用,其中解答中熟记三角函数的正弦线、余弦线和正切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.5.B解析:B 【解析】 【分析】先求出(1)(2)0,f f <根据零点存在性定理得解.【详解】由题得()21ln 2=ln 2201f =--<, ()22ln3=ln3102f =-->,所以(1)(2)0,f f <所以函数()()2ln 1f x x x=+-的一个零点所在的区间是()1,2. 故选B 【点睛】本题主要考查零点存在性定理,意在考查学生对该知识的理解掌握水平,属于基础题.6.C解析:C 【解析】 如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=12F F =2c ,即椭圆上存在一点P ,使得PF 2=2c. ∴a-c≤2c≤a+c.∴e=1[,1)3c a ∈.选C. 【点睛】求离心率范围时,常转化为x,y 的范围,焦半径的范围,从而求出离心率的范围。
2019年南江中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第 1 题:来源:内蒙古包头市第四中学2018_2019学年高一数学上学期期中模拟测试试题(一)已知集合,,则()A. B. C. D.【答案】D第 2 题:来源:内蒙古赤峰市2017_2018学年高二数学上学期升学考试(一模)试题理在中,内角的对边分别为.若,且,则()A. B. C. D.【答案】A.第 3 题:来源:江西省南昌市八一中学、洪都中学、麻丘中学等六校2016_2107学年高二数学5月联考试题理(含解析)从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有1名女生的概率是()A. B. C. D.【答案】D【解析】,故选D.第 4 题:来源:湖南省长沙市2018届高三数学上学期7月摸底考试试题理(含解析)函数f(x)=sin ωx(ω>0)的图象向右平移个单位得到函数y=g(x)的图象,并且函数g(x)在区间上单调递增,在区间上单调递减,则实数ω的值为( )(A)1 (B) (C)2 (D)10【答案】C第 5 题:来源:河南省登封市2017_2018学年高一数学上学期第二次阶段检测试题试卷及答案设函数若,则( )A. B.C.D.【答案】 D解析:,若,即时,,解得,不符合题意,故舍去;若,即时,得,解得.故选D.第 6 题:来源:河北省景县2017_2018学年高一数学上学期第一次调研考试试题试卷及答案设函数则的值为()A. 94B.98C.99D.104【答案】B试题分析:第 7 题:来源:课时跟踪检测(18)三角函数的图象与性质试卷及答案.y=|cos x|的一个单调增区间是( )【答案】D 将y=cos x的图象位于x轴下方的图象关于x轴对称,x轴上方(或x轴上)的图象不变,即得y=|cos x|的图象(如图).故选D.第 8 题:来源: 2017届陕西省西安市高三数学下学期第二次模拟考试试题试卷及答案理已知的三边长成公差为的等差数列,且最大角的正弦值为,则这个三角形的周长是()(A)(B)(C)(D)【答案】A第 9 题:来源:山西省等五校2017届高三第五次联考数学试题(理)含答案某几何体的三视图如下图所示,则该几何体的外接球的表面积为A. B. C. D.【答案】A第 10 题:来源:江西省上饶市玉山县第一中学2018_2019学年高二数学下学期期中试题文(重点班)已知圆的极坐标方程为,则其圆心坐标为A. B. C. D.【答案】B第 11 题:来源:甘肃省兰州第一中学2018_2019学年高二数学上学期期中试题在△ABC中,若,则角B为 ( )A. B. C. D.【答案】D第 12 题:来源:广西钦州市钦州港区2017届高三数学12月月考试题理若非零向量满足,则与的夹角为()A. B. C. D.【答案】D第 13 题:来源:福建省三明市2017届高中毕业班5月质量检查文科数学试题含答案函数的图象大致是()A. B.C.D.【答案】C第 14 题:来源:福建省龙海市2018届高三数学上学期第二次月考试题理试卷及答案已知向量向量垂直,实数的值为()A. B.C. D.【答案】A第 15 题:来源:高中数学第三章导数及其应用3.3导数的应用3.3.2利用导数研究函数的极值课后导练新人教B版选修1_120171101249三次函数当x=1时有极大值4,当x=3时,有极小值0,且函数过原点,则此函数是( )A.y=x3+6x2+9xB.y=x3-6x2+9xC.y=x3-6x2-9xD.y=x3+6x2-9x 【答案】B解析:三次函数过原点,可设f(x)=x3+bx2+cx,f′(x)=3x2+2bx+c,由题设知,f′(1)=3+2b+c=0,f′(3)=27+6b+c=0,∴b=-6,c=9.∴f(x)=x3-6x2+9x;f′(x)=3x2-12x+9=3(x-1)(x-3).当x=1时,f(x)max=4;当x=3时,f(x)min=0,满足条件.第 16 题:来源:福建省龙海市程溪中学2016-2017学年高二数学上学期期末考试试题理函数的单调减区间是()A. B. C. D.【答案】A第 17 题:来源:湖南省长沙市雅礼中学2019届高三数学上学期月考试题二理正三棱锥S-ABC的外接球半径为2,底边长AB=3,则此棱锥的体积为A. B.或 C. D.或【答案】B第 18 题:来源: 2019高考数学一轮复习第2章函数的概念与基本初等函数第6讲对数与对数函数分层演练文设a=log510,b=log612,c=log714,则( )A.c>b>a B.b>c>a C.a>c>b D.a>b>c 【答案】D.因为a=log510=1+log52,b=log612=1+log62,c=log714=1+log72,又0<log25<log26<log27,所以log52>log62>log72>0,所以a>b>c,故选D.第 19 题:来源:黑龙江省哈尔滨市呼兰区第一中学2019届高三数学上学期第一次月考试题理定义在R上的函数f(x)的导函数为f′(x),f(0)=0.若对任意x∈R,都有f(x)>f′(x)+1,则使得f(x)+ex<1成立的x的取值范围为( )A.(-1,+∞) B.(-∞,0) C. (0,+∞) D.(-∞,1)【答案】C第 20 题:来源:辽宁省大连经济技术开发区得胜高级中学2019届高三数学上学期第二次月考试题理已知函数f(x)=x2-2x+4在区间[0,m](m>0)上的最大值为4,最小值为3,则实数m的取值范围是( )A.[1,2] B.(0,1] C.(0,2] D.[1,+∞)【答案】 A第 21 题:来源:河南省安阳市2017_2018学年高一数学9月月考试题试卷及答案已知函数的定义域是,则函数的定义域是()A. B.C. D.【答案】 C第 22 题:来源:山东省济南市2017_2018学年高二数学上学期开学考试试题试卷及答案在三角形ABC中,已知A,b=1,其面积为,则为( )A. B. C. D.【答案】B第 23 题:来源:浙江省金华市曙光学校2017_2018学年高二数学上学期期末考试试题. 函数的定义域为()A. B. C. D.【答案】D第 24 题:来源:黑龙江省双鸭山市2017_2018学年高二数学9月月考试题理试卷及答案圆C1:x2+y2+4x+8y-5=0与圆C2:x2+y2+4x+4y-1=0的位置关系为( )A.相交B.外切 C.内切D.外离【答案】C第 25 题:来源:重庆市铜梁县2018届高三数学11月月考试题理试卷及答案定义为个正数,,,…,的“均倒数”.若已知数列的前项的“均倒数”为,又,则( )A. B. C. D.【答案】C第 26 题:来源:广东省湛江市普通高中2018届高考数学一轮复习模拟试题试卷及答案03已知向量() A.—3 B.—2 C.1 D.-1【答案】A第 27 题:来源:湖北省六校联合体2017届高三4月联考数学试题(理)含答案函数在的图象大致为()【答案】C第 28 题:来源:甘肃省嘉峪关市2017_2018学年高二数学上学期期中试题试卷及答案文已知等差数列的公差为2,若成等比数列, 则等于()A. B. C. D.【答案】C第 29 题:来源:湖北省襄阳市2016_2017学年高二数学3月月考试题理试卷及答案椭圆的离心率为( )A. B. C. D.【答案】D第 30 题:来源: 2016_2017学年高中数学每日一题(3月20日_3月26日)试卷及答案新人教A 版必修3已知集合A={2,3,4,5,6,7},B={2,3,6,9},在集合A∪B中任取一个元素,则该元素是集合A ∩B中的元素的概率为A. B.C. D.【答案】C 【解析】根据题意,知A∪B={2,3,4,5,6,7,9},A∩B={2,3,6},所以由古典概型的概率公式得,所求的概率是.第 31 题:来源: 2019高考数学一轮复习第6章数列第4讲数列求和分层演练文20180910197Sn=+++…+等于( )【答案】B.由Sn=+++…+,①所以Sn=.第 32 题:来源: 2016_2017学年福建省厦门市高二数学试卷及答案下学期期中试题理的展开式中,的系数为()A.10B.20C.30D.60【答案】C第 33 题:来源:湖南省醴陵市2017_2018学年高一数学上学期期中试题试卷及答案函数y=的图象可能是()A. B.C. D.【答案】B第 34 题:来源:河南省开封市、商丘市九校2018_2019学年高一数学下学期期中联考试题若,则()A. B. C. D.【答案】D第 35 题:来源:安徽省滁州市定远县育才学校2018_2019学年高二数学下学期期末考试试题(实验班)理已知集合()A. B. C. D.【答案】A第 36 题:来源:河北省衡水中学2018届高三数学上学期五调考试试题理已知两点,若曲线上存在点P,使得,则正实数a的取值范围为A.(0,3] B.[1,3] C.[2,3] D.[1,2]【答案】B第 37 题:来源:重点班2017届高三数学一轮复习阶段检测试题一理试卷及答案如果函数y=f(x)在区间I上是增函数,而函数y=在区间I上是减函数,那么称函数y=f(x)是区间I上的“缓增函数”,区间I叫做“缓增区间”,若函数f(x)=x2-x+是区间I上的“缓增函数”,则“缓增区间”I为( )(A)[1,+∞) (B)[0,] (C)[0,1] (D)[1,]【答案】D解析:f(x)=x2-x+在区间[1,+∞)上是增函数,y==x-1+,则y′=-·=;故y==x-1+在[-,0),(0,]上是减函数.故“缓增区间” I为[1,].第 38 题:来源:湖南省涟源市第一中学2018_2019学年高二数学上学期第一次月考试题理若变量x,y满足则z=3x+2y的最大值是( )A.90 B.80 C.70 D.40【答案】C第 39 题:来源:四川省成都市郫都区2018届高三数学阶段测试(期中)试题理试卷及答案已知向量,,则=()A、 B、 C、 D、【答案】第 40 题:来源:河北省唐山市2017_2018学年高一数学上学期期中试题试卷及答案下列函数在定义域上是单调函数,又是奇函数的为A. B. C. D.【答案】D。