计算固体力学
- 格式:doc
- 大小:31.00 KB
- 文档页数:4
计算固体力学1 固体力学固体力学是力学中一个重要的分支,也是集结材料力学与固体机械的重要领域。
它的应用涉及到各种工程结构的受力分析和力学性能分析。
它的研究内容包括电子、结构体系、固体表面等,涉及到材料学、力学学等诸多领域。
2 固体力学研究内容(1)材料力学基础:主要从力学和材料力学的角度研究固体和气体表现出来的力学性质和性能,特别是建立力学性能和材料结构之间的关系;(2)结构力学理论:研究各种形状的固体的运动,及其受力时的挠度、变形等现象,重点研究各种工程结构的稳定性问题,是由有限元法、薛定谔方程法以及数值分析和计算机辅助分析方法进行研究;(3)失效机理:研究固体和复合材料受力时的破裂机理,揭示固体变形过程中产生的应力和应变规律,综合分析材料应力应变与失效之间的关系及对固体力学性能的数值预测;(4)智能体系:研究多元复合材料智能体系的结构的机械特性,包括结构的可控变形、热激励下的变形行为等,及其在工程结构上的应用;3 固体力学在工程中的应用(1)结构受力安全性评估:应用固体力学对工程结构受力性能进行安全性评估,以确保结构的安全;(2)结构发现分析:应用固体力学技术,研究结构变形的方向,时间序列发掘结构的变形规律,提高结构的可靠性;(3)固体表面加工:应用固体力学的失效机理,对固体表面进行加工,研究工具对表面的接触状态及其加工过程,将加工表面质量提升到新的水平;(4)碰撞性能分析:应用固体力学和有限元法,研究结构在各种外部环境下的碰撞性能,确定碰撞参数,评价碰撞参数对结构的影响,从而通过提高结构碰撞性能来获得更好的强度、耐久性和使用寿命。
有了固体力学的研究成果,为结构分析和力学效应的预测提供了可靠的理论和计算的支撑,使固体力学在工程结构设计中发挥了重要的作用。
计算固体力学引言固体力学是力学中的一个重要分支,研究固体物体在外力作用下的力学行为以及力学参数的计算。
在工程领域中,准确计算固体的力学性能对于设计和优化结构至关重要。
本文将介绍固体力学的基本概念和计算方法。
固体力学的基本概念1.应力和应变:应力指的是材料内部单位面积上的力的作用,用于描述固体的承载能力;应变指的是固体在外力作用下的形变程度,用于描述固体的变形性能。
2.弹性力学:弹性力学研究固体的弹性行为,即固体在外力作用下,恢复到初始形状的能力。
弹性力学参数包括弹性模量、剪切模量和泊松比等。
3.屈服、塑性和破裂:当外力超过固体的弹性限度时,固体会发生塑性变形。
屈服点是指材料开始发生塑性变形的临界点。
固体在外力作用下超过其塑性限度时,会发生破裂。
固体力学的计算方法1.应力计算:应力可以通过外力和物体的几何形状计算得到。
常见的计算方法有静力学方法和有限元方法等。
–静力学方法:根据物体受力平衡的条件,可以得到物体内部的应力分布。
常见的静力学方法有力的分解、受力分析和力的平衡等。
–有限元方法:将物体划分成许多小的有限元,通过数值计算方法求解每个有限元的应力,然后形成整体的应力分布图。
2.应变计算:应变可以通过物体的变形情况计算得到。
常见的计算方法有静力学方法和光学方法等。
–静力学方法:利用物体的几何形状和变形情况,可以计算得到物体内部的应变分布。
–光学方法:利用光的折射原理,通过测量物体在外力作用下的形变情况,可以计算得到物体的应变分布。
3.强度计算:固体的强度是指固体在外力作用下的承载能力。
强度计算是根据应力和材料的弹性参数进行计算。
常见的强度计算方法包括极限状态设计和使用安全系数等。
4.被动元件计算:固体力学还应用于计算和设计各种被动元件,如弹簧、梁、柱等。
根据被动元件的材料和几何特征,可以计算其应力、应变和变形等参数。
结论固体力学是研究固体物体力学行为以及力学参数计算的重要学科,在工程领域有广泛的应用。
计算固体力学由于工程设计的巨大市场需要,有限元软件的发展是非常迅速。
利用有限元软件解决工程和科学计算问题成为有限元理论应用于工程设计和科学研究实践的主要形式。
从解决单一学科的结构分析软件发展到解决多学科的多功能综合分析软件。
其集成化、智能化、可视化和网络化的功能越来越强,成为工程技术人员和科研工作者的必备工具软件。
目前,我国引进的大型有限元软件常见的有SAP系列,ADINA,MSC/NASTRAN,MSC Marc, ANSYS,ASKA等。
这些有限元软件设计者提供了丰富的单元库和求解器,强大而可靠的分析功能,且很多已移植到WINDOWS环境,完全的CAD 式操作方式和强大的前后处理功能,使分析工作变得轻松和容易。
以上软件开发中所依据的理论与假定是什么,如果我们光会用软件,那不是一名合格的设计师。
而究其本源,答案就在固体力学和它的发展上。
固体力学的发展历史固体力学理论的发展经历了四个阶段:基本概念形成的阶段;解决特殊问题的阶段;建立一般理论、原理、方法、数学方程的阶段;探讨复杂问题的阶段。
在这一时期,固体力学基本上是沿着研究弹性规律和研究塑性规律,这样两条平行的道路发展的,而弹性规律的研究开始较早。
弹性固体的力学理论是在实践的基础上于17世纪发展起来的。
英国的胡克于1678年提出:物体的变形与所受外载荷成正比,后称为胡克定律;瑞士的雅各布第一•伯努利在17世纪末提出关于弹性杆的挠度曲线的概念;而丹尼尔第一•伯努利于18世纪中期,首先导出棱柱杆侧向振动的微分方程;瑞士的欧拉于1744年建立了受压柱体失稳临界值的公式,又于1757年建立了柱体受压的微分方程,从而成为第一个研究稳定性问题的学者;法国的库仑在1773年提出了材料强度理论,他还在1784年研究了扭转问题并提出剪切的概念。
这些研究成果为深入研究弹性固体的力学理论奠定了基础。
法国的纳维于1820年研究了薄板弯曲问题,并于次年发表了弹性力学的基本方程;法国的柯西于1822年给出应力和应变的严格定义,并于次年导出矩形六面体微元的平衡微分方程。
柯西提出的应力和应变概念,对后来数学弹性理论,乃至整个固体力学的发展产生了深远的影响。
法国的泊阿松于1829年得出了受横向载荷平板的挠度方程;1855年,法国的圣维南用半逆解法解出了柱体扭转和弯曲问题,并提出了有名的圣维南原理;随后,德国的诺伊曼建立了三维弹性理论,并建立了研究圆轴纵向振动的较完善的方法;德国的基尔霍夫提出粱的平截面假设和板壳的直法线假设,他还建立了板壳的准确边界条件并导出了平板弯曲方程;英国的麦克斯韦在19世纪50年代,发展了光测弹性的应力分析技术后,又于1864年对只有两个力的简单情况提出了功的互等定理,随后,意大利的贝蒂于1872年对该定理加以普遍证明;意大利的卡斯蒂利亚诺于1873年提出了卡氏第一和卡氏第二定理;德国的恩盖塞于1884年提出了余能的概念。
德国的普朗特于1903年提出了解扭转问题的薄膜比拟法;铁木辛柯在20世纪初,用能量原理解决了许多杆板、壳的稳定性问题;匈牙利的卡门首先建立了弹性平板非线性的基本微分方程,为以后研究非线性问题开辟了道路。
苏联的穆斯赫利什维利于1933年发表了弹性力学复变函数方法;美国的唐奈于同一年研究了圆柱形壳在扭力作用下的稳定性问题,并在后来建立了唐奈方程;弗吕格于1932年和1934年发表了圆柱形薄壳的稳定性和弯曲的研究成果;苏联的符拉索夫在1940年前后建立了薄壁杆、折板系、扁壳等二维结构的一般理论。
在飞行器、舰艇、原子反应堆和大型建筑等结构的高精度要求下,有很多学者参加了力学研究工作,并解决了大量复杂问题。
此外,弹性固体的力学理论还不断渗透到其他领域,如用于纺织纤维、人体骨骼、心脏、血管等方面的研究。
1773年库仑提出土的屈服条件,这是人类定量研究塑性问题的开端。
1864年特雷斯卡在对金属材料研究的基础上,提出了最大剪应力屈服条件,它和后来德国的光泽斯于1913年提出的最大形变比能屈服条件,是塑性理论中两个最重要的屈服条件。
19世纪60年代末、70年代初,圣维南提出塑性理论的基本假设,并建立了它的基本方程,他还解决了一些简单的塑性变形问题。
现代固体力学时期指的是第二次世界大战以后的时期,这个时期固体力学的发展有两个特征:一是有限元法和电子计算机在固体力学中得到广泛应用;二是出现了两个新的分支——断裂力学和复合材料力学。
特纳等人于1956年提出有限元法的概念后,有限元法发展很快,在固体力学中大量应用,解决了很多复杂的问题。
结构物体总是存在裂纹,这促使人们去探讨裂纹尖端的应力和应变场以及裂纹的扩展规律。
早在20年代,格里菲思首先提出了玻璃的实际强度取决于裂纹的扩展应力这一重要观点。
欧文于1957年提出应力强度因子及其临界值概念,用以判别裂纹的扩展,从此诞生了断裂力学。
纤维增强复合材料力学发端于20世纪50年代。
复合材料力学研究有宏观、细观和微观三个方向。
固体力学各分支所形成的基本概念和力学理论一般仍能应用于复合材料,只是增加了一些新的力学内容,如要考虑非均匀性、各向异性、层间剥离等。
复合材料力学是年轻学科,但发展迅速,它解决了大量传统材料难于胜任的结构问题。
固体力学的分支学科材料力学是固体力学中最早发展起来的一个分支,它研究材料在外力作用下的力学性能、变形状态和破坏规律,为工程设计中选用材料和选择构件尺寸提供依据。
弹性力学又称弹性理论,是研究弹性物体在外力作用下的应力场、应变场以及有关的规律。
弹性力学首先假设所研究的物体是理想的弹性体,即物体承受外力后发生变形,并且其内部各点的应力和应变之间是一一对应的,外力除去后,物体恢复到原有形态。
塑性力学又称塑性理论,是研究固体受力后处于塑性变形状态时,塑性变形与外力的关系,以及物体中的应力场、应变场以及有关规律。
物体受到足够大外力的作用后,它的一部或全部变形会超出弹性范围而进入塑性状态,外力卸除后,变形的一部分或全部并不消失,物体不能完全恢复到原有的形态。
一般地说,在原来物体形状突变的地方、集中力作用点附近、裂纹尖端附近,都容易产生塑性变形。
塑性力学的研究方法同弹性力学一样,也从进行微元体的分析入手。
稳定性理论是研究细长杆、杆系结构、薄板壳以及它们的组合体在各种形式的压力作用下产生变形,以至丧失原有平衡状态和承载能力的问题。
弹性结构丧失稳定性,是指结构受压力后由和原来外形相近似的稳定平衡形式向新的平衡形式急剧转变或者丧失承载能力,对应的压力载荷即是所谓的临界载荷。
研究稳定性问题的方法一般分为静力学法、动力学法和能量法。
静力学法主要用于研究挠度微分方程的积分;动力学法主要用于研究外压力增加时结构系统的自由振动;能量法则以最小势能原理为基础进行研究,它在工程结构,特别是复杂工程结构的研究中被广泛采用。
在工程结构设计中,要进行结构的静力计算、动力计算、稳定性计算和断裂计算等。
结构力学就是研究工程结构承受和传递外力的能力,进而从力学的角度研制新型结构,以使结构达到强度高、刚度大、重量轻和经济效益好的综合要求。
振动理论是研究物体的周期性运动或某种随机的规律的学科。
最简单、最基本的振动是机械振动,即物体机械运动的周期性变化。
振动会使物体变形、磨损或破坏,会使精密仪裹精度降低。
但是又可利用振动特性造福于人类。
例如机械式钟表、各种乐器、振动传输机械等都是利用振动特性的制品。
因此,限制振动的有害方面和利用其有利方面,是研究振动理论的目的。
机械振动有多种分类法,最基本的分为自由振动、受迫振动和自激振动。
自由振动是由外界的初干扰引起的;受迫振动是在经常性动载荷(特别是周期性动载荷)作用下的振动;自激振动是振动系统在受系统振动控制的载荷作用下的振动。
在工程实践中,对振动系统主要研究它的振型、振幅、固有频率。
研究转动系统的转子动力学也属于振动理论的范畴。
断裂力学又称断裂理论,研究工程结构裂纹尖端的应力场和应变场,并由此分析裂纹扩展的条件和规律。
它是固体力学最新发展起来的一个分支。
复合材料力学是研究现代复合材料(主要是纤维增强复合材料)构件,在各种外力作用和不同支持条件下的力学性能、变形规律和设计准则,并进而研究材料设计、结构设计和优化设计等。
它是20世纪50年代发展起来的固体力学的一个新分支。
由于数值分析方法和计算机技术的发展,计算固体力学研究和应用的领域不断扩大,解题能力成数量级地提高。
常见的工程问题有:①静力学问题。
离散化后归结为求解线性代数方程组,常见于求解结构的应力和变形。
②特征值问题。
离散化后归结为求解矩阵的特征值和特征向量问题,常见于求解结构或系统的频率和振型、稳定极限载荷和屈曲形状。
③动态响应问题。
离散化后得到一常微分方程组,对它可直接数值积分或利用先求得特征向量将它转换为一组互不耦合的常微分方程,再进行积分求解;常见于求解结构的动态响应和波的传播。
在解题上,已能对未知量达几万个的整架飞机、整艘船艇或整个建筑物进行详细的静动力分析,并得到满意的结果。
心得评论固体力学中的有限元法经过40多年的发展,现已成为结构分析的标准方法。
强大的分析能力是有限元法最突出的特点。
它所解决的问题种类之广泛,几乎囊括了结构分析的各个方面:分析对象既可以是杆件系统,也可以是由杆、板、壳、块等多种力学性质不同的构件组成的复杂系统;分析类型既可以是静力问题,也可以是动力问题;既可以是线性的,也可以是非线性的;既可以是确定的,也可以是随机的;既可以是单一物理场,也可以是固、流耦合或热、固耦合的多物理场;无论材料、载荷、边界条件多么复杂,有限元法都能有效地加以处理。
有限元法的另一个突出特点是:对于不同类型的问题,理论推导过程以及计算步骤的高度规范和统一。
这一特点不但为学习这一方法减轻了难度,也为研制大型通用有限元软件奠定了基础。
有限元法的第三个特点是:人们可以从不同的专业背景和知识起点学习和掌握它。
既可以从纯数学的概念出发,按数学物理方程数值求解的角度去学习和研究它,也可以从力学的直观概念出发去理解和掌握它。
目前,我们在结构设计过程中使用的MIDAS、ANSYS、TBSA、ETABS等软件都是基于有限元理论开发的。
如果我们使用这些软件进行结构分析时,对软件本身所依据的理论、各种假定等一无所知的话,也就不能成为一名合格的结构工程师,同时也要承担很大的风险。