小学奥数 分数的简便运算
- 格式:docx
- 大小:48.19 KB
- 文档页数:3
对于运用定律和性质以及数的特点进行巧算和简算,其实大家并不陌生。
今天我们主要是来学习另一种巧算,运用拆分法进行分数的简便运算。
运用拆分法解题主要是拆开后的一些分数相抵消,达到简化运算的目的。
裂项
裂项——实质上是将数列中的每项分解,然后重新组合,使之能消去一些项,最终达到求和的目的。
裂差
裂差——就是把一个分数写成两个单位之差的形式。
分数裂差的两种形式
①当分子为1时;如:
②分数不一定是1哦!只要能写成差的形式,都可以进行裂差。
如:
我们来总结一下,可以进行裂差的分数特点:
①分母可以写成两个数的乘积 ②分子恰好是这两个数的差
裂差的标准模式:
需要变形的分数裂差
如果原题没有给你差的裂项符合模式,可以通过构造标准模式得到两个分数差的形式,例如:
①有积的形式,但是没有差的形式:
②通过拆数,来得到裂差模式:
牛刀小试。
小学六年级奥数简便运算(含答案)work Information Technology Company.2020YEAR简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。
所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。
1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。
所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = 1.2×30。
六年级分数简便运算奥数题及答案(1)1/1*3+1/2*4+1/3*5+1/4*6+1/5*7......1/98*100+1/99*101=(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+……+1/98-1/100+1/99-1/101)÷2=(1+1/2-1/100-1/101)÷2=15049/10100÷2=15049/20200(2)6分之1+12分之1+24分之1+48分之1+96分之1+192分之1=1/6×(1+1/2+1/4+1/8+1/16+1/32)=1/6×(1-1/32)=1/6-1/192=31/192(3)1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+4/(1×2×3×4×5)+5/(1×2×3×4×5×6)+6/(1×2×3×4×5×6×7)= 1-1/(1×2)+1/(1×2)-1/(1×2×3)+1/(1×2×3)-1/(1×2×3×4)+1/(1×2×3×4)-1/(1×2×3×4×5)+1/(1×2×3×4×5)-1/(1×2×3×4×5×6)+1/(1×2×3×4×5×6)-1/(1×2×3×4×5×6×7)=1-1/(1×2×3×4×5×6×7)=1-1/5040=5039/5040(4)6360/39)/(1600/39)=6360/1600=3.975一、工程问题甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时开启甲乙两水管,5小时后,再开启排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
六年级奥数-分数的速算与巧算教学目标本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型, 1·裂项;是计算中需要发现规律·利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力 2·换元;让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3·循环小数与分数拆分;掌握循环小数与分数的互化,循环小数之间简单的加·减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4·通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨一·裂项综合 (一)·“裂差”型运算 (1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即;1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有;1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征;(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
(二)·“裂和”型运算;常见的裂和型运算主要有以下两种形式;(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比;裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
分数简便运算(二)【名师解析】分数计算是小学数学学习和重要内容,也是数学竞赛的重要内容之一。
要使计算准确、快速,关键在于掌握运算技巧。
观察算式的特点及规律,灵活地运用运算定律和性质,对启迪思维,提高应变能力,培养综合分析与推理能力都有很大的帮助。
常用的主要技巧:逆用乘法分配律;代换法;转化法。
【例题精讲】例1、代换法)413121()514131211()51413121()4131211(++⨯++++-+++⨯+++练习、)20021.....413121()20031.....4131211()20031.....413121()20021.....4131211(++++⨯+++++-++++⨯+++++20071 (14131111120071) (1413121)++++++++++例2、(等差数列)100999843211543211432113211211++++++++++++++++++++++ΛΛΛΛ练习、100986421864216421421+++++++++++++ΛΛ10011002100310010010031002100144434241313233323121222111++++++++++++++++++++++ΛΛΛΛΛΛ例3、(巧分类)2222222612612612617777772525252525225225225211234565432⨯⨯练习、3213213213211212121221212121211211211211⨯ 9999999977777777543211234567876⨯8888888888888888123456787654321⨯++++++++++++++例4、(裂差)50491...431321211⨯++⨯+⨯+⨯ 5614213012011216121++++++99971...751531311⨯++⨯+⨯+⨯练习、100991 (13)1211211111101⨯++⨯+⨯+⨯100981...861641421⨯++⨯+⨯+⨯ 156113211101901721++++例5、(裂和)561542133011209127311-+-+-练习、81]831)561054291307720631249635[(÷--+-+-【选讲】(等比数列)1001003231212131313131⨯++++++Λ 512125611281641321161814121++++++++练习:384119219614812411216131+++++++ 1001003271616571717171⨯++++++Λ【综合精练】12817641632151614813412211++++++6059605860260154535251434241323121+++++++++++++++ΛΛΛΛ999897432116543211543211432113211++++++++++++++++++++++++++ΛΛΛΛ6866766647867647427⨯+⨯++⨯+⨯+⨯ΛΛ10297197921171211271721⨯+⨯++⨯+⨯+⨯ΛΛ3512787665774201+-+- 9172175615421330112091276523+-+-+-+-32336255321952814324992063163512158-+-+-+- 44735228315861--++)7665544332()7665544332211(21)766554433221()766554433221(2++++⨯++++++-⨯+++++++++++)947331()947352311(53)94735231()94735231(2++⨯++++-⨯+++++++11112111311143114120092009++++++++++m m 5141415151515132⨯++++++Λ【挑战竞赛】=⨯+++⨯++⨯++⨯+2003200220032002 (43433232212122222222)分数简便运算(二)【名师解析】分数计算是小学数学学习和重要内容,也是数学竞赛的重要内容之一。
六年级奥数教案第三单元巧算求和(二)教学目标:巧妙的运用分数的拆分来进行简便运算。
教学内容:教科书第10页例1、例2和自主检测。
教学重难点:能够灵活运用此方法进行这一类型的简便计算。
教学方法:讲授法、练习法教学过程:步骤教师行为学生行为新课教学出示例1计算1/2+1/6+1/12+1/20常规分析:按照常规方法,这是一题普通的异分母分数加法,我们一般采用通分的方法。
1/2+1/6+1/12+1/20=60/120+20/120+10/120+6/120=96/120=4/5创新点拨:仔细观察每个分数有什么特殊的地方,不难看出,分子都是1,而分母可以写成1×2,2×3,3×4,4×5,即每个分母都可以写成两个连续自然数的积,于是每个分数都可以拆成两个分数的差:1/2=1/1×2=1-1/2,1/6=1/2×3=1/2-1/3,1/12=1/3×4=1/3-1/4,1/20=1/4×5=1/4-1/5。
所以可以引导学生作如下解答:1/2+1/6+1/12+1/20=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5=1-1/5=4/5出示例2计算2/3×5+2/5×7+2/7×9+2/9×11常规分析:异分母分数相加,先通分,再相加,比较麻烦。
创新点拨:仔细观察不难发现,每个分数的分子都是2,而分母都是两个自然数的积,而分子恰好等于分母的两个自然数的差。
5-3=2,7-5=2,9-7=2,11-9=2,于是有解答:2/3×5+2/5×7+2/7×9+2/9×11=1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11=1/3-1/11=8/33小结:在做分数加法运算时,将其中一些分数适当拆开后的一些分数可以相互抵消,以达到简化运算的目的。
六年级奥数之“分数运算中的技巧”专题主讲人:刘紫涵 审核人:孙蕾 一、专题分析:二、题型分类汇编:➢ 分数简便运算常见题型题型一:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。
题型二:乘法分配律的应用例题:1)27)27498(⨯+2)4)41101(⨯+ 3)16)2143(⨯+涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
题型三:乘法分配律的逆运算(提取公因数)例题:1)213115121⨯+⨯ 2)61959565⨯+⨯ 3)751754⨯+⨯涉及定律:乘法分配律逆向定律 )(c b a c a b a ±=⨯±⨯基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。
题型四:添加因数“1”例题:1)759575⨯- 2)9216792⨯- 3)23233117233114+⨯+⨯涉及定律:乘法分配律逆向运算基本方法:添加因数“1”,将其中一个数n 转化为1×n 的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。
题型五:数字化加式或减式 例题:1)16317⨯ 2)12612447⨯ 3)353436⨯涉及定律:乘法分配律逆向运算基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。
注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化。
例如:999可化为1000-1。
其结果与原数字保持一致。
题型六:带分数化加式例题:1)513226⨯2)351213⨯ 3)135127⨯涉及定律:乘法分配律基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算。