高一数学数轴上的基本公式
- 格式:pdf
- 大小:1.40 MB
- 文档页数:15
高一数学必修一函数图像知识点总结高一数学必修一函数图像知识点总结高中数学因为知识点多,好多同学听课能听懂,但是做题却不会。
因此,经常性的复习是巩固数学知识点的很好的途径。
以下是小编为您整理的关于高一数学必修一函数图像知识点的相关资料,供您阅读。
高一数学必修一函数图像知识点总结 1知识点总结:本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。
函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。
所以理解了前面的几个知识点,函数的图象就迎刃而解了。
一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。
选择题、填空题和解答题都有,并且题目难度较大。
在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。
多考查函数的单调性、最值和图象等。
误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。
4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。
5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。
高一数学必修一函数图像知识点总结 2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
2.1平面直角坐标系中的基本公式一、学习目标:1、通过对数轴的复习,理解实数和数轴上的点的对应关系;2、理解实数运算在数轴上的意义,掌握数轴上的两点距离公式和两点距离公式;3、掌握平面上两点距离公式和中点坐标公式。
二、学习重点:1、理解和掌握数轴上的基本公式;2、平面上的两点距离公式和中点坐标公式三、学习难点:两点间距离公式的推导。
四、自主学习、合作探究新知识:(一)数轴上的基本公式(阅读课本,完成下面问题)1、向量有关概念(1)向量(位移向量):既有 又有 的量。
从A 到的B 向量记作 ,起点为 ,终点为 ;线段AB 的长度叫做向量的长度,记作 ,AB 表示向量的 或 。
(2)相等向量:数轴上 且 的向量。
(如上图中的: )相反向量:数轴上 且 的向量。
(如AB 与BA 且有AB=-BA,AB+BA=0)(3)零向量:起点和终点 的向量,零向量没有 的方向,它的坐标为 。
2、向量的坐标公式(1)对数轴上任意三点A 、B 、C ,有(2)数轴上任意一个向量的坐标等于终点坐标减去起点坐标,即:(3)数轴上两点间距离公式: (其中 OB=x 2,OA=x 1)(二)平面直角坐标系中的基本公式1、两点的距离公式(1)两点间的距离公式的推导方法是什么?(2)在直角坐标系中,设两点),(),,(2211y x B y x A ,则A,B 两点间距离 ==AB B A d ),(①当O 为坐标原点时,()=A O d ,②当21x x =时,),(B A d = ;当21y y =时,),(B A d = 练习:求两点的距离:(1)()()3,2,4,2--B A (2)()()8,0,0,5B A(3)()()4,7,4,2--B A (4)()()3,2,4,2B A -2、中点坐标公式在直角坐标系中,设),(),,(2211y x B y x A ,则线段AB 中点),(y x M ,坐标y x ,有x = ,y =(1)若M 是线段AB ,则M 是两点A 、B 的对称中心,即点A 关于点M 的对称点是B 如果已知),(11y x A ,),(y x M ,求),(22y x B ,则2x = ,2y =(2)若),(y x P ,则:①点P 关于原点的对称点是 ,②点P 关于点(m,n )的对称点是 , ③点P 关于x 轴的对称点是 ,④点P 关于y 轴的对称点是 , ⑤点P 关于x y =的对称点是 ,⑥点P 关于x y -=的对称点是 练习: 1、求线段AB 中点坐标(1)A(3,4) B(-3,2) (2)A(-8,-3) B(5,-3)2、(1)A (2,3)关于坐标原点的中心对称点是(2)B (2,-3)关于点M (-2,1)的中心对称点是五、题例练习:例1、 已知点A(1,2) B(3,4) C(5,0), 求证:ABC ∆是等腰三角形例2、已知三个顶点A(-3,0) B(2,-2) C(5,2),求顶点D 坐标例3、已知,求证:)(22222AD AB BD AC +=+(平行四边形两条对角线的平方和等于它的四边的平方和)分析:建立直角坐标系,引进点的坐标,利用距离公式解决本题巩固练习:1、已知A (a,0),B (-3,2)两点的距离等于17,则a 的值是2、已知点M (1,1)平分线段AB ,且A (x,3),B (3,y )求x= ,y=3、在x 轴和y 轴上各求一点C,D,使它们到点A (1,2)和点B (5,-2)的距离相等,则C 的坐标为 ,D 的坐标为 。
【高一至高三数学方程式总结-公式】高中的数学公式定理大集中三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsinα+sinβ=2sin———·cos———2 2α+β α-βsinα-sinβ=2cos———·sin———2 2α+β α-βcosα+cosβ=2cos———·cos———2 2α+β α-βcosα-cosβ=-2sin———·sin———2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)] 21sinα ·sinβ=— -[cos(α+β)-cos(α-β)] 2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式集合、函数集合简单逻辑任一x∈A x∈B,记作A BA B,B A A=BA B={x|x∈A,且x∈B}A B={x|x∈A,或x∈B}card(A B)=card(A)+card(B)-card(A B)(1)命题原命题若p则q逆命题若q则p否命题若p则q逆否命题若q,则p(2)四种命题的关系(3)A B,A是B成立的充分条件B A,A是B成立的必要条件A B,A是B成立的充要条件函数的性质指数和对数(1)定义域、值域、对应法则(2)单调性对于任意x1,x2∈D若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数(3)奇偶性对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数若f(-x)=-f(x),称f(x)是奇函数(4)周期性对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数(1)分数指数幂正分数指数幂的意义是负分数指数幂的意义是(2)对数的性质和运算法则loga(MN)=logaM+logaNlogaMn=nlogaM(n∈R)指数函数对数函数(1)y=ax(a>0,a≠1)叫指数函数(2)x∈R,y>0图象经过(0,1)a>1时,x>0,y>1;x<0,0<y<10<a<1时,x>0,0<y<1;x<0,y>1a>1时,y=ax是增函数0<a<1时,y=ax是减函数(1)y=logax(a>0,a≠1)叫对数函数(2)x>0,y∈R图象经过(1,0)a>1时,x>1,y>0;0<x<1,y<00<a<1时,x>1,y<0;0<x<1,y>0a>1时,y=logax是增函数0<a<1时,y=logax是减函数指数方程和对数方程基本型logaf(x)=b f(x)=ab(a>0,a≠1)同底型logaf(x)=logag(x)f(x)=g(x)>0(a>0,a≠1)换元型f(ax)=0或f (logax)=0数列数列的基本概念等差数列(1)数列的通项公式an=f(n)(2)数列的递推公式(3)数列的通项公式与前n项和的关系an+1-an=dan=a1+(n-1)da,A,b成等差2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an=a1qn_1a,G,b成等比G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a>b b<aa>b,b>c a>ca>b a+c>b+ca+b>c a>c-ba>b,c>d a+c>b+da>b,c>0 ac>bca>b,c<0 ac<bca>b>0,c>d>0 ac<bda>b>0 dn>bn(n∈Z,n>1)a>b>0 >(n∈Z,n>1)(a-b)2≥0a,b∈R a2+b2≥2ab|a|-|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a>b(或a<b),只需证明a-b>0(或a-b<0=即可(2)若b>0,要证a>b,只需证明,要证a<b,只需证明综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。
2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。
3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。
4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。
5、推导公式:tanα+cotα=2/sin2α。
数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。
2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。
3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。
5、-ctgA+ctgBsin(A+B)/sinAsinB。
数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时。
2、分数指数幂。
正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。
§2.1.1 数轴上的基本公式§2.1.2 平面直角坐标系中的基本公式§2.2.1 直线方程的概念与直线的斜率§2.2.2 直线方程的几种形式【教学目的】1. 通过对数轴的复习,理解实数和数轴上的点的对应关系,理解实数运算在数轴上的几何意义。
掌握数轴上两点间距离公式,掌握数轴上的向量加法的坐标运算。
通过探讨得出平面上两点间距离公式及线段中点坐标公式。
2. 在平面直角坐标系中,结合图形,探索确定直线位置的几何要素。
理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握公式的应用。
3. 理解并掌握直线方程的几种形式及它们之间的相互转化。
了解在直角坐标系中,平面上的直线与关于x,y的二元一次方程的对应关系。
二、重点、难点:1. 重点:理解和掌握数轴上的基本公式;平面上两点间距离公式和中点坐标公式、坐标法的应用;理解直线的倾斜角和斜率的概念,掌握两点的连线的斜率公式;几种形式直线方程的推导,其中点斜式是重点中的重点;根据所给条件灵活选取适当的形式和方法,熟练地求出直线的方程。
2. 难点:对各个概念的正确理解及基本公式的探索;平面上两点间距离公式和中点坐标公式的推导;使用坐标法证明几何问题时坐标系的建立;斜率的概念和两点的连线的斜率公式的推导;清楚各种形式直线方程的局限性,把握求直线方程的灵活性,运用数形结合的思想。
三. 教学过程:(一)数轴上的基本公式1. 基础概念:(1)数轴:一条给出了原点、度量单位和正方向的直线叫做数轴,或说在这条直线上建立了直线坐标系。
实数集和数轴上的点之间是一一对应关系。
如果点P与实数x对应,则称点P的坐标为x,记作。
(2)向量:既有大小又有方向的量通常叫做位移向量,本书简称为向量。
从点A 到点B的向量,记作,点A叫做向量的起点,点B叫做向量的终点。
(3)向量的长度:线段AB的长叫做向量的长度,记作。
(4)向量的坐标或数量:向量的坐标,用AB表示。
高一数学平面直角坐标系中的基本公式及直线方程人教实验B 版【本讲教育信息】一、教学内容:平面直角坐标系中的基本公式及直线方程二、学习目标1、理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握由点和斜率导出直线方程的方法;掌握直线方程的点斜式、两点式和一般式,确定一条直线需要两个独立的已知量,并能根据条件熟练地求出直线方程或用待定系数法求出直线方程中的未知量。
2、在运用直线的斜率解题时,注意不要遗漏斜率不存在的情形。
三、知识要点1、在数轴上,设点A 的坐标为1x ,点B 的坐标为2x ,则AB=2x -1x 。
2、数轴上两点A ,B 的距离为d (A ,B )=AB =12x x -3、计算A ),(11y x ,B ),(22y x 两点之间的距离公式 d (A ,B )=AB =212212)()(y y x x -+-4、已知A ),(11y x ,B ),(22y x 。
则线段中点的坐标为221x x x +=,221y y y += 5、倾斜角:在平面直角坐标系中,把x 轴绕直线L 与x 轴的交点按逆时针方向旋转到和直线L 重合时所转的最小正角。
当直线L 和x 轴平行或重合时,我们规定直线L 的倾斜角为0°。
故倾斜角的X 围是[0,π)。
6、斜率:不是90°的倾斜角的正切值叫做直线的斜率,即k=tan α。
7、过两点P (x 1,y 1),P (x 2,y 2),(x 1≠x 2)的直线的斜率公式——k=tan α=1212x x y y --注意:除了一般式以外,每一种方程的形式都有其局限性。
【典型例题】例1、求满足下列条件的直线l 的方程:在y 轴上的截距为3-,且它与两坐标轴围成的三角形面积为6。
解:设直线l 的方程为13x y a +=-, 由题意得6|3||a |21=-⋅⋅,4a ∴=±。
当4a =时,直线l 的方程为143x y +=- 即34120x y --=。