(仅供参考)《信号检测与估计》复习纲要与复习题参考答案
- 格式:pdf
- 大小:1.27 MB
- 文档页数:31
《信号检测与估计》第十章习题解答10.1 设线性滤波器的输入信号为()()()t n t s t x +=,其中()[]0E =t s ,()[]0E =t n ,并且已知()ττ-e =S R ,()ττ-2e=N R ,()0=τsn R ,求因果连续维纳滤波器的传递函数。
解:连续维纳滤波器与离散维纳滤波器的形式是相同的,即()()()()+⎦⎤⎢⎣⎡−⋅⋅=s B s P s B s H xs w112opt σ 因此需要求解()t s 的复功率谱和()t x 的时间信号模型。
考虑到信号与噪声不相关,因此观测数据的功率谱就等于信号的复功率谱加上噪声的复功率谱。
对观测数据的复功率谱进行谱分解,就可以得到()t x 的时间信号模型。
()t s 的复功率谱为()()()20s -10s 1-s --121111e e e e s s s d d d s P S −=−++=+==∫∫∫∞−+∞++∞∞−τττττττ ()t n 的复功率谱为()2s -2-44e es d s P N −==∫+∞∞−τττ因此,观测数据的复功率谱为()()()()()()()()()s s s s ss ss s P s P s P N S X −+−++=−+−=+=2211-226441122 取12=w σ()()()()s s ss B +++=2126()()()()()()()()()s s s s s s s s B s P s B s P N xs +=−==1-2-262-2-1-2612--2令()()()s B s P s F xs -=,()τf 是()s F 的拉普拉斯反变换。
要求()τf 是因果的,可将s 平面右半平面的极点扔掉,()()()[]12e 61,e Re e21-s s +=−==∫τττπτs F s ds s F jf C给()τf 取因果,并做拉普拉斯变换,得到()s d s F +⋅+=⋅⋅+=∫∞++11126e e 1260s --τττ()()()()()()())()()122261112626211112opt +++=+×+×+++×=⎦⎤⎢⎣⎡−⋅⋅=+ss ss s s s B s P s B s H xs wσ10.2 设已知()()()n n n s n x +=,以及()()()z z z G S 4.014.0192.01−−=−,()1=z G N ,()0=z G sn ()n s 和()n n 不相关。
信号检测估计复习资料第二章随机信号及其统计描述1.两个随机过程不相关一定独立。
()2.严格的平稳随机过程不一定是宽平稳随机过程。
()3.平稳随机过程的功率谱密度与自相关函数是一对傅里叶变换。
()4.白噪声是一种理想化模型,在实际中是不存在的。
()5.功率谱密度是样本函数x在单位频带内在1欧姆电阻上的平均功率值。
()6.加性噪声按功率谱密度分为()噪声和()噪声。
7.有色噪声的功率谱密度在频率范围内是均匀分布的。
()8.对于白噪声下面哪个量是均匀分布的()。
A.噪声电压B.噪声电流C.噪声功率D.噪声功率谱密度9.在信号检测与估计理论中,通信接收机中的噪声可以近似为平稳随机过程。
()第三章经典检测理论1.什么是二元检测,其本质是什么?画出其理论模型。
2.二元检测中有两类错误的判决概率,两类正确判决概率。
( )3.下面哪种概率是虚警概率()。
A.P(D0|H0)B.P(D1|H0)C.P(D1|H1)D. P(D0|H1)4.二元检测中有先验概率和后验概率,P(H0)是()概率,P (H0|x)是()概率。
5.下面哪个为后验概率密度函数()。
A.f(x|H0)B.f(x|H1,a)C.f(a|x)D.f(a)6.经典检测理论中常用的4个检测准则分别为()、()、()和()。
7.最大后验概率准则和最小错误概率准则判决公式是不同的。
()8.最大后验概率准则为何称为理想观测者准则?9.极大极小风险准则是在先验概率未知的情况下,使可能出现的最大风险达到极小的判别准则。
()10.Neyman-Pearson准则规定,在给定( )概率情况下,使得()概率尽可能大。
11.最大后验估计和最大似然估计的使用条件。
12.下面哪种判决准则是时平均风险最小的准则()。
A.最大后验概率准则B.最小错误概率准则C.Bayes准则D.Neyman-Pearson准则13.当先验概率未知和代价函数均未知时,使用的判决准则是Neyman-Pearson准则。
《信号检测与估计》第十二章习题解答12.1 采用下式给出的有偏自相关函数的定义,并加窗,得到BT 谱估计器:()()()()()()⎪⎩⎪⎨⎧−−−−−=−+=+=∑∗1,,2,11ˆ1,,1,01ˆL L N N m m R N m m n x n x N m R X X ()⎪⎩⎪⎨⎧−≤=其它011N m m W N()()()()∑−−−=−⋅⋅=11e ˆˆN N m m j X N X m R m W G ωω证明该BT 估计器与周期图相同。
解:()()()()()()()()()()()()()()()()()211111111e 1e e 1e e 1e 1e ˆˆωωωωωωωωj N N m n m j nj N N m nj n m j N N m m j N N N m m j X N XX N m n x n x N m n x n x N m n x n x N m W m R m W G =⋅+⋅⋅=⋅⋅+=⋅⎥⎦⎤⎢⎣⎡+⋅=⋅⋅=∑∑∑∑∑∑∑−−−=+−−∗−−−=−+−∗−−−=−∗−−−=− 12.2 设自相关函数()3,2,1,0,==m m R m X ρ。
试用Levinson-Durbin 递推法求解AR (3)模型参量。
解: ()()ρ−=−=0111X X R R a 110=a()()221121101ρσ−=⋅−=X R a ()()012211122=+−=σX X R a R a ρ−=⋅+=11221121a a a a ()2212222211ρσσ−=⋅−=a因此模型为一阶 ()()[]()012322222133=⋅+−=σX X X R a R a R a021332232=⋅+=a a a aρ−=⋅+=22332131a a a a()2222332311ρσσ−=⋅−=a 所以模型为()()()n w n x n x +−=1ρ12.3 设5=N 的数据记录为:10=x ,21=x ,32=x ,43=x ,54=x ,AR 模型的阶数3=p 试用Levinson-Durbin 递推法求模型参量。
《信号检测与估计》总复习2005.4第一章 绪 论本章提要本章简要介绍了信号检测与估计理论的地位作用、研究对象和发展历程,以及本课程的性能和主要内容等。
第二章 随机信号及其统计描述 本章提要本章简要阐述了随机过程的基本概念、统计描述方法,介绍了高斯噪声和白噪声及其统计特性。
本章小结(1)概率分布函数是描述随机过程统计特性的一个重要参数,既适用于离散随机过程,也适用于连续随机过程。
一维概率分布函数具有如下性质1),(0≤≤t x F X[]0)(),(=-∞<=-∞t X P t F X ;[]1)(),(=+∞<=+∞t X P t F X ;),(),())((1221t x F t x F x t X x P X X -=<≤;若21x x <,则),(),(12t x F t x F X X ≥概率密度函数可以直接给出随机变量取各个可能值的概率大小,仅适用于连续随机变量。
一维概率密度具有如下性质:0),(≥t x f X ;1),(=⎰+∞∞-dx t x f X ;x d t x f t x F x X X ''=⎰∞-),(),(;[]⎰=-=<≤21),(),(),()(1221x x X X X dxt x f t x F t x F x t X x P(2)随机过程的数字特征主要包括数学期望、方差、自相关函数、协方差函数和功率谱密度。
分别描述了随机过程样本函数围绕的中心,偏离中心的程度、样本波形两个不同时刻的相关程度、样本波形起伏量在两个不同时刻的相关程度和平均功率在不同频率上的分布情况。
定义公式分别为:[]dxt x xf t X E t m X X ⎰+∞∞-==),()()([]{}[]dx t x f t m x t m t X E t X X X X ⎰+∞∞--=-=),()()()()(222σ[]212121212121),,,()()(),(dx dx t t x x f x x t X t X E t t R X X ⎰⎰+∞∞-+∞∞-==[][]{}[][]2121212211221121),,,()()()()()()(),(dx dx t t x x f t m x t m xt m t X t m t X E t t C X X X X X X ⎰⎰∞+∞-∞+∞---=--=。
2011《信号检测与估计》复习纲要“信号检测与估计”理论是现代信息科学的一个重要组成部分,它是把所要处理的问题,归纳为一定的“数学模型”→运用“概率论”、“随机过程”、“数理统计”等数学工具→以普遍化的形式提出,以寻求普遍化的答案和结论,并且理论与工程实践相结合,以雷达系统、通信系统、声纳系统为主要研究对象,主要内容包括:● 随机信号与噪声理论(The Theory of Random Signals and Noise)——分析随机信号与噪声的数学工具● 统计判决(检测)理论(Statistical Decision Theory)——研究在噪声干扰背景中,所关心的信号是属于哪种状态的最佳判决问题(Detection of Signals in Noise)● 参量估计理论(Estimation Theory of Signal Parameters)——研究在噪声干扰背景中,通过对信号的观测,如何构造待估计参数的最佳估计量问题(Estimation of Signal Parameters)● 滤波理论(Filtering Theory)——为了改善信号质量,研究在噪声干扰中所感兴趣信号波形的最佳恢复问题,或离散状态下表征信号在各离散时刻状态的最佳动态估计问题(Estimation of Signal Waveform) 复习重点:信号检测与参量估计 ● 信号检测:根据有限观测,“最佳”区分一个物理系统不同状态的理论 ● 参量估计:根据有限观测,“最佳”找出一个物理系统不同参数的理论如何选择一个估计量&估计量选择的决策过程信号处理否估计量LSE经典方法贝叶斯方法如何选择一个检测器-二元信号检测如何选择一个检测器-多元信号检测*注:ARMA:自回归滑动平均BLUE:最佳线性无偏估计CFAR:恒虚警率CRLB :Cramer-Rao下限EM:数学期望最大化GLRT:广义似然比检验IID:独立同分布LLR:对数似然比LMMSE:线性最小均方误差LMP:局部最大势LRT:似然比检验LSE:最小二乘估计LSI:线性时不变MAP:最大后验概率MLE:最大似然估计MMSE:最小均方误差估计MVU:最小方差无偏NP:Neyman-Pearson准则PRN:伪随机噪声RBLS:Rao-Blackwell-Lehmann-Scheffe定理ROC:接收机工作特性UMP:一致最大势WGN:白色高斯噪声WSS:广义平稳2011《信号检测与估计》复习参考题参数估计部分:1.基本概念理解:最小方差无偏估计,最佳线性无偏估计,最大似然估计,最小二乘估计,矩方法估计,最小均方误差估计,最大似然估计,线性最小均方误差估计,一般(经典)线性模型和贝叶斯线性模型。
信号检测及估计试题-答案(不完整版)一、概念:1. 匹配滤波器。
概念:所谓匹配滤波器是指输出判决时刻信噪比最大的最佳线性滤波器。
应用:在数字信号检测和雷达信号的检测中具有特别重要的意义。
在输出信噪比最大准则下设计一个线性滤波器是具有实际意义的。
2. 卡尔曼滤波工作原理及其基本公式(百度百科)首先,我们先要引入一个离散控制过程的系统。
该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A和B是系统参数,对于多模型系统,他们为矩阵。
Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k)分别表示过程和测量的噪声。
他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。
下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。
首先我们要利用系统的过程模型,来预测下一状态的系统。
假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。
我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。
《信号检测与估计》第七章习题解答7.1 在二元数字通信系统中,两个假设下的观测波形()t x 分别为L ,2,1,1:1=+=i n x H i iL ,2,1,:0==i n x H i i式中,i n 是均值为零、方差为1的高斯白噪声,要求虚警概率410−=α,漏报概率110−=β,且()()5.010==H P H P 。
求:(1)序贯似然比检测的判决门限及判决规则。
(2)序贯似然比检测的平均观测取样数。
(3)若采用常规的固定样本数的似然比检测,求满足检测性能所要求的取样数。
解:(1)单次观测所得随机变量x 的似然函数为2)1(1221)|(−−=x e H x f π 20221)|(x e H x f −=π得到似然必为2101)()()(−==x e H x f H x f x l对应的对数似然比为21ln )(ln 21−==−x e x l x 假定顺序得到取样,则第N 步的对数似然比为 22121ln )](ln[122)1(1212N x e e l N i i x N x N N N i i N i i −=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=∑=∑−∑−−==ππx 两个检测门限值分别为303.21ln ln 0−=⎟⎠⎞⎜⎝⎛−=αβl 105.91ln ln 1=⎟⎠⎞⎜⎝⎛−=αβl 序贯似然比检测的判决规则如下303.221−≤−∑=N xN i i 0H 假设为真 105.921≥−∑=N xN i i1H 假设为真105.92303.21<−<−∑=N x N i i 增加一次观测转入下一检测阶段 []21211]|)21[(|)(ln 11=−=−=H x E H x l E []21210]|)21[(|)(ln 00−=−=−=H x E H x l E (2)将各参数的取值分别代入1H 假设为真时的平均取样数和0H 假设为真时的平均取样数公式得[]93.15|)(ln ln ln )1(]|[1011=+−=H x l E l l H N E ββ []60.4|)(ln ln )1(ln ]|[0010=−+=H x l E l l H N E αα总的平均取样数为265.10]|[)(]|[)(][1100=+=H N E H P H N E H P N E因此取样数为11就可以达到预期的检测性能。
3一、简答题注释简答题(每题5分,共20分)或(每题4分,共20分)二、第1章简答题1.从系统和信号的角度看,简述信号检测与估计的研究对象。
答:从系统的角度看,信号检测与估计的研究对象是加性噪声情况信息传输系统中的接收设备。
从信号的角度看,信号检测与估计的研究对象是随机信号或随机过程。
2.简述信号检测与估计的基本任务和所依赖的数学基础。
答:解决信息传输系统接收端信号与数据处理中信息恢复与获取问题,或从被噪声及其他干扰污染的信号中提取、恢复所需的信息。
信号检测与估计所依赖的数学基础是数理统计中贝叶斯统计的贝叶斯统计决策理论和方法。
3.概述信号在传输过程中与噪声混叠在一起的类型。
答:信号在传输过程中,噪声与信号混杂在一起的类型有3种:噪声与信号相加,噪声与信号相乘(衰落效应),噪声与信号卷积(多径效应)。
与信号相加的噪声称为加性噪声,与信号相乘的噪声称为乘性噪声,与信号卷积的噪声称为卷积噪声。
加性噪声是最常见的干扰类型,也是最基本的,因为乘性噪声和卷积噪声的情况均可转换为加性噪声的情况。
三、第2章简答题1.简述匹配滤波器概念及其作用。
答:匹配滤波器是在输入为确定信号加平稳噪声的情况下,使输出信噪比达到最大的线性系统。
匹配滤波器的作用:一是使滤波器输出有用信号成分尽可能强;二是抑制噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号处理的影响。
2.根据匹配滤波器传输函数与输入确定信号及噪声的关系,简述匹配滤波器的原理。
答:匹配滤波器传输函数等于输入确定信号频谱的复共轭除以输入平稳噪声的功率谱密度,再附加相位项T ω-,其中T 为输入确定信号的持续时间或观测时间。
由于匹配滤波器传输函数的幅频特性与输入确定信号的幅频特性成正比,与输入噪声的功率谱密度成反比;对于某个频率点,信号越强,该频率点的加权系数越大,噪声越强,加权越小。
从而起到加强信号,抑制噪声的作用。
对于信号,匹配滤波器的相频特性与输入信号的相位谱互补,使输入信号经过匹配滤波器以后,相位谱将全部被补偿掉。