移相全桥软开关DCDC变换器的研究
- 格式:pdf
- 大小:1.31 MB
- 文档页数:56
软开关双向DCDC变换器的研究一、本文概述随着电力电子技术的快速发展,DC/DC变换器在各种电源管理系统中扮演着越来越重要的角色。
特别是在电动车、可再生能源系统、数据中心以及航空航天等领域,DC/DC变换器的性能优化和效率提升成为了研究的热点。
传统的DC/DC变换器在开关切换过程中存在较大的开关损耗和电磁干扰,影响了其整体效率和稳定性。
因此,研究和开发新型的DC/DC变换器技术,特别是具有软开关特性的双向DC/DC变换器,对于提高电源系统的效率和可靠性具有重要的理论价值和实际应用意义。
本文旨在深入研究软开关双向DC/DC变换器的基本原理、拓扑结构、控制策略及其在实际应用中的性能表现。
文章首先介绍了DC/DC变换器的基本概念和分类,分析了传统DC/DC变换器存在的问题和挑战。
然后,重点阐述了软开关技术的原理及其在双向DC/DC变换器中的应用,包括软开关的实现方式、拓扑结构的选择以及相应的控制策略。
本文还将对软开关双向DC/DC变换器的性能评估方法进行探讨,包括效率、稳定性、动态响应等指标的分析和比较。
本文将通过仿真和实验验证,对所研究的软开关双向DC/DC变换器的性能进行验证和评估。
通过对比分析不同拓扑结构和控制策略下的实验结果,为软开关双向DC/DC变换器的优化设计和实际应用提供有益的参考和指导。
本文的研究成果将为电力电子技术的发展和电源系统的性能提升提供新的思路和解决方案。
二、软开关双向DCDC变换器的基本原理软开关双向DC-DC变换器是一种新型的电力转换装置,它结合了软开关技术和双向DC-DC变换器的优点,旨在提高转换效率、减小开关损耗和降低电磁干扰。
其基本原理主要涉及到软开关技术的运用以及双向DC-DC变换器的工作模式。
软开关技术通过在开关管电压或电流波形上引入零电压或零电流区间,实现了开关管的零电压开通(ZVT)或零电流关断(ZCS),从而极大地减小了开关损耗。
在软开关双向DC-DC变换器中,通过采用谐振电路、辅助开关或变压器等元件,实现了开关管的软开通和软关断,从而提高了变换器的效率。
移相全桥ZVSPWMDC/DC变换器的仿真分析作者:龙泽彪施博文来源:《消费导刊·理论版》2008年第17期[摘要]本文首先在研究硬开关的缺陷上,提出软开关技术。
对移相控制ZVS PWM DC/DC 变换器的工作原理进行分析研究的基础上,使用PSpice9.2计算机仿真软件对变换器的主电路进行仿真和分析,验证该新型DC/DC变换器的拓扑结构设计的正确性和可行性。
[关键词]软开关 DC/DC ZVS 移相控制 PSpice9.2作者简介:龙泽彪(1985-),男,湖北仙桃人,贵州大学电气工程学院在读硕士研究生,研究方向:异步电机控制;施博文(1985-),男,贵州大学电气工程学院在读硕士研究生,研究方向:电力电子与电气传动。
一、引言随着新型电力电子器件以及适用于更高频率的电路拓扑和新型控制技术的不断出现,开关电源朝着小型化、高效化、低成本、低电磁干扰、高可靠性、模块化、智能化的方向发展。
硬开关DC/DC变换器在电流连续工作模式下会遇到严重的问题,这一般都与有源开关器件的体内寄生二极管有关,其关断过程中的反向恢复电流产生的电流尖峰对开关器件有极大的危害。
本文在对DC/DC变换器的基本工作原理进行分析、研究的基础上,对已经出现的软开关DC/DC变换器拓扑结构进行分析研究,提出的一种新型的DC/DC变换器的拓扑结构,并进行深入的研究。
二、移相控制ZVS PWM DC/DC全桥变换器的工作原理移相控制ZVS PWM DC/DC全桥变换器(Phase-Shifted zero-voltage-switching PWMDC/DC Full-Bridge Converter,PS ZVS PWM DC/DC FB Converter),是利用变压器的漏感或原边串联的电感和功率管的寄生电容或外接电容来实现开关管的零电压开关,其主电路拓扑结构及主要波形如图1所示。
其中,D1~D4分别是S1~S4的内部寄生二极管,C1~C4分别是S1~S4的寄生电容或外接电容,Lr是谐振电感,它包含了变压器的漏感。
5kw移相全桥ZVSDCDC变化器(开关电源)的研究要点学校代码:10213国际图书分类号:621.3 密级:公开工学硕士学位论文5kW 移相全桥ZVS DC/DC 变换器的研究硕士研究生:刘鑫导师:马洪飞教授申请学位:工学硕士学科:电气工程所在单位:电气工程及自动化学院答辩日期:2011 年6 月授予学位单位:哈尔滨工业大学r the Master Degree in EngineeringRESEARCH ON 5kW PHASE-SHIFT FULL BRIDGEZVS DC/DC CONVERTERCandidate:Liu XinSupervisor:Prof.Ma HongfeiAcademic Degree Applied for:Master of EngineeringSpeciality:Power Electronics and ElectricDriversAffiliation:School of Electrical Engineering andAutomationDate of Defence:June, 2011Degree-Conferring-Institution:Harbin Institute of Technology哈尔滨工业大学硕士学位论文- I -摘要DC/DC 变换器是电力电子领域重要组成部分,在能源紧张的今天,提高DC/DC变换器的效率及功率密度,具有重要的意义。
功率器件的发展和软开关技术的提出使变换器高效高功率密度成为可能。
移相全桥ZVS DC/DC 变换器是一种能够实现软开关和大功率能量变换的变换器。
本文围绕移相全桥ZVS DC/DC 变换器的特点,分析了其工作原理、占空比丢失、变压器副边整流二极管振荡、滞后臂软开关实现条件等关键问题,并设计和制作了一款5kW 的原理样机。
第一章介绍了DC/DC 变换器的背景及发展方向,其中包括器件、软开关技术和目前DC/DC 变换器研究的热点。
双重移相控制的双向全桥DCDC变换器及其功率回流特性分析一、本文概述本文旨在对双重移相控制的双向全桥DCDC变换器进行深入研究,并探讨其功率回流特性。
随着电力电子技术的快速发展,DCDC变换器作为能源转换与管理的核心组件,广泛应用于电动汽车、可再生能源系统、数据中心等众多领域。
其中,双向全桥DCDC变换器因其高效率、高功率密度和灵活的能量双向流动特性而受到广泛关注。
双重移相控制策略作为一种先进的调制方法,能够有效优化双向全桥DCDC变换器的性能。
它通过独立控制两个桥臂的移相角,实现输出电压和电流的精确调节,同时提高变换器的整体效率。
然而,双重移相控制策略也带来了复杂的功率回流问题,即在变换器工作过程中,部分功率会在不同桥臂之间回流,导致能量损失和效率下降。
因此,本文将对双重移相控制的双向全桥DCDC变换器的功率回流特性进行深入分析。
我们将建立变换器的数学模型,明确功率回流产生的机理和影响因素。
然后,通过仿真和实验验证,研究功率回流对变换器性能的影响程度,并提出相应的优化措施。
我们将总结双重移相控制策略在双向全桥DCDC变换器中的应用前景,为相关领域的研究和实践提供参考。
二、双重移相控制的双向全桥DCDC变换器基本原理双重移相控制的双向全桥DCDC变换器是一种高效、灵活的电能转换装置,能够实现双向的电能传输和功率回流。
其基本原理在于通过两个独立的移相控制策略,分别控制全桥变换器的两个桥臂,从而实现输入与输出之间的电压和电流的灵活调节。
变换器由两个全桥电路组成,每个全桥电路包括四个开关管,通过控制开关管的通断状态,可以实现电能的输入和输出。
双重移相控制策略则通过独立控制两个全桥电路的移相角,实现电能的高效转换。
在功率回流过程中,双重移相控制策略可以有效地调整回流电流的大小和方向,从而实现功率的高效回流。
具体而言,当变换器工作在逆变状态时,通过调整移相角,可以控制回流电流的大小和方向,使其与输入电流相匹配,从而实现功率的高效回流。
移相全桥ZVZCSDC/DC变换器综述摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。
关键词:移相控制;零电压零电流开关;全桥变换器 1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。
ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。
图1 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。
即当原边电流减小到零后,不允许其继续反方向增长。
原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;图2 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。
图3 2 电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考。
图4 1)NhoE.C. 电路如图1所示[1]。
该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。
这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。
变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。
引言移相全桥ZVS DC-DC变换器是目前应用最广泛的软开关电路之一。
作为一种具有优良性能的移相全桥变换器,其两个桥臂的开关管均在零电压软开关条件下运行,开关损耗小,结构简单,顺应了直流电源小型化、高频化的发展趋势,因此在中大功率DC-DC变换场合得到了广泛应用,而系统数字化控制可进一步提高系统的可靠性。
数字化系统具备完整的可编程能力,它使程序修改、算法升级、功能移植都非常容易,相对于模拟控制方式具有明显的优势。
DC-DC变换器的数字化控制是当前的研究热点之一。
本文分析了主电路原理,采用TMS320LF2407作为主控芯片实现了ZVS DC-DC变换器的全数字控制,并给出了实验结果。
1 主电路拓扑及工作原理ZVS PWM DC-DC全桥变换器的主电路结构如图1所示,其主要波形如图2所示。
由图1可见,电路结构与普通双极性PWM变换器类似。
Q1、D1和Q4、D4组成超前桥臂、Q2、D2和Q3、D3组成滞后桥臂;C1~C4分别是Q1~Q4的谐振电容,包括寄生电容和外接电容;Lr是谐振电感,包括变压器的漏感;T副方和DR1、DR2组成全波整流电路,Lf、Cf组成输出滤波器,R1是负载。
Q1和Q3分别超前Q4和Q2一定相位(即移相角),通过调节移相角的大小来调节输出电压。
由图2可见,在一个开关周期中,移相全桥ZVS PWM DC-DC变换器有12种开关模态,通过控制4个开关管Q1~Q4在A、B两点得到一个幅值为Vin的交流方波电压;经过高频变压器的隔离变压后,在变压器副方得到一个幅值为Vin/K的交流方波电压,然后通过由DR1和DR2构成的输出整流桥,得到幅值为Vin/K的直流方波电压。
这个直流方波电压经过 Lf和Cf 组成的输出滤波器后成为一个平直的直流电压,其电压值为Uo=DVin/K(D是占空比)。
Ton是导通时间Ts是开关周期(T=t12- t0)。
通过调节占空比D来调节输出电压Uo。
由波形图可见,移相全桥电路控制方式的特点是:①在一个开关周期Ts内,每个开关导通时间都略小于Ts/2,而关断时间略大于Ts/2。
引言随着计算机与通信技术的飞速发展,作为配套设备的开关电源也获得了长足进步,并随着新器件、新理论、新电磁材料和变换技术以及各种辅助设计分析软件的不断问世,开关电源的性能不断提高。
本文介绍一种新型的高频DC/DC开关变换器,并成功地应用在军用充电机上。
DC/DC变换器主电路改进型移相全桥ZVS DC/DC变换器主电路结构和各点波形对照如图1、图2所示。
由于电路工作状态在一个周期内可以分为两个完全一样的过程,所以以下仅仅分析半个周期的情况,而这半个周期又可分为以下三种开关模态。
● 开关模态1,t0<t<t1,其中t1=DT s/2此时Q1和Q4同时导通,变压器副边电感L1和整流管D S2导通,原边能量向负载端传递。
此模态的等效电路见图3。
其中,a为变压器变比,V in是直流母线电压,I1和I2分别是电感L1和L2电流(L1=L2=LS),此时有等式(1)成立。
(1)(2)I p(t)=aI1(t)(3)当Q4关断时该模态过程结束。
● 开关模态2,t1<t<t2,其中t2≤T s/2在t1时刻关断Q4,此时副边电感L1中储存的能量给Q4电容(或并联电容)充电,同时将Q3两端电容电荷放掉。
为了实现软开关,Q4关断和Q3开通之间至少要存在一死区时间Δt1,使得在Q3开通前D3首先导通,且有下式成立。
I p1Δt1=2C eff V in(4)其中C eff是开关管漏源两端等效电容,I P1为t1时刻变压器原边流过电流。
当D3导通后,变压器副边两个二极管D S1和D S2同时导通,电路工作在续流状态。
此时等效电路如图4所示。
此时有如下电路方程成立。
(5)(6)(7)(8)r t=r mosfet+r xfmr (9)其中D为脉冲占空比,f S为电路工作频率,L’ik为主边变压器漏感(或与外接电感的串联值),rt是变压器原边等效电阻,τ是原边等效电流衰减时间常数,Vfp是反并联二极管导通压降。
116AUTO TIMEAUTOMOBILE DESIGN | 汽车设计移相全桥ZVS 控制的电动汽车DC/DC 转换器设计研究王迎斌南京长安汽车有限公司 江苏省南京市 211200摘 要: 本文采用移相全桥控制策略,设计了一种应用于电动汽车的DC/DC 变换器并能实现功率开关的零电压导通。
本文对其进行了简要介绍移相全桥ZVS-DC 变换器的拓扑结构。
制造了一个原型进行了一系列的实验。
最终的实验结果与仿真结果相一致,且满足要求设计要求,证明设计方案的可行性。
关键词:移相全桥 电动汽车 拓扑结构 ZVS 控制1 引言伴随着全球能源危机情况的日益严重,节能环保汽车需求不断增加,大力发展电动汽车已成为国家重要战略的目标之一,而作为电动汽车核心部件的DC/DC 转换器,对其进行更深入的研究和改进也变得愈发迫切。
开关电源由于效率高、可靠性好等优点近年来逐渐受到设计人员的关注,其高频状态下的功率器件具有非线性特性,寄生电路参数在高频工况下效应明显,可以通过平稳的系统操作达到高效传输的目的。
在此设计中,相移全桥ZVS DC/DC 设计了电动汽车用变频器。
相移全桥ZVS DC/DC 转换器适用于中功率和大功率场合。
它可以充分利用功率器件的寄生参数来实现零电压开关并提高开关的开关频率[1]。
2 移相全桥ZVS DC / DC 转换器的结构和特征DC/DC 转换器可以将不可调节的直流电压转换成可调节的直流电压。
随着电动汽车的发展,DC/DC 转换器越来越多地应用于电动汽车中广泛。
由于动力电池的高压电源可以转换为低压电源通过DC/DC 转换器可以替代传统车辆中的小型发电机车辆的布局和结构可以优化。
相移全桥ZVS DC/DC 转换器的拓扑如图1所示。
全桥逆变器电路用于变压器的一次电路。
Q 1,Q 2,Q 3和Q 4是功率器件,例如IGBT 或MOSFET。
D 1,D 2,D 3和D 4是Q i 的寄生二极管分别。
C i 是寄生电容。