承载力修正系数规范表
- 格式:docx
- 大小:13.77 KB
- 文档页数:3
脚手架地基承载力调整系数
脚手架地基承载力调整系数是用来考虑脚手架在不同地基条件下的承载能力影响的修正系数。
脚手架的地基承载能力是指脚手架在安装和使用过程中所施加的荷载对地基的影响程度。
脚手架地基承载力调整系数通常包括以下几个方面的考虑:
1. 地基土的承载能力:不同类型的地基土质的承载能力是不同的,脚手架在不同地基土质上承载能力也不同。
常见的地基土质包括砂土、黏土、粉土等,其承载力调整系数需要根据具体的地质情况进行确定。
2. 地基的稳定性:地基的稳定性可能受到地震、冻融等外力的影响,这些因素会降低地基的承载能力。
因此,地基的稳定性对脚手架的地基承载力调整系数也有一定影响。
3. 地基的厚度和坚实程度:地基的厚度和坚实程度也会影响脚手架地基承载力的调整系数。
如果地基较薄或者不够坚实,则地基的承载能力会较低。
4. 脚手架的安装方式和形式:不同的脚手架安装方式和形式对地基承载力的要求也不同。
例如,悬挑式脚手架需要更强的地基承载能力,而自立式脚手架相对要求较低。
在工程设计中,根据具体的地基条件和脚手架使用情况,可以通过相关的地质测试和计算方法来确定脚手架地基承载力调整系数,以确保脚手架的安全使用。
承载力修正系数规范表承载力修正系数规范表在中国许多行业的地基设计中,存在一种用于计算地基承载力的深度校正系数的概念。
首先,它一直发挥着重要作用。
近年来,高层建筑越来越多,主楼和裙楼的结构一体化已变得普遍。
在计算主体建筑物的地基承载力时,需要将裙式建筑物的相应载荷转换为等效土层厚度,然后进行主体建筑物的地基承载力的深度校正。
有时,讲台大楼需要配备防浮措施。
为此,许多岩土工程和基础技术工作的新手需要认真研究和理解实质性要求。
因此,笔者认为,如果将“地基承载力的深度校正系数”的标题改为“地基承载力的过载校正系数”,将会更加理解和实用,并且会更加理解,灵活。
并掌握了考虑主楼基础之外的平台荷载对主楼基础承载力的影响的本质,从而避免了机械应用的“荷载换算等效土层厚度”的实践。
实际上,从以下地基承载力的理论表达式可以看出,地基承载力的大小与地基宽度和地基两侧的超载有关。
地基的承载能力与地基的深度有关,与本质无关,但与超载有关。
卡尔·特扎吉基金会的极限承载力:qu = 1 /2γ* B *Nγ+ q * Nq + c * Nc其中,Nq表示过载影响系数,Q表示基础两侧的过载。
其他符号在此省略。
GB50007-2011《建筑基础设计规范》中基础承载力的特征值表达;a=Mb *γ* b +Md *γm* d +Mc * cka=?ak+ηb*γ*(b-3)+ηd*γm*(d-0.5)Md和ηd分别代表地基承载力系数和地基埋深深度承载力校正系数(通常称为地基承载力深度校正系数)。
其他符号在此省略。
建议将“基础承载力的深度校正系数”的标题改为“基础承载力的过载校正系数”,然后建议将上述公式重写为:a=Mb *γ* b +Mq * q +Mc * cka=?ak+ηb*γ*(b-3)+ηq*(q-q0)其中,Mq和ηq分别代表过载对基础承载力的影响系数和基础承载力的过载修正系数。
Q表示基础两侧过载。
从上面的公式可以看出,Mq和ηq的值应与Md和ηd的值相同,但称谓已更改,纯粹是为了更多地反映本质,以便于理解和理解。
建筑地基基础计算地基基础计算用表1.地基基础设计等级(表2-27)地基基础设计等级表2-27根据建筑物地基基础设计等级及长期荷载作用下地基变形对上部结构的影响程度,地基基础设计应符合下列规定:(1)所有建筑物的地基计算均应满足承载力计算的有关规定。
(2)设计等级为甲级、乙级的建筑物,均应按地基变形设计。
(3)表2-28所列范围内设计等级为丙级的建筑物可不作变形验算,如有下列情况之一时,仍应作变形验算:1)地基承载力特征值小于130kPa,且体型复杂的建筑;2)在基础上及其附近有地面堆载或相邻基础荷载差异较大,可能引起地基产生过大的不均匀沉降时;3)软弱地基上的建筑物存在偏心荷载时;4)相邻建筑距离过近,可能发生倾斜时;5)地基内有厚度较大或厚薄不均的填土,其自重固结未完成时。
(4)对经常受水平荷载作用的高层建筑、高耸结构和挡土墙等,以及建造在斜坡上或边坡附近的建筑物和构筑物,尚应验算其稳定性。
(5)基坑工程应进行稳定性验算。
(6)当地下水埋藏较浅,建筑地下室或地下构筑物存在上浮间题时,尚应进行抗浮验算。
可不作地基变形计算设计等级为丙级的建筑物范围表2-28注:1.地基主要受力层系指条形基础底面下深度为3b(b为基础底面宽度),独立基础下为1.5b,且厚度均不小于5m的范围(二层以下一般的民用建筑除外);2.地基主要受力层中如有承载力特征值小于130kPa的土层时,表中砌体承重结构的设计,应符合《建筑地基基础设计规范》(GB 50007-2002)中第7章的有关要求;3.表中砌体承重结构和框架结构均指民用建筑,对于工业建筑可按厂房高度、荷载情况折合成与其相当的民用建筑层数;4.表中吊车额定起重量、烟囱高度和水塔容积的数值系指最大值。
2.基础宽度和埋深的地基承载力修正系数(表2-29)承载力修正系数表2-29注:1.强风化和全风化的岩石,可参照所风化成的相应土类取值,其他状态下的岩石不修正;2.地基承载力特征值按地基基础设计规范附录D深层平板载荷试验确定时ηd取0。
承载力修正系数规范表根据不同的土质,按规范取值。
一般地质报告中会提出土的孔隙比,含水量等。
估算的时候地基承载力宽度修正系数取1.0就好了。
在荷载作用下,地基要产生变形。
随着荷载的增大,地基变形逐渐增大,初始阶段地基土中应力处在弹性平衡状态,具有安全承载能力。
当荷载增大到地基中开始出现某点或小区域内各点在其某一方向平面上的剪应力达到土的抗剪强度时,该点或小区域内各点就发生剪切破坏而处在极限平衡状态,土中应力将发生重分布。
这种小范围的剪切破坏区,称为塑性区(plastic zone)。
地基小范围的极限平衡状态大都可以恢复到弹性平衡状态,地基尚能趋于稳定,仍具有安全的承载能力。
但此时地基变形稍大,必须验算变形的计算值不允许超过允许值。
当荷载继续增大,地基出现较大范围的塑性区时,将显示地基承载力不足而失去稳定。
此时地基达到极限承载力。
确定方法(1)原位试验法(in-situ testing method):是一种通过现场直接试验确定承载力的方法。
包括(静)载荷试验、静力触探试验、标准贯入试验、旁压试验等,其中以载荷试验法为最可靠的基本的原位测试法。
(2)理论公式法(theoretical equation method):是根据土的抗剪强度指标计算的理论公式确定承载力的方法。
(3)规范表格法(code table method):是根据室内试验指标、现场测试指标或野外鉴别指标,通过查规范所列表格得到承载力的方法。
规范不同(包括不同部门、不同行业、不同地区的规范),其承载力不会完全相同,应用时需注意各自的使用条件。
(4)当地经验法(local empirical method):是一种基于地区的使用经验,进行类比判断确定承载力的方法,它是一种宏观辅助方法。
太沙基承载系数表(可以直接使用,可编辑实用优秀文档,欢迎下载)图7-4I区---基础底面下的土楔ABC,由于假定基底是粗糙的,具有很大的摩擦力,因此AB不会发生剪切位移区内土体处于弹性压密状态,它像一个“弹性核”随基础一起向下移动;II区---滑动面按对数螺旋线变化,在C点处螺旋线的切线垂直,D、E点处螺旋线的切线与水平线成45°角;III区---被动朗金区(底角与水平线成45°-φ/2角的等腰三角形)。
根据弹性土楔的静力平衡条件,可求得地基的极限荷载:式中:C---土的粘聚力,KPa;q---基础两侧土压力q=γ0d,若地基土是均质,则基础两侧土压力q=γd;若地基土是非均质,则γ0以上土的加权平均重度;d---基底埋深,m;b---基础宽度,m;N、N q、N c---无量纲承载力系数,可根据内摩擦角从表7-2查出。
r以上公式只适用于地基土整体剪切破坏情况,即地基土较密实,其P-S曲线有明显的转折点,破坏前沉等情况。
对于松软土质,地基破坏是局部剪切破坏,沉降较大,其极限荷载较小。
太沙基建议采用较少的φ′值代入公式计算极限荷载,即得:此时极限荷载公式为:式中N r′、N c′、N q′是相应于局部剪切破坏情况的承载力系数,根据降低后的摩擦角φ′查表7-2表7-2 太沙基公式承载力系数表φ0°5°10°15°20°25°30°35°40°45°N r0 0.51 1.20 1.80 4.0 11.0 21.8 45.4 125 326 N q 1.0 1.64 2.69 4.45 7.42 12.7 22.5 41.4 81.3 173 N c 5.71 7.32 9.58 12.9 17.6 25.1 37.2 57.7 95.7 172上述公式只适用于条形基础,对方形和圆形基础,太沙基建议按下列修正公式计算地基极限荷载:方形基础:整体剪切破坏:局部剪切破坏:圆形基础:整体剪切破坏:局部剪切破坏:式中r为圆形基础的半径,其余符号同前。
一、嵌岩桩单桩轴向受压容许承载力计算公式采用嵌岩的钻(挖)孔桩基础,基础入持力层1~3倍桩径,但不宜小于1.00m,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.4条推荐的公式计算。
公式为:[P]=(c1A+c2Uh)Ra公式中,[P]—单桩轴向受压容许承载力(KN);Ra—天然湿度的岩石单轴极限抗压强度(KPa),按表4.2查取,粉砂质泥岩:Ra =14460KPa;砂岩:Ra =21200KPah—桩嵌入持力层深度(m);U—桩嵌入持力层的横截面周长(m);A—桩底横截面面积(m2);c1、c2—根据清孔情况、岩石破碎程度等因素而定的系数。
挖孔桩取c1=0.5,c2=0.04;钻孔桩取c1=0.4,c2=0.03。
二、钻(挖)孔桩单桩轴向受压容许承载力计算公式采用钻(挖)孔桩基础,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.2条推荐的公式计算。
公式为:[]()RpAUlPστ+=21公式中,[P] —单桩轴向受压容许承载力(KN);U —桩的周长(m);l—桩在局部冲刷线以下的有效长度(m);A — 桩底横截面面积(m 2),用设计直径(取1.2m)计算; p τ— 桩壁土的平均极限摩阻力(kPa),可按下式计算:∑==n i i i p l l 11ττ n — 土层的层数;i l — 承台底面或局部冲刷线以下个土层的厚度(m);i τ— 与i l 对应各土层与桩壁的极限摩阻力(kPa),按表3.1查取;R σ— 桩尖处土的极限承载力(kPa),可按下式计算:{[]()}322200-+=h k m R γσλσ []0σ— 桩尖处土的容许承载力(kPa),按表3.1查取;h — 桩尖的埋置深度(m);2k — 地面土容许承载力随深度的修正系数,据规范表2.1.4取为0.0;2γ— 桩尖以上土的容重(kN/m 3);λ— 修正系数,据规范表4.3.2-2,取为0.65; 0m — 清底系数,据规范表4.3.2-3,钻孔灌注桩取为0.80,人工挖孔桩取为1.00。
2号楼强风化泥岩承载力特征值修正基础根据《建筑地基基础设计规范》(GB50007-2011)中5.2.4条:fa=fak+ηbγ(b-3)+ηdγm(d-0.5)进行修正(其中地下水位以下取浮重度)若高层筏板基础以稍密漂石层为持力层,以2#楼主楼筏板厚1.3m为例,筏板顶标高为550.15,底标高为548.85;强风化泥岩的标高为546.08;地下室筏板厚0.4m,筏板顶标高为550.15,底标高为549.75;抗浮水位取554.00m;D1=548.85-546.08=2.77m(2号楼筏板底到强风化泥岩的距离)根据地勘对岩层的描述,⑥白垩系上统灌口组泥岩(K2g):紫红、砖红色,强~中风化,泥质胶结,泥质结构,中~厚层状构造,以粘土矿物为主,岩层倾角近于水平。
根据泥岩风化程度及力学特征划分为强风化泥岩和中风化泥岩。
⑥1强风化泥岩:岩石组织结构大部分破坏,节理和风化裂隙很发育,易钻进,岩心以块状、碎块状为主。
岩体破碎,呈散体状—碎裂状结构。
强风化岩层底部夹薄层中风化岩石,其岩石风化带分界线呈过渡状态,界限不明显。
强风化泥岩按照所风化成的黏性土来取修正系数:ηb=0.3,ηd=1.6以下两种情况取最不利:(1)车库自重(0.4+0.16+0.16)*25+2+3+1.0*18=41KN/m2水浮力:(554-549.75)*9.8=41.65KN/m2折算厚度D=(41-41.65)/18<0d= 550.15-546.08=4.07mfa=420+0.3*12.5*(6-3)+1.6*12*(4.07-0.5)=499.8kpaγm=22-10=12 KN/m³由于浮力作用,此时可承受的最大平均荷载Nk为499.8+41.65-2.77x12=508.2kpa(2)当d=0.5m(水浮力和车库自重抵消)时,0.5=(41-x)/18 水浮力x=32KN/m2,此时基底反力最大可达到420+0.3*12.5*(6-3)+32+1.6*12*(4.07-0.5)-2.77x12=498.6 kpa地基承载力按照498.6kpa考虑。