2.1.1数轴上的基本公式
- 格式:doc
- 大小:105.00 KB
- 文档页数:5
§2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式【学习要求】1.理解实数与数轴上的点的对应关系,理解实数运算在数轴上的几何意义.2.掌握数轴上两点间的距离公式.3.掌握数轴上向量加法的坐标运算.4.理解向量相等及零向量的概念.【学法指导】通过数轴上点与实数的一一对应关系拓展到数轴上向量与实数的一一对应关系,从而得到数轴上两点间的距离公式,为研究平面解析几何奠定扎实的基础.填一填:知识要点、记下疑难点1.数轴:一条给出了 原点 、 度量单位 和 正方向 的直线.2.如果点P 与实数x 对应,则称点P 的坐标为 x ,记作 P(x) .3.向量:位移是一个既有大小又有方向的量,通常叫做 位移向量 ,简称为 向量 ,从点A 到点B 的向量,记作AB →.线段AB 的长叫做向量AB →的 长度 ,记作 |AB →| .4.相等的向量:数轴上同向且 等长 的向量叫做相等的向量.5.向量的坐标或数量:我们可用实数表示数轴上的一个向量AB →,这个实数叫做向量AB →的 坐标或数量 ,用AB 表示.若O 是原点,点A 的坐标为x 1,点B 的坐标为x 2,则AB =OB -OA ,所以AB =x 2-x 1.6.数轴上两点AB 间的距离公式为:d(A ,B)= |x 2-x 1| .研一研:问题探究、课堂更高效探究点一 直线坐标系问题1 数轴是怎样定义的?答:一条给出了原点、度量单位和正方向的直线叫做数轴,或者说在这条直线上建立了直线坐标系.问题2 实数集与数轴上的点有怎样的关系?答:实数集与数轴上的点存在着一一对应的关系.例1 (1)如果点P(x)位于点M(-2),N(3)之间,求x 的取值范围;(2)试确定点A(x 2+x +1)与B ⎝⎛⎭⎫34的位置关系.解: (1)由题意可得,点M(-2)位于点N(3)的左侧, 而P 点位于两点之间,应满足-2<x<3.(2)∵x 2+x +1=⎝⎛⎭⎫x +122+34, ∴当x =-12时,A 、B 两点重合; 当x ≠-12时,x 2+x +1>34,∴A 点位于B 点右侧. 综上所述,A 、B 两点重合,或A 点位于B 点右侧. 小结: 根据数轴上点与实数的对应关系,数轴上的点自左到右对应的实数依次增大.跟踪训练1 不在数轴上画点,判断下列各组点的位置关系(主要说明哪一个点位于另一个点的右侧):(1)A(-1.5),B(-3); (2)A(a),B(a 2+1); (3)A(|x|),B(x).解: (1)∵-1.5>-3, ∴A(-1.5)位于B(-3)的右侧.(2)∵a 2+1-a =⎝⎛⎭⎫a -122+34≥34>0, ∴a 2+1>a ,∴B(a 2+1)位于A(a)的右侧. (3)当x ≥0时,|x|=x , 则A(|x|)和B(x)为同一个点. 当x<0时,|x|>x ,则A(|x|)位于B(x)的右侧.探究点二 数轴上的向量问题1 阅读教材65页~66页,回答什么是向量?如何表示?答:如果数轴上的任意一点A 沿着轴的正向或负向移动到另一点B ,则说点在数轴上作了一次位移,位移是一个既有大小又有方向的量,通常叫做位移向量,简称为向量,从点A 到点B 的向量,记作AB →.问题2 什么是向量的坐标或数量?答:我们可用实数表示数轴上的一个向量AB →,这个实数叫做向量AB →的坐标或数量.问题3 如果把相等的所有向量看作一个整体,作为同一个向量,那么实数与数轴上的向量有什么关系?答: 它们之间是一一对应的.问题4 位移AB →与位移BC →的和是怎样定义的?答: 在数轴上,如果点A 作一次位移到点B ,由点B 再作一次位移到点C ,则位移AC →叫做位移AB →与位移BC →的和.记作AC →=AB →+BC →.问题5 对数轴上任意三点A ,B ,C 都具有什么关系?答: AC =AB +BC.问题6 设AB →是数轴上的任意一个向量,O 为原点,A(x 1),B(x 2),那么AB 如何用x 1,x 2表示?答: AB =OB -OA =x 2-x 1.问题7 数轴上两点AB 的距离公式是怎样的?答: d(A ,B)= |AB|=|x 1-x 2|.例2 已知A 、B 、C 是数轴上任意三点. (1)若AB =5,CB =3,求AC ; (2)证明:AC +CB =AB.(1)解: ∵AC =AB +BC , ∴AC =AB -CB =5-3=2.(2)证明 设数轴上A 、B 、C 三点的坐标分别为x A 、x B 、x C ,则AC +CB =(x C -x A )+(x B -x C )=x B -x A =AB. ∴AC +CB =AB.小结: 本题的关键是结合条件联想到AC →可用AB →、BC →两个首尾相连的向量来表示,再运用相反向量的定义将之转化为已知条件,从而解决问题.跟踪训练2 已知数轴上A 、B 两点的坐标分别为x 1=a +b ,x 2=a -b ,求AB 、BA.解:∵A 点的坐标是x 1=a +b , B 点的坐标是x 2=a -b ,∴AB =x 2-x 1=(a -b)-(a +b)=-2b , BA =x 1-x 2=(a +b)-(a -b)=2b.例3 已知数轴上两点A(a),B(5).求:当a 为何值时,(1)两点间距离为5? (2)两点间距离大于5? (3)两点间距离小于3?解: 数轴上两点A 、B 之间的距离为|AB|=|a -5|.(1)根据题意得|a -5|=5, 可解得a =0或a =10.(2)根据题意得|a -5|>5, 即a -5>5或a -5<-5, ∴a>10或a<0.(3)根据题意得|a -5|<3, 即-3<a -5<3, ∴2<a<8.小结: 一个实数的绝对值的几何意义是实数在数轴上的对应点到原点的距离.跟踪训练3 已知M 、N 、P 是数轴上三点,若|MN|=5,|NP|=3,求d(M ,P).解: ∵M 、N 、P 是数轴上三点,|MN|=5,|NP|=3,∴(1)当点P 在点M ,N 之间时(如图所示),d(M ,P)=|MN|-|NP|=5-3=2.(2)当点P 在点M 、N 之外时(如图所示),d(M ,P)=|MN|+|NP|=5+3=8.综上所述,d(M ,P)=2或d(M ,P)=8.练一练:当堂检测、目标达成落实处1.不在数轴上画点,确定下列各组点中,哪组中的点C 位于点D 的右侧 ( A )A .C(-3)和D(-4)B .C(3)和D(4)C .C(-4)和D(3)D .C(-4)和D(-3)2.下列说法正确的个数有 ( )①数轴上的向量的坐标一定是一个实数;②向量的坐标等于向量的长度;③向量AB →与向量BA →的长度一样;④如果数轴上两个向量的坐标相等,那么这两个向量相等.A .1B .2C .3D .4解析: ①③④是正确的,故选C.课堂小结:1.相等的向量的起点与终点并不一定一致,可以通过平移将所有相等的向量视作同一个向量.因数轴上每一个向量的坐标为一个实数,如果把相等的所有向量看作一个整体,作为同一个向量,则实数与数轴上的向量之间是一一对应的.2.重要结论:①对于数轴上任意三点A ,B ,C 都有AC =AB +BC ;②AB=-BA 或AB +BA =0.3.向量与数量的区别与联系向量是不同于数量的一种新的量.数量只有大小,没有方向,其大小可以用正数、负数或零来表示,它是一个代数量,可以进行各种代数运算;数量之间可以比较大小.向量是既有大小,又有方向的量;由于方向不能比较大小,因此“大于”“小于”对向量来说是没有意义的.4.数轴上的向量的坐标计算公式:AB =x B -x A ;数轴上两点的距离公式d(A ,B)=|AB|=|x B -x A |.。
数轴上的基本公式 AB+BC=AC[适用章节]数学②中2.1.1数轴上的基本公式。
[使用目的]使学生通过自操作理解在数轴上向量AB 与向量BC 的和一定是向量AC ,认识到这与A 、B 、C 三点在轴上的位置无关。
[操作说明]初始界面如图2201-1。
图2201-1按钮“动AB ”、“动BC ”、“动AC ”可以分别用粗箭头显示三个向量,“连续动”则直观表达AC BC AB =+,其数量AC BC AB =+通过按钮“计算结果”可以看到,但是你应该首先自己计算在与结果对照。
“还原” 按钮可以使画面还原,以便重新任意选定三点的位置。
活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。
活动过程:1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!” 主持人口述谜语:“双手抓不起,一刀劈不开,0A x A = 7.37x B = -4.10x C =1.68煮饭和洗衣,都要请它来。
”主持人问:“谁知道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水。
听大家说,我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。
水说:“同学们,你们知道我有多重要吗?”齐答:“知道。
”甲:如果没有水,我们人类就无法生存。
小熊说:我们动物可喜欢你了,没有水我们会死掉的。
花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。
主持人:下面请听快板《水的用处真叫大》竹板一敲来说话,水的用处真叫大;洗衣服,洗碗筷,洗脸洗手又洗脚,煮饭洗菜又沏茶,生活处处离不开它。
栽小树,种庄稼,农民伯伯把它夸;鱼儿河马大对虾,日日夜夜不离它;采煤发电要靠它,京城美化更要它。
主持人:同学们,听完了这个快板,你们说水的用处大不大?甲说:看了他们的快板表演,我知道日常生活种离不了水。
2.1.1 数轴上的基本公式示范教案整体设计教学分析这一小节,在教学上往往被忽视.但一维坐标几何是二维、三维坐标几何的基础.教师一定要下些工夫,让学生牢固掌握.首先复习数轴,建立数轴上的点与实数的一一对应关系.然后引入位移向量的概念,建立直线上的向量与实数的一一对应.以往在平面解析几何中,不引入向量的概念,由有向线段代替.对有向线段,也没有引入运算的概念,这样数轴上的基本计算公式,证明起来比较麻烦.现在高中数学中已引入平面向量知识,如果在数轴上引入向量及其加减运算,学生会更好地理解坐标几何基本公式的推导.也为今后进一步的学习坐标几何打下坚实的基础.值得注意的是本节内容比较容易接受,可以指导学生自学完成,或指定一名具有表现力且成绩优秀的学生给同学们讲解.三维目标1.通过对数轴的复习,理解实数与数轴上点的对应关系,提高学生的应用能力.2.理解实数运算在数轴上的几何意义.掌握用数轴上两点的坐标计算两点距离的公式,掌握数轴上向量加法的坐标运算,提高学生的运算能力,培养数形结合的思想.重点难点教学重点:直线坐标系和数轴上两点间的距离公式应用.教学难点:理解向量的有关概念.课时安排1课时教学过程导入新课设计 1.在初中,我们学习了数轴上两点间的距离公式,今天,我们从向量的角度来分析数轴上两点间的距离公式,教师点出课题.设计 2.从本节开始,我们系统学习坐标系,并利用坐标系解决几何问题,今天我们先学习第二章第一大节的第一小节,教师点出课题.推进新课新知探究提出问题什么叫做数轴?如下图所示,在数轴上,点P 与实数x 的对应法则是什么呢?(2)阅读教材,给出向量的有关概念.(3)相等的向量的坐标相等吗?坐标相等的向量相等吗?(4)试讨论AB →+BC →.(5)对于数轴上的任意一个向量,怎样用它的起点坐标和终点的坐标来计算它的坐标.(6)写出数轴上两点间的距离公式.讨论结果:(1)给出了原点、度量单位和正方向的直线叫做数轴,或者说在这条直线上建立了直线坐标系.点P 与实数x 的对应法则是:在数轴上,点P 与实数x 的对应法则是:如果点P 在原点朝正向的一侧,则x 为正数,且等于点P 到原点的距离;如果点P 在原点朝负向的一侧,则x 为负数,其绝对值等于点P 到原点的距离.原点表示数0.依据这个法则我们就在实数集和数轴上的点之间建立了一一对应关系.即对于数轴上每一个点都有唯一确定的实数与之对应;反之,对于任何一个实数,数轴上也存在一个确定的点与之对应.若点P 与实数x 对应,则称点P 的坐标为x ,记作P(x).(2)如下图所示.如果数轴上的任意一点A 沿着轴的正向或负向移动到另一点B ,则说点在轴上做了一次位移,点不动则说点做了零位移.位移是一个既有大小又有方向的量,通常叫做位移向量,本书简称为向量.从点A 到点B 的向量,记作AB →,读作向量AB.点A 叫做向量AB →的起点,点B 叫做向量AB→的终点,线段AB 的长叫做向量AB →的长度,记作|AB →|.数轴上同向且等长的向量叫做相等的向量.例如图中的AB →=BC →.我们可用实数表示数轴上的一个向量.例如上图中的向量AB →,即从点A 沿x 轴的正向移动3个单位到达点B ,可用正数3表示;反之,用-3表示B 为起点A 为终点的向量,3和-3分别叫做向量AB →和BA →的坐标或数量.一般地,轴上向量AB →的坐标是一个实数,实数的绝对值为线段AB 的长度,如果起点指向终点的方向与轴同方向,则这个实数取正数;反之取负数.向量坐标的绝对值等于向量的长度.起点和终点重合的向量是零向量,它没有确定的方向,它的坐标为0. 向量AB →的坐标,在本书中用AB 表示.(3)例如在下图中AB =4,BA =-4,|AB|=4,|BA|=4.显然AB =-BA 或AB +BA =0.容易推断,相等的向量,它们的坐标相等;反之,如果数轴上两个向量的坐标相等,则这两个向量相等.如果把相等的所有向量看作一个整体,作为同一个向量,则实数与数轴上的向量之间是一一对应的.(4)在数轴上,如果点A 做一次位移到点B ,接着由点B 再做一次位移到点C ,则位移AC →叫做位移AB →与位移BC →的和.记作AC →=AB →+BC →.。
第二章 平面解析几何初步A .M(-x)与N(x)B .M(x)与N(x +a)C .M(x 3)与N(x 2)D .M(2x)与N(2x -1) 答案 D解析 A 项,x 的符号不确定,∴-x 与x 的大小关系不确定,故不能确定两点的相对位置.B 项,由于a 的值不确定,故不能确定x 与x +a 的相对位置.C 项,x 3与x 2的大小关系不确定,故不能确定x 3与x 2的相对位置.D 项,∵2x>2x -1对任意实数x 都成立,∴点M 一定位于点N 的右侧.A .数轴上任意一个点的坐标有正负和大小,它是一个位移向量B .两个相等的向量的起点可以不同C .每一个实数都对应数轴上的唯一的一个位移向量D .AB →的大小是数轴上A ,B 两点到原点距离之差的绝对值 答案 B解析 一个点的坐标没有大小,每一个实数对应着无数个位移向量.|AB →|=|x B -x A |,不一定为|AB →|=|||x B |-|x A|.故选B .3.若A(a)与B(-5)两点对应的向量AB 的数量为-10,则a =______,若A与B 的距离为10,则a =______.答案 5 5或-15解析 ∵AB =x B -x A ,|AB|=|x A -x B |, ∴-5-a =-10,解得a =5. |-5-a|=10,解得a =5或a =-15. 4.已知数轴上三点A(x),B(2),P(3). (1)当AP =2BP 时,求x ;(2)当AP >2BP 时,求x 的取值范围; (3)当AP =2PB 时,求x .解 由题意,可知AP =3-x ,BP =3-2=1. (1)当AP =2BP 时,有3-x =2,解得x =1. (2)当AP >2BP 时,有3-x >2,解得x <1. (3)由AP =2PB ,可得3-x =2(-1),解得x =5.一、选择题1.下列说法正确的是( )A .零向量有确定的方向B .数轴上等长的向量叫做相等的向量C .向量AB →的坐标AB =-BAD .|AB →|=AB 答案 C解析 零向量的方向是任意的,数轴上等长的向量方向不一定相同,不一定是相等向量;向量AB→的坐标AB =-BA ,正确;AB 为负数,|AB →|=AB 不正确.2.数轴上的点A(-2),B(3),C(-7),则有:①AB +AC =0;②AB +BC =0;③BC>CA ;④|AB →|+|AC →|>|BC →|.其中,正确结论的个数为( ) A .3个 B .2个 C .1个 D .0个 答案 C解析 由数轴上的点A(-2),B(3),C(-7)得,AB +AC =5-5=0,①正确; AB +BC =5-10=-5,②不正确; BC =-10>CA =5,③不正确;|AB→|+|AC →|=5+5=10=|BC →|,④不正确. 3.已知数轴上两点A ,B ,若点B 的坐标为3,且A ,B 两点间的距离d(A ,B)=5,则点A 的坐标为( )A .8B .-2C .-8D .8或-2 答案 D解析 已知B(3),记点A(x 1),则d(A ,B)=|AB|=|3-x 1|=5,解得x 1=-2或x 1=8.4.数轴上点P(x),A(-8),B(-4),若|PA|=2|PB|,则x 等于( )A .0B .-163 C .163 D .0或-163 答案 D解析 ∵|PA|=2|PB|,∴|x +8|=2|x +4|,解得x =0或-163.5.当数轴上的三个点A ,B ,O 互不重合时,它们的位置关系共有六种情况,其中使AB =OB -OA 和|AB→|=|OB →|-|OA →|同时成立的情况有( )A .1种B .2种C .3种D .4种 答案 B解析 AB =OB -OA 恒成立,而|AB →|=|OB →|-|OA →|成立,则只有点A 在O 和B 中间,共有2种可能.二、填空题6.已知A(2),B(-3)两点,则AB =________,|AB|=________. 答案 -5 5解析 AB =-3-2=-5,|AB|=|-5|=5.7.在数轴上,已知AB →=2,BC →=3,CD →=-6,则AD →=________.答案 -1解析 AD→=AB →+BC →+CD →=2+3-6=-1.8.数轴上的点A(3a +1)总在点B(1-2a)的右侧,则a 的取值范围是________. 答案 (0,+∞)解析 因为A(3a +1)在B(1-2a)的右侧,所以3a +1>1-2a ,所以a >0. 三、解答题9.已知数轴上的点P(x)的坐标分别满足以下情况,试指出x 的各自的取值范围.(1)|x|=2;(2)|x|>2;(3)|x -2|<1.解 (1)|x|=2表示与原点距离等于2的点, ∴x =2或x =-2.(2)|x|>2表示与原点距离大于2的点, ∴x>2或x<-2.(3)|x -2|<1表示与点P(2)的距离小于1的点, ∴1<x<3.10.在数轴上,已知AB →=3,BC →=-2, (1)求|AM→+BC →+MB →|; (2)若A(-1),线段BC 的中点为D ,求DC . 解 (1)|AM →+BC →+MB →|=|AM →+MB →+BC →|=|AB→+BC →|=1. (2)由于A(-1),AB→=3,BC →=-2,得x B -x A =3,x C -x B =-2, 即x B =3+x A =2,x C =x B -2=0.所以线段BC 的中点D 的坐标为1.∴DC =-1.►2.1.2 平面直角坐标系中的基本公式1.已知A(1,2),B(a ,6),且|AB|=5,则a 的值为( ) A .4 B .-4或2 C .-2 D .-2或4 答案 D 解析(a -1)2+(6-2)2=5,∴a =4或-2.2.已知△ABC 的三个顶点A(-1,0),B(1,0)和C ⎝ ⎛⎭⎪⎫12,32,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .斜三角形 答案 C解析 ∵d(A ,B)=[1-(-1)]2+02=2,d(B ,C)=⎝ ⎛⎭⎪⎫12-12+⎝ ⎛⎭⎪⎫32-02=1, d(A ,C)=⎣⎢⎡⎦⎥⎤12-(-1)2+⎝ ⎛⎭⎪⎫32-02=3, ∴|AC|2+|BC|2=|AB|2,∴△ABC 为直角三角形.故选C .点的距离是( )A .4B .13C .15D .130 答案 D解析 根据中点坐标公式,得⎩⎨⎧-3=x +12,-2=5+y2,解得⎩⎪⎨⎪⎧x =-7,y =-9.∴|PO|=(-7)2+(-9)2=130.4.已知点P(a +3,a -2)在y 轴上,则点P 关于原点的对称点的坐标为________. 答案 (0,5)解析 由点P(a +3,a -2)在y 轴上,得a +3=0, a =-3,∴a -2=-5,即点P(0,-5)关于原点的对称点的坐标为P ′(0,5).解 取AB 的中点为坐标原点,AB 所在直线为x 轴建立平面直角坐标系xOy(如图).设A 点,B 点,C 点的坐标分别为A(-a ,0),B(a ,0)(a>0),C(b ,c), 由平行四边形的性质知D 点的坐标为(-2a +b ,c).再设AC ,BD 的中点分别为E(x 1,y 1),F(x 2,y 2),由中心公式得⎩⎨⎧x 1=-a +b 2,y 1=0+c2,即E -a +b 2,c 2.⎩⎨⎧x 2=a -2a +b 2,y 2=0+c 2,即F -a +b 2,c 2.∴点E 与点F 重合,∴▱ABCD 的对角线相交且平分.一、选择题1.点A(2,-3)关于坐标原点的中心对称点是( ) A .(3,-2) B .(-2,-3) C .(-2,3) D .(-3,2) 答案 C解析 设所求点的坐标为B(x ,y),则由题意知坐标原点是点A ,B 的中点,则⎩⎨⎧2+x2=0,-3+y2=0,解得⎩⎪⎨⎪⎧x =-2,y =3.故选C .2.已知直线上两点A(a ,b),B(c ,d),且a 2+b 2-c 2+d 2=0,则( ) A .原点一定是线段AB 的中点 B .A ,B 一定都与原点重合C .原点一定在线段AB 上,但不是中点D .以上结论都不对 答案 D 解析 由a 2+b 2-c 2+d 2=0得a 2+b 2=c 2+d 2,即A ,B 两点到坐标原点的距离相等,所以原点在线段AB 的垂直平分线上,故选D .3.已知A(1,3),B(5,-2),点P 在x 轴上,则使|AP|-|BP|取最大值时的点P 的坐标是( )A .(4,0)B .(13,0)C .(5,0)D .(1,0) 答案 B解析 如图,点A(1,3)关于x 轴的对称点为A ′(1,-3),连接A ′B 交x 轴于点P ,即为所求.利用待定系数法可求出一次函数的表达式为:y =14x -134,令y =0,得x =13. 所以点P 的坐标为(13,0).4.已知A ,B 的坐标分别为(1,1),(4,3),点P 在x 轴上,则|PA|+|PB|的最小值为( )A .20B .12C .5D .4答案C解析 如图,作点A 关于x 轴的对称点A ′(1,-1),由平面几何知识得|PA|+|PB|的最小值为|A ′B|=(1-4)2+(-1-3)2 =9+16=5.5.如果一条平行于x 轴的线段的长为5,它的一个端点是(2,1),那么它的另一个端点是( )A .(-3,1)或(7,1)B .(2,-3)或(2,7)C .(-3,1)或(5,1)D .(2,-3)或(2,5) 答案 A解析 由线段平行于x 轴知,两个端点的纵坐标相等,都是1,故可设另一个端点为(x ,1),则|x -2|=5,所以x =7或x =-3,即端点坐标为(7,1)或(-3,1).二、填空题6.已知点M(2,2)平分线段AB ,且A(x ,3),B(3,y),则x =________,y =________.答案 1 1解析 “点M(2,2)平分线段AB ”的含义就是点M 是线段AB 的中点,可以用中点坐标公式把题意转化为方程组进行求解.∵点M(2,2)平分线段AB ,∴⎩⎨⎧x +32=2,3+y2=2,解得⎩⎪⎨⎪⎧x =1,y =1.7.已知A(1,5),B(5,-2),则在坐标轴上与A ,B 等距离的点有________个.答案 2解析 若点在x 轴上,设为(x ,0),则有(x -1)2+25=(x -5)2+4,∴x =38;若点在y 轴上,设为(0,y),则有1+(5-y)2=25+(-2-y)2,∴y =-314.8.已知点A(5,2a -1),B(a +1,a -4),则当|AB|取得最小值时,实数a 等于________.答案 12解析 |AB|2=(5-a -1)2+(2a -1-a +4)2=2a 2-2a +25=2⎝ ⎛⎭⎪⎫a -122+492,所以当a =12时,|AB|取得最小值.三、解答题9.已知△ABC 的两个顶点A(3,7),B(-2,5),若AC ,BC 的中点都在坐标轴上,求点C 的坐标.解 设点C(x ,y).由直线AB 与x 轴不平行,可设边AC 的中点为D ,BC的中点为E ,则DE 綊12AB .线段AC 的中点D 的坐标为⎝ ⎛⎭⎪⎫3+x 2,7+y 2, 线段BC 的中点E 的坐标为⎝ ⎛⎭⎪⎫-2+x 2,5+y 2. 若点D 在y 轴上,则3+x 2=0,所以x =-3,此时点E 的横坐标不为零,点E要在坐标轴上只能在x 轴上,所以5+y 2=0,所以y =-5,即C(-3,-5).若点D 在x 轴上,则7+y 2=0,所以y =-7,此时点E 只能在y 轴上,即-2+x 2=0,所以x =2,此时C(2,-7).如图所示.综上可知,符合题意的点C 的坐标为(2,-7)或(-3,-5).10.已知正三角形ABC 的边长为a ,在平面上求点P ,使|PA|2+|PB|2+|PC|2最小,并求出最小值.解 以正三角形的一边所在直线为x 轴,此边中线所在直线为y 轴建立坐标系,如图.则A ⎝ ⎛⎭⎪⎫-a 2,0,B ⎝ ⎛⎭⎪⎫a 2,0,C ⎝⎛⎭⎪⎫0,32a . 设P(x ,y),则有|PA|2+|PB|2+|PC|2=⎝ ⎛⎭⎪⎫x +a 22+y 2+⎝ ⎛⎭⎪⎫x -a 22+y 2+x 2+⎝⎛⎭⎪⎫y -32a 2 =3x 2+3y 2-3ay +54a 2=3x 2+3⎝⎛⎭⎪⎫y -36a 2+a 2, ∴当P ⎝⎛⎭⎪⎫0,36a 时,|PA|2+|PB|2+|PC|2有最小值a 2.。
2.1 平面直角坐标系中的基本公式数轴上的基本公式平面直角坐标系中的基本公式自主广场我夯基 我达标1.已知A(3)、B(-2)两点,则AB=_____________,|AB|=_____________.思路解析:由于AB 是向量,因此一定要用终点坐标减去起点坐标,|AB|是向量AB 的长度,因此一定要求向量AB 的数量的绝对值.AB=-2-3=-5;|AB|=|-2-3|=|-5|=5.答案:-5 52.已知点M(2,2)平分线段AB ,且A(x ,3)、B(3,y),则x=_____________,y=_____________. 思路解析:“点M(2,2)平分线段AB”的含义就是点M 是线段AB 的中点,故可以用中点坐标公式把题意转化为方程组进行求解.∵点M(2,2)平分线段AB ,∴223,223=+=+y x ,解得x=1,y=1.答案:1 13.已知点A(5,12),在x 轴上求一点P ,使点P 与点A 的距离等于13,则满足条件的点为___________________.思路解析:可以用方程的思想根据平面内两点间的距离公式把题意转化成方程(组)进行求解.设点P 的坐标为(x ,0),根据题意,得22)012()5(-+-x =13,解得x 1=0,x 2=10. 答案:(0,0)或(10,0)4.已知△ABC 的三个顶点的坐标为A(3,2)、B(0,1)、C(0,3),则此三角形的形状是_______________.思路解析:判断三角形的形状,首先要知道三角形都有哪些形状.按边分:等边三角形,等腰三角形;按角分:锐角三角形,钝角三角形,直角三角形.所以在判断三角形的形状时,既要考虑到边的情况,也要考虑到角的情况.根据本题的题设我们先要根据平面内两点间的距离公式计算三角形的边长. ∵|AB|=22)12()03(-+-=2,|AC|=22)32()03(-+-=2,|BC|=22)31()00(-+-=2,∴△ABC 为等边三角形.答案:等边三角形5.已知三角形三个顶点的坐标为A(1,1)、B(3,1)、C(2,2),此三角形的形状是_____________.思路解析:已知三角形的三个顶点的坐标判断三角形的形状,首先要求出各边的边长,然后考查三边的长度是否满足勾股定理,从而判定三角形的形状. ∵|AB|=22)31()11(-+-=2, |AC|=2)21()21(22=-+-,|BC|=2)23()21(22=-+-,∴|AC|=|BC|.又∵AB 2=4,AC 2+BC 2=4,∴AB 2=AC 2+BC 2.∴三角形是等腰直角三角形.答案:等腰直角三角形6.已知ABCD 的三个顶点A(0,0)、B(x 1,y 1)、D(x 2,y 2),则顶点C 的坐标为___________.思路解析:由于ABCD 的各顶点的顺序已经确定,因此点C 的坐标是唯一确定的.根据平行四边形的性质——对角线互相平分,再根据中点坐标公式的逆向应用,即可求出点C 的坐标. 设顶点C 的坐标为(m,n),AC 与BD 的交点为O ,则O 为AC 和BD 的中点,根据题意,得点O 的坐标为(212x x +,212y y +). 又∵点O 为AC 的中点,∴20+m =212x x +,20+n =212y y +. 解得m=x 2+x 1,n=y 2+y 1,∴点C 的坐标为(x 1+x 2,y 1+y 2).答案:(x 1+x 2,y 1+y 2)7.判定下列各组点中,哪一个点一定位于另一个点的右侧.(1)M(2x)、N(x);(2)A(c)、B(c+2);(3)C(x)、D(x-a);(4)E(x)、F(x 2).思路解析:∵(1)中的2x与x、(3)中的x与x-a、(4)中的x与x2都无法确定两个数的大小关系,而(2)中的c与c+2大小关系容易确定:c<c+2,∴B(c+2)一定在A(c)的右侧.答案:(2).8.在数轴上求一点的坐标,使它到点A(-9)的距离等于它到点B(-3)的距离的2倍.思路解析:设所求点为C(x),则由题意得|x-(-9)|=2·|x-(-3)|,解得x=3或x=-5.∴符合条件的点有两个:C1(3)、C2(-5).答案:C1(3)或C2(-5).9.在数轴上,运用两点间距离的概念和计算公式,解下列方程:(1)|x+3|+|x-1|=5;(2)|x+3|+|x-1|=4;(3)|x+3|+|x-1|=3.思路分析:本题中的三个小题实质上是一道题,即在数轴上求到两个定点A(-3)和B(1)的距离之和分别等于5、4、3的点的坐标.解:(1)∵-3到1的距离等于4,如图所示,到两个定点A(-3)和B(1)的距离之和等于5的点为C(1.5)或C(-3.5),图2-1-(1,2)-6∴x=-3.5或x=1.5.(2)如图所示,在线段AB上的任意一点到两个定点A(-3)和B(1)的距离之和都等于4,∴-3≤x≤1.(3)在数轴上找不到一点到两个定点A(-3)和B(1)的距离之和等于3,∴方程|x+3|+|x-1|=3无解.综上,(1)x=-3.5或x=1.5;(2)x∈{x|-3≤x≤1};(3)x∈∅.图2-1-(1,2)-7-,0),B、C在y轴上,10.如图2-1-(1,2)-7,等边△ABC的顶点A的坐标为(3(1)写出B 、C 两点的坐标;(2)求△ABC 的面积和周长.思路分析:根据等边三角形的性质和题设中的条件,可利用两点间距离公式求边长,从而求出顶点B 和C 的坐标,再根据三角形面积公式和周长公式解答问题(2).解:(1)如图2-1-(1,2)-4,∵△ABC 为等边三角形,|AO|=3,∴|OC|=1,|OB|=1, 即B 、C 两点的坐标分别为B(0,-1)、C(0,1).(2)由(1)得|BC|=2,∴△ABC 的周长为6,面积为21×2×3=3. 我综合 我发展11.|x+2|+|x-3|≤a 恒成立,则a 的取值是________________.思路解析:|x+2|表示数轴上的任意一点到点A(-2)的距离,|x-3|表示数轴上的任意一点到点B(3)的距离,那么|x+2|+|x-3|表示数轴上的任意一点C(x)到点A(-2)的距离与到点B(3)的距离之和,即|AC|+|CB|≤|AB|=5.答案:512.如图2-1-(1,2)-8所示,平面中两条直线l 1和l 2相交于点O ,对于平面上任意一点M,若p 、q 分别是M 到直线l 1和l 2的距离,则称有序非负实数对(p,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是____________.图2-1-(1,2)-8思路解析:根据题中对“距离坐标”的定义,如果给出平面上的一个点,我们可以测量出它的距离坐标.本题需要逆向应用距离坐标的定义,在平面内找出符合条件“距离坐标为(1,2)的所有点”的个数.因此要把在平面内到这两条直线距离分别为1和2的点都找到,然后取它们的交集,即确定了一个点.把所有这样的点都找到便知这样的点的个数,如图所示.图2-1-(1,2)-9 答案:4 13.函数y=1342222+-++-x x x x 的最小值为______________,此时相应的x 值为______________.思路解析:将函数关系式转化成平面直角坐标系中的两点间的距离公式进行分析.转化后可以发现题意就是在x 轴上求一点,使这点到两个定点的距离之和为最小,并求最小值. y=222222)30()2()10()1(13422-+-+-+-=+-++-x x x x x x ,在x 轴上求一点,使这个点到两定点A(1,1)、B(2,3)的距离之和最小.作点A(1,1)关于x 轴的对称点C(1,-1),则线段BC 的长度为所求最小值,即y min =|BC|=17)31()21(22=--+-,线段BC 与x 轴的交点即为所求的x 值.直线BC 的函数关系式为y=4x-5,它与x 轴的交点为(45,0),∴x=45. 答案:1745 14.如图2-1-(1,2)-10,梯形ABCD 在平面直角坐标系中,AD∥BC ,∠ADC=90°,|AB|=|DA|+|CB|,腰DC 在x 轴上,O 是线段DC 的中点,|BO|=4,且∠BOC=60°. 求:(1)A 、B 、C 、D 各点的坐标;(2)梯形ABCD 的面积.图2-1-(1,2)-10思路分析:此题求点B 、C 、D 的坐标并不困难,难点在于求点A 的坐标,此时需要作一条辅助线,即过点A 作AE 垂直BC 于E ,然后用方程的思想求出线段AD 的长.解:(1)如图所示,过点A 作AE⊥BC 于E ,图2-1-(1,2)-11设点A 的纵坐标为y ,根据题意,得A(0,y).∵AD∥BC,∠ADC=90°,∴∠BCD=90°.又∵|BO|=4,且∠BOC=60°,∴|OC|=2,|BC|=32.∴点C 的坐标为(2,0),点B 的坐标为(2,32).又∵O 为线段DC 的中点,∴|DO|=2.∴点D 的坐标为(-2,0).∴|AE|=|DC|=4,|EC|=|AD|=y ,|BE|=|BC|-|EC|=32-y. ∵|AB|=|DA|+|CB|=y+32,又∵∠BCD=90°,∴AB 2=AE 2+BE 2,即(y+32)2=42+(32-y)2.解得y=332, ∴点A 的坐标为(-2,332). (2)S 梯形ABCD =21×(332+32)×4=3316. 综上,(1)B(2,23)、C(2,0)、D(-2,0)、A(-2,332);(2) 3316. 15.已知等边△ABC 的两个顶点的坐标为A(-4,0)、B(2,0),试求:(1)C 点的坐标;(2)△ABC 的面积.思路分析:画出图形之后,根据等边三角形的性质用方程的思想求出点C 的坐标,再根据面积公式求出△ABC 的面积.解:(1)如图所示,设点C 的坐标为(x,y),根据题意,得|AB|=|-4-2|=6,图2-1-(1,2)-12∵△ABC 为等边三角形, ∴⎪⎩⎪⎨⎧=+-=+--.6)2(,6)4(2222y x y x 解得⎩⎨⎧-=-=⎩⎨⎧=-=.33,1,33,12211y x y x 因此,点C 的坐标为(-1,33)或(-1,-33).(2)S △ABC =21×6×33=39. 综上,(1)C(-1, 33)或C(-1,-33);(2)39.。
2.1.1 数轴上的基本公式教材知识检索考点知识清单1.数轴:一条给出了 、 和 的直线叫做数轴,也称直线坐标系.2.数轴上的向量:数轴上的任意一点A 沿着数轴的正向或负向移动到另一点B ,则说点在轴上作了一次 ,简称为向量;用一个实数表示轴上的向量,实数的绝对值为线段AB 的 ,如果起点到终点的方向与轴同向,则此实数为 .否则为 ,那么这个实数为向量AB 的3.设A 、B 、C 是数轴上的三点,则=AC4.数轴上两点间的距离公式:设),()(21x B x A 、则-== =),(,B A d要点核心解读1.数轴一条给出了原点、度量单位和正方向的直线,叫做数轴或直线坐标系,当点P 与实数x 对应时,称x 为点P 的坐标,记作P (x ).如图2-1-1 -1所示,数轴x 上的点P 、Q 、R 的坐标依次是x 、-1、2,可分别记为⋅-)2()1()(R Q x P 、、2.向量当数轴上的任意一点A 移动到另一点B 时,就说点在轴上作了一次位移,当点不动时,就说点作了零位移.位移是一个既有大小又有方向的量,通常叫做位移向量,简称为向量.今后,我们统一用有向线段表示向量.起点为A 、终点为B 的向量,记为,AB 线段AB 的长度叫做向量AB 的长度或模,记为|,|AB 它体现的是向量的大小;向量的方向由起点指向终点.同向且等长的向量叫做相等的向量;模为1 个单位长度的向量叫做单位向量;向量的坐标(或称数量AB)是一个实数,实数的绝对值就是|,B |A 当向量起点指向终点的方向与轴同向时,这个实数就是AB ;反之,就是BA.例如,如图2-1-1-2所示 ,⋅-=--=-=211212)(,A x x x x BA x x B起点和终点重合的向量是零向量,它没有确定的方向,它的模和坐标都是0.3.数轴上的基本公式如图2 -1 -1 -2所示,不难看出,下面的公式成立: ,BC AB AC +=,12x x AB -=.||||),(2112x x x x B A d -=-=其中,d(A ,B)表示A 、B 两点间的距离.4.利用数轴上两点间的距离公式解决某些绝对值不等式绝对值不等式,尤其是一元一次绝对值不等式,与两点间的距离公式之间存在一定的联系,因此我们可以借助距离公式的几何意义来解决绝对值不等式问题.符合条件1|2|>-x 的点)(x P 位于x 轴的何处?可以用代数法即去掉绝对值符号解不等式,也可以运用距离公式的几何意义即“几何法”来求解.[解析] 解法一:(代数法)解绝对值不等式1|2|>-x 得12>-x 或,12-<-x 即x>3或x<l ,故点P 位于x 轴上M(l)的左侧或N(3)的右侧,解法二:(几何法)如图2 -1-1-3所示,设Q(2),则,(P d |,2|)-=x Q 由题意可知,P 、Q 两点间的距离大于1,结合数轴可以确定P 点位于M(l)的左侧或N(3)的右侧.典例分类剖析考点1 求数轴上点的坐标及两点间的距离命题规律2已知坐标求距离或已知距离求坐标(或数量).[例1] 已知数轴上的三点).()5()1(x C B A 、、-(1)当8),(||=+C B d 时,求x ;(2)当0=+CB AB 时,求x ;(3)当B =时,求x ;(4)当1=AC 时,求证:.AC BC AB =+[解析] 本例用到两个公式,即=-=),(,12N M d x x MN ==|MN ||MN =-||12x x .||21x x -其中1x 与2x 分别是M 、N 两点的坐标.[答案] (1)由),()5()1(x C B A 、、-可知.|5|),(,6){1(5|||-==--=x C B d 当8),(||=+C B d 时,有,8|5|6=-+x解得 .73==x x 或(2)由,0=+CB AB 可知,05)1(5=-+--x解得 .11=x(3)由=可知,|,||=且||AB 与||同向,即5)1(5-=--x所以 ,65=-x解得 .11=x(4)当1=AC 时,有 ,1)1(=--x解得 ,0=x所以 .150)1(5AC BC AB ==-+--=+母题迁移 1.若数轴上的顺次四点A ,B ,C ,D ,且),6(),0(),(),7(D C x B A -满足,CD AB =求实数x 考点2 向量的数量与点的坐标的关系命题规律把数轴上的向量转化为点的坐标进行运算,进而求值或证明.[例2] 设A 、B 、C 是数轴上不同于原点O 的任意三点,且.000=+CA C BA B 求证:⋅=+AC B 020101 [解析] 把向量的数量转化为点的坐标.[答案] 设A 、B 、C 在数轴上的坐标分别为).()(b B a A 、),(c C 则.,,,,c a CA b a BA c OC b OB a OA -=-====,0,00=-+-∴=+c a c b a b CA C BA OB 即abc c b 2=+ 又,11011bc c b c b C OB +=+=+且⋅=+∴=AC OB a A 02011,202 [点拨] 证明有关同一数轴上的若干点所成的向量的数量等式或条件等式时,关键要抓住“数量”这一本质,设数轴上点的坐标,把向量的数量转化为点的坐标,通过化简即可证明.母题迁移 2.已知数轴上点A 、B 、P 的坐标分别为).()3()1(x P B A 、、-(1)当P 与B 的距离是P 与A 的距离的3倍时,求⋅)(x P(2)若 P 到A 和B 的距离都是2时,求),(x P 此时P 与线段AB 有怎样的关系? (3)在线段AB 上是否存在点P(x),使得P 到A 和B 的距离都是3?若存在,求出P(x);若不存在,请说明理由.考点3 利用数轴上的基本公式解决实际问题命题规律将实际问题转化为数轴上的基本公式这一数学问题,进而加以解决.[例3] 一条公路由西向东设有A 、B 、C 、D 、E 五个站点,相邻两个站点之间的距离依次为32千米、48千米、40千米、36千米,且在公路旁A 、E 两站的中点处设有加油站.请你以加油站为原点,正东为正方向,cm 201为单位长度画数轴,并将五个站点在数轴上表示出来. [解析] 由于例题中已规定了数轴的原点、正方向和单位长度,因此,解决问题的关键在于确定五个站点分别在加油站的哪一侧,与加油站的距离是多少?[答案] 因为,36404832+>+所以A 、B 两站在加油站西侧(原点左侧),G 、D 、E 三站在加油站东侧(原点右侧).因为A 站到E 站的距离为156********=+++(千米),所以A 、E 两站到加油站(原点)的距离为78千米,而+-=-4078,463278(,2)36=,423678=-所以B 、C 、D 三站到加油站(原点)的距离依次为46千米、2千米、42千米,即A 、B 、C 、D 、E 五站在数轴上表示的数依次为 .784224678、、、、--取cm 201为单位长度,画数轴如图2 -1-1-4所示.[点拨] 解决实际问题的关键是将实际问题数学化,即建立数学模型,而数学模型是近几年高考的热点,同学们在日常生活中要注意观察、了解、总结数学与社会、生活之间的密切联系.母题迁移 3.某海洋救护站接到一船只发出的求救信号,船只在救护站正东方100 km 的A 处,正以每小时20 km 的速度缓慢靠近救护站,接到求救信号后,救护站立即派出救护艇以每小时180 km 的速度驶向求救船只,问救护艇会在何位置遇到求救船只?考点4 ∣a-b ∣的几何意义命题规律利用∣a –b ∣的几何意义解决不等式或方程中的问题.[例4] 对一切,R x ∈证明.5|3||2|≥-++x x[解析] 讨论2-≤x 或32≤<-x 或3>x 三段可求得原不等式的解,这里给出用数轴上两点间的距离公式解题的方法,即将|2|+x 看成数轴上的坐标为x 与-2的两点的距离,把|3|-x 也看成两点的距离,结合数轴求解不等式.[答案] 设点A 、B 、P 在数轴上的坐标为-2、3、x ,则.|3||||,2|||,5|32|||-=+==--=x BP x AP AB由平面几何知识知|,|||||AB BP AP ≥+当且仅当P 点在线段AB 上时取“=”, .5|3||2|≥-+⋅+∴x x上式当且仅当32≤≤-x 时,“=”成立.母题迁移 4.根据下列条件,在数轴上分别画出点⋅)(x P;2||)1(<x ;2||)2(=x ;2||)3(>x ;2|1|)4(>-x .2|1|)5(>+x优化分层测讯学业水平测试1.不在数轴上画点,确定下列各组点中,哪一组中的点C 位于点D 的右侧( ).A .C (-3)和D( -4)B .C(3)和D(4)C .C (-4)和D(3)D .C (-4)和D( -3)2.下列说法中正确的个数有( ).①数轴上的向量的坐标一定是一个实数;②向量的坐标等于向量的长度;③向量AB 与向量BA 的长度是一样的;④如果数轴上两个向量的坐标相等,那么这两个向量相等.1.A2.B3.C4.D3.A 、B 、C 三点都在数轴上,且A 是线段BC 的中点,则以下四个结论:;BC AB =①;AC BC =②0||||=-CA AB ③中,正确命题的序号是4.若点A (x )位于点B(2)和点C(8)之间,则x 的取值范围是5.在数轴上画出以下各点.⋅=/=/+-)0,0)(||||();2();3();2(y x yy x x D C B A6.对点A(a)和点B( -a)在数轴上的位置,你认为有几种,依据是什么?高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(5分x8 =40分)1.数轴上A 、B 、C 的坐标分别为-7、2、3,则CA AB +的值为( )1.A 19.B 1.-C 19.-D2.对于数轴上的任意三点A 、B 、0,在如下向量的坐标关系中,不成立的是( ).A B AB A 00.-= 00.=++BA B AO B OB AO AB C +=. 0.=++BO AO AB D3.当数轴上的三点A 、B 、0不重合时,它们的位置关系有六种情况,其中使-=和 ||||||OA OB AB -=同时成立的情况有( ).A.l 种B.2种C.3种D.6种4.数轴上的两点),2()2(a x B x A +、则A 、B 两点的位置关系为( ).A.A 在B 的左侧B.A 在B 的右侧C.A 与B 重合 D .由a 的值决定5.A 、B 为数轴上的两点,A 点坐标为,5,2=AB 则B 点坐标为( ).3.-A 7.B 37.-或C 37.或-D6.A 、B 、C 是同一直线上的三点,若等式AC BC AB =+成立,则( ).A.A 在B 、C 之间B.B 在C 、A 之间 C .C 在A 、B 之间 D .以上都有可能7.已知数轴上的点A 、B ,其中点B 的坐标为,2||,2=BA 则点A 的坐标为( ).4.A 2.-B 0.C 40.或D8.数轴上点),4()8()(--B A x P 、、若|,|2||=则=x ( ).0.A 316.⋅-B 316.C 3160.-或D 二、填空题(5分x4 =20分)9. A 、B 、C 、D 是数轴上的任意四点,则=+++DA CD BC AB10.已知数轴上三点),3()0()2(C B A 、、-则的坐标为 ,BC 的坐标为 ,的坐标为11.若不等式a x x >++-|3||1|恒成立,则实数a 的取值范围为12.已知数轴上的向量、、B AB 的坐标分别为==BC AB 、2,45-=-DC 、则=|| =AD ,三、解答题(10分x4 =40分)13.求满足下列各式的x 的范围. );,29(2)9,()1(x d x d < ⋅-≥+)0,()20,86()2(2x x d x d14.(1)在数轴上求一点的坐标,使它到点A (-1)与到点B(5)的距离相等;(2)在数轴上求一点的坐标,使它到点A(O)的距离是它到点B(-9)的距离的⋅2115.已知点A (x)位于)(2x B 的右侧,求d(A ,B)的最大值.16.已知数轴上有点),3()1()2(D B A 、、-点C 在直线AB 上,且有,21=BC AC 延长DC 到E ,使,41),(),(=E D d E C d 求点E 的坐标,。
2.1.1数轴上的基本公式
网络坐标法
地图起源很早,传说在人类发明象形文字以前就有了地图。
战国时期,军事地图更为普遍。
《孙子兵法》和《孙膑兵法》分别附图9卷和4卷。
《管子·地图篇》曾道,凡统帅军队者,必事先详尽熟悉和掌握军事活动地区的地图。
1973年湖南长沙马王堆3号汉墓出土三幅西汉初年地图。
一幅为地形图,一幅为驻军图,另一幅为城邑图。
距今已有2100多年。
如果把坐标法理解为通过某一特定系统中的若干数量来决定空间位置的方法,那么战国时代魏人石申用距度(或入宿度)和去极度两个数据来表示恒星在天球上位置的星表,可以说是一种球面坐标系统的坐标法。
古希腊的地理学家和天文学家也广泛地使用球面坐标法。
西晋人裴秀(223-271)提出“制图六体”,在地图绘制中使用了相当完备的平面网络坐标法。
用坐标法来刻画动态的、连续的点,是它沟通代数与几何而成为解析几何的主要工具的关键。
阿波罗尼在《圆锥曲线论》中,已借助坐标来描述曲线。
十四世纪法国学者奥雷斯姆用“经度”和“纬度”(相当于纵坐标和横坐标)的方程来刻画动点的轨迹。
十七世纪,费马和笛卡儿分别创立解析几何,他们使用的都是斜角坐标系:即选定一条直线作为x轴,在其上选定一点为原点,y的值则由那些与x轴成一固定角度的线段的长表示。
最早引进负坐标的是英国人沃利斯,最早把解析几何推广到三维空间的是法国人费马,最早应用三维直角坐标系的是瑞士人约翰·贝努利。
“坐标”一词是德国人莱布尼兹创用的。
牛顿首先使用极坐标,对于螺线、心形线以及诸如天体在中心力作用下的运动轨迹的研究甚为方便# 不同的坐标系之间可以互换,最早讨论平面斜角坐标系之间互换关系的是法国人范斯库腾。
我们今天常常把直角坐标系叫笛卡儿坐标系,其实那是经过许多后人不断完善后的结果。
目标重点:理解和掌握数轴上的基本公式;
目标难点:熟练应用数轴上的基本公式;
学法关键:
1.判断一个量是否为向量,就是要判断该向量是否既有大小,又有方向;
2.注意向量的长度与向量的坐标之间的区别:向量的长度是一个正数,而向量的坐标是一个实数(正数,负数,零);
3.数轴上一个向量的坐标等于其终点坐标减去起点坐标。
研习点1.直线坐标系
1.直线坐标系:一条给出了原点、度量单位和正方向的直线叫做数轴,或说在这条直线上建立了直线坐标系。
如图:
2.数轴上的点P 与实数x 的对应法则:
如果点P 在原点朝正向的一侧,则x 为正数,且等于点P 到原点的距离;如果点P 在原点朝负向的一侧,则x 为负数,其绝对值等于点P 到原点的距离;如果点P 在原点,则表示x =0,由此,实数集和数轴上的点之间建立了一一对应关系;
3.如果点P 与实数x 对应,则称点P 的坐标为x ,记作P (x );
研习点2. 向量 1.既有大小又有方向的量,叫做位移向量,简称向量。
从点A 到点B 的向量,记作AB , 读作“向量AB ”。
点A 叫做向量AB 的起点,点B 叫做向量AB 的终点; 2.向量的长度:线段AB 的长叫做向量AB 的长度,记作|AB |;
3.相等的向量:数轴上同向且等长的向量叫做相等的向量;
4.数量:用实数表示数轴上的一个向量,这个实数叫做向量的坐标或数量。
常用AB 表示向量AB 的坐标。
如何理解相等向量?
1.数轴上同向且等长的向量叫做相等的向量,定义中没有对向量的起点和终点作出限制,实际上不管起点在什么位置,只要方向相同,长度相等,这样的向量就是相等向量。
2.相等的向量,坐标相等,反之,如果数轴上的两个向量的坐标相等,则这两个向量相等。
3.如果把相等的所有向量看成一个整体,作为同一个向量,则实数与数轴上的向量之间是一一对应的。
研习点3. 基本公式
1.位移的和:在数轴上,如果点A 作一次位移到点B ,接着由点B 再作一次位移到点C ,则位移AC 叫做位移AB 与位移BC 的和,记作AC AB BC =+ ;
2.数量的和:对数轴上任意三点A 、B 、C 都有关系AC =AB +BC ; 3.数量的坐标表示:使AB 是数轴上的任意一个向量,点A 的坐标为x 1,点B 的坐标为x 2,则AB =x 2-x 1;
4.数轴上两点间的距离公式:用d (A ,B )表示A 、B 两点间的距离,则d (A ,B )=|x 2-x 1|.
例1.下列说法中,正确的是( ) (A )AB =AB (B )AB =BA
(C )零向量是没有方向的 (D )相等的向量的坐标(数量)一定相同 解:根据向量和数量的定义可知D 正确。
1. 已知AB =3,下列给出的坐标中不与之对应的是( D )
(A )A (3),B (6) (B )A (0),B (3) (C )A (-3),B (0) (D )A (5),B (2)
例2. 在数轴上表示下列各点:A (-3),B (-1),C (1),D (2),并找出与C 的距离是1 两点M 、N ,并写出它们的坐标.
解:如图
与C 的距离是1的点M 、N 分别位于点C 的两侧:M (0),N (2),点N 与点D 重合
例3. 已知A 、B 、C 是数轴上任意三点,
(1)若AB =5,CB =3,求AC ;
(2)证明:AC +CB =AB ;
(3)若|AB |=5,|CB |=3,求|AC |.
解:(1)AC =AB +BC =AB -CB =2.
(2)设数轴上A 、B 、C 三点的坐标分别为x 1,x 2,x 3,则AC =x 3-x 1,CB =x 2-x 3,AB =x 2-x 1,∴ AC +CB =(x 3-x 1)+(x 2-x 3)=(x 2-x 1)=AB .
(3)AC =2或8.
【教考动向·演练】
1.在下列四个命题中,正确的是( D )
(A )两点A 、B 惟一确定一条有向线段
(B )起点为A ,终点为B 的有向线段记作AB (C )有向线段AB 的数量AB =-|BA |
(D )两点A 、B 惟一确定一条线段
2.对于数轴上任意三点A 、B 、O ,如下关于有向线段的数量关系不恒成立的是( D )
(A )AB =OB -OA (B )AO +OB +BA =0
(C )AB =AO +OB (D )AB +AO +BO =0
3.若点A 、B 、C 、D 在一条直线上,BA =6,BC =-2,CD =6,则AD 等于( B )
(A )0 (B )-2 (C )10 (D )-10 4.如图所示,设AB 是x 轴上的一个向量,O 是原点,则下列各式中不成立的是( B ) (A )OA =||OA (B )OB =||OB (C )AB =OB -OA (D )BA =OA -OB
5.在数轴上已知点B 的坐标为3,AB =4,则点A 的坐标为 -1 ;已知点B 的坐标为2,||BA =2,则点A 的坐标为 0或4 ;已知点B 的坐标为-1,BA =2,则点A 的坐标为 1 .
6.数轴上一点P (x ),它到点A (-8)的距离是它到点B (-4)距离的2倍,则x = 0或163- . 7.已知数轴上A 、B 、C 的坐标分别为&-3,7,9,则AB +BC +CA = 0 ,||||||AB BC CA ++ = 24 .
例4. 已知A 、B 是直线l 上的定点,C 点在线段AB 上,D 点在AB 的延长线上,且|AB |=6,||||43
||||AC AD CB DB == ,求向量DC 的坐标. 解:以l 为数轴,不妨设A 为坐标原点,则点B 在数轴上的坐标为6,设C 、D 在数轴上的坐标分别为x 1,x 2,由图可得
例5.已知数轴上三点A (x )、B (2)、P (3),且满足||2||AP BP = ,求x .
解:因为|AP |=|3-x |,|BP |=|3-2|=1, 由已知||2||AP BP = ,所以|3-x |=2,得x =1或x =5.
8.在数轴上M 、N 、P 的坐标分别为3,-1,-5,则MP +PN 等于( A )
(A )-4 (B )4 (C )-12 (D )12
9. 数轴上任取三个不同点P 、Q 、R ,则一定为零值的是( D )
(A )PQ +P R (B )PQ +R Q (C )PQ +Q R+P R (D )PQ +Q R+R P
10.数轴上两点A (2x ),B (2x +a ),则A 、B 两点的位置关系为( D )
(A )A 在B 左侧 (B )A 在B 右侧 (C )A 与B 重合 (D )由a 的取值决定
11.在数轴上从点A (-2)引一线段到B (3),再延长同样的长度到C ,则点C 的坐标为( C )
(A )13 (B )0 (C )8 (D )-2
12.已知数轴上两点A (x 1),B (x 2),则线段AB 中点坐标为 122
x x + . 13.已知数轴上两点A (a ),B (5.5),并且d (A ,B )=7.5,则a = -2或13 ;若AB =7.5,
则a= -2 .
14.下列各组点中,点B在点A右侧的是②④⑤.
①A(-3)和B(-4),②A(a)和B(a+1),③A(a)和B(3a),④A(-2)和B(0),⑤A(a)和B(b),(其中a<b),⑥A(2x)和B(x2),
15.对于数轴上任意四点A、B、C、D,求证:AC+BD=AD+BC.。