(1)求数列{ }的通项公式;
解由 + = 1,得−1 + −1 = 1 ≥ 2 ,
1
2
1
0,所以 =
−1
2
两式相减得 − −1 + = 0 ≥ 2 ,即 = −1 ≥ 2 .
1
2
当 = 1时,21 = 1,得1 = ≠
1
1
所以{ }是首项为 ,公比为 的等比数列,故
{ }是等比数列
前项和公式 若数列{ }的前项和 = ⋅ − (为常数且 ≠ 0, ≠ 0,1),则{ }是等比
法
数列
角度2 等比数列的判断
典例3已知数列{ }满足1 = 1,+1 = 2 + 1 ,设 =
.
(1)求1 ,2 ,3 的值;
+1
由条件可得
+1
=
2
,即+1
= 2 ,
又1 = 1,所以{ }是首项为1,公比为2的等比数列.
(3)求{ }的通项公式.
+ = + = ,所以 > , = ,所以 + = ,解得 = ±.当
= 时,由 = = ,可得 = ;当 = −时,由 = = ,可得 = −,所
以ቊ
= −,
= ,
或ቊ
解由条件可得+1 =
2 +1
⋅ .
将 = 1代入,得2 = 41 ,而1 = 1,所以2 = 4.将 = 2代入,得3 = 32 ,所以3 = 12.
从而1 = 1,2 = 2,3 = 4.
(2)判断数列{ }是否为等比数列,并说明理由;