奥数举一反三分数简便运算
- 格式:pptx
- 大小:680.15 KB
- 文档页数:18
小学六年奥数举一反三中经典习题解题方法与步骤一、简便运算。
1、加法运算定律:交换律(a+b=b+a)、结合律(a+b+c=a+(b+c))。
2、乘法运算定律:交换律(a×b=b×a)、结合律(a×b×c=a×(b×c))、分配律【(a×(b+c) =a×b+a×c)、变式一:a×(b-c) =a×b-a×c、变式二:a×b+a=a×(b+1)】。
3、减法运算规律:a-b-c=a-(b+c)、a-(b-c)=a-b+c。
4、除法运算规律:a÷b÷c=a÷(b×c)5、平方差公式:=(a+b)(a-b)注意:稍微复杂点题目,变式后,方可运用以上定律进行简算;除此之外,变式后,可抵消,如1/6=1/2-1/3。
1 2 +14+18+116+132+1644445×37 27×1526166120÷41 1998÷199819981999二、面积、表面积、体积计算。
1、三角形面积:s=ah÷2 ;定律:①等底等高的两个三角形面积相等。
②等底(或等高)的两个三角形,高(或底)与面积成正比。
2、长方形面积:s=ab;长方体表面积:s=(ab+ah+bh)×2;体积:v=abh或sh3、正方形面积:s=aa;正方体表面积:s=6aa;体积:v=aaa4、圆的周长:c=πd=2πr;圆面积公式s=πrr;圆柱表面积:s=2πrr+2πrh;圆柱体积:v=sh或πrrh5、圆锥体积:v=1/3πrrh;注意:面积计算时,注意弄清阴影部分面积与正图形之间的关系;表面计算时关键弄清楚计算那几个面的面积;解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积。
- 1 -第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
第2讲 简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)练习1:计算下面各题。
1、6.73-1782+(3.27-1791)2、957-(3.8+951)-5113、14.15-(877-20176)-2.125【例题2】计算21333387×79+790×416666练习2:计算下面各题:1、 3.5×411+125%+211÷542、975×0.25+439×76-9.753、529×425+4.25÷601【例题3】计算:36×1.09+1.2×67.3练习3:计算:1、 45×2.08+1.5×37.62、 52×11.1+2.6×7783、 48×1.08+1.2×56.8【例题4】计算:533×5225+37.9×526练习4: 计算下面各题:1、6.8×16.8+19.3×3.22、138137139 +137×13813、4.4×57.8+45.3×5.6【例题5】计算81.5×15.8+81.5×51.8+67.6×18.5 练习5:1、53.5×35.3+53.5×43.2+78.5×46.52、235×12.1++235×42.2-135×54.3三、课后作业 1、13713-(414+1373)-0.752、 0.9999×0.7+0.1111×2.73、 72×2.09-1.8×73.64.3.75×735-3/8×5730+16.2×62.5第2讲简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
六年级奥数举一反三第3周简便运算专题简析;计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。
例题1。
计算;1234+2341+3412+4123简析 注意到题中共有4个四位数,每个四位数中都包含有1、2、3、4这几个数字,而且它们都分别在千位、百位、十位、个位上出现了一次,根据位值计数的原则,可作如下解答;原式=1×1111+2×1111+3×1111+4×1111=(1+2+3+4)×1111=10×1111=11110练习11,23456+34562+45623+56234+623452,45678+56784+67845+78456+845673,124,68+324,68+524,68+724,68+924,68例题2。
计算;245×23,4+11,1×57,6+6,54×28 原式=2,8×23,4+2,8×65,4+11,1×8×7,2=2,8×(23,4+65,4)+88,8× 7,2=2,8×88,8+88,8×7,2=88,8×(2,8+7,2)=88,8×10=888练习2计算下面各题;1,99999×77778+33333×666662,34,5×76,5-345×6,42-123×1,453,77×13+255×999+510例题3。
计算1993×1994-11993+1992×1994原式=(1992+1)×1994-11993+1992×1994=1992×1994+1994-11993+1992×1994=1练习3计算下面各题;1,362+548×361362×548-186 2, 1988+1989×19871988×1989-1 3, 204+584×19911992×584-380 -1143例题4。
小学(xiǎoxué)奥数举一反三(六年级)1-20一、知识(zhī shi)要点定义新运算是指运用某种特殊符号来表示特定的意义,从而(cóng ér)解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式(suànshì)含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为(rénwéi)的、临时性的运算形式,它使用的是一些特殊的运算符号,如;*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练〔例题1〕假设a*b=(a+b)+(a-b),求13*5和13*〔5*4〕。
〔思路导航〕这题新运算被定义为;a*b等于a和b两数之和加上两数之差。
这里“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*〔5*4〕中,就要先算小括号里的〔5*4〕。
练习1;1,将新运算“*”定义为;a*b=(a+b)×(a-b),。
求27*9。
2,设a*b=a2+2b,那么求10*6和5*〔2*8〕。
3,设a*b=3a-b×1/2,求〔25*12〕*〔10*5〕。
〔例题2〕设p、q是两个数,规定;p△q=4×q-(p+q)÷2。
求3△(4△6)。
〔思路导航〕根据定义先算4△6。
在这里“△”是新的运算符号。
练习2;1.设p 、q 是两个数,规定p △q =4×q -〔p+q 〕÷2,求5△〔6△4〕。
2.设p 、q 是两个数,规定p △q =p2+〔p -q 〕×2。
求30△〔5△3〕。
3.设M 、N 是两个(li ǎn ɡ ɡè)数,规定M*N =M/N+N/M ,求10*20-1/4。