数学建模与数学实验
- 格式:docx
- 大小:36.70 KB
- 文档页数:2
第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模与数学实验:矿区储藏量和面积的计算问题研究研究目标本实验的目的是通过对矿区面积的计算,掌握定积分的近似计算方法,对有关数值积分的有关理论和数值计算方法有所了解。
解决问题1.计算积分42() f x dx的近似值。
2.矿区储量问题1:计算积分42()f x dx ⎰的近似值。
已知函数()y f x =的一些数据点如下:分别用矩形,梯形和辛普生公式计算积分42()f x dx ⎰的近似值。
[问题分析]这个问题就是基本的计算,我们可以直接套用公式进行编程计算即可。
复合矩形求积公式,分为三种情况:11111111(1) ()()()(2) ()()()(3) ()()()2n b i i i a i n b i i i a i n b i ii i a i f x dx f x x x f x dx f x x x x x f x dx f x x --=-=--=⎧=-⎪⎪⎪=-⎨⎪⎪+=-⎪⎩∑⎰∑⎰∑⎰ 梯形求积公式: ()[()()]2ba a bf x dx f a f b +=+⎰ 辛普生求积公式: ()[()()()]62ba b a a bf x dx f a f f b -+=++⎰[实验程序]⏹ function shiyan131⏹ x=[2.0,2.2,2.4,2.6,2.8,3.0,3.2,3.4,3.6,3.8,4.0];⏹ y=[1.65,1.56,1.38,1.12,0.77,0.34,-0.15,-0.7,-1.3,-1.91,-2.01]; ⏹ n=length(x)⏹for i=2:n⏹s1(i-1)=y(i-1)*(x(i)-x(i-1));⏹s2(i-1)=y(i)*(x(i)-x(i-1));⏹end⏹s11=sum(s1)⏹s12=sum(s2)⏹for i=2:(n-1)⏹s3(i-1)=y(i)*(x(i+1)-x(i-1));⏹end⏹s13=sum(s3)⏹s4=(x(n)-x(1))*(y(n)+y(1))/2⏹s5=(x(n)-x(1))*(y(1)+4*y((n+1)/2)+y(n))/6[运行结果]复合矩形求积法:方法一: s11= 0.5520方法二: s12 = -0.1800方法三: s13 = 0.4440梯形求积法: s4 =﹣0.3600辛普生求积法: s5 = 0.3333问题2:矩形矿区储藏量煤矿的储量估计,下表给出了某露天煤矿在平面矩形区域(800m ⨯600m)上,在纵横均匀的网格交点处测得的煤层厚度(单位:m)(由于客观原因,有些点无法测量煤层厚度,这里用/标出),其中的每个网格都为(10m ⨯8m)的小矩形,试根据这些数据,来估算出该矩形区域煤矿的储藏量(体积)。
数学建模与数学实验习题答案数学建模与数学实验习题答案数学建模和数学实验习题是数学学习中的重要组成部分,通过这些习题,我们可以更好地理解和应用数学知识。
本文将介绍数学建模和数学实验习题的一些答案和解题方法,帮助读者更好地掌握数学学习。
一、数学建模数学建模是将数学方法和技巧应用于实际问题的过程。
在数学建模中,我们需要将实际问题抽象为数学模型,并通过数学方法进行求解和分析。
下面是一个简单的数学建模问题和其解题过程。
问题:某工厂生产产品A和产品B,每天的产量分别为x和y。
产品A的生产成本为10x+20y,产品B的生产成本为15x+10y。
如果工厂每天的总成本不超过5000元,且产品A的产量必须大于产品B的产量,求工厂一天最多能生产多少个产品。
解题过程:首先,我们需要建立数学模型来描述这个问题。
设产品A的产量为x,产品B的产量为y,则问题可以抽象为以下数学模型:10x+20y ≤ 5000x > y接下来,我们需要解决这个数学模型。
首先,我们可以通过图像法来解决这个问题。
将不等式10x+20y ≤ 5000和x > y转化为直线的形式,我们可以得到以下图像:(图像略)从图像中可以看出,不等式10x+20y ≤ 5000和x > y的解集为图像的交集部分。
通过观察图像,我们可以发现交集部分的最大值为x=250,y=125。
因此,工厂一天最多能生产250个产品A和125个产品B。
除了图像法,我们还可以通过代数法来解决这个问题。
将不等式10x+20y ≤ 5000和x > y转化为等式的形式,我们可以得到以下方程组:10x+20y = 5000x = y通过求解这个方程组,我们可以得到x=250,y=125。
因此,工厂一天最多能生产250个产品A和125个产品B。
二、数学实验习题数学实验习题是通过实际操作和实验来学习数学知识和技巧的一种方式。
下面是一个关于概率的数学实验习题和其答案。
习题:一枚硬币抛掷10次,求出现正面的次数为偶数的概率。
比例建模比例是最基本也是最常用的数学建模方法之一. 在实际应用领域和理论推导过程中, 比例关系往往发挥着至关重要的作用. 例如牛顿第二定律ma F =, 微分公式dx x f x df )()('=等等.一、比例的定义变量y 与x 成比例(x y ∝):)0(>=k kx y . 显然, 比例关系具有反身性, 对称性, 传递性:x x ∝,y x x y ∝⇔∝, z x z y y x ∝⇒∝∝,.比例关系还可推广, 如x e y x y x y ∝∝∝,ln ,α.一般地,)(x f y ∝.实际应用举例:导数: 函数的增量与自变量的增量之比的极限x x f x f ∆∆/)()(=', 当导数大于零时, 在自变量很小时可近似地认为函数的增量与自变量的增量成比例.间谍照片经翻拍, 成为胶片上芝麻大的一点, 剪下后便于隐藏. 其中图形的大小关系显然要利用比例来计算. (华盛顿特区间谍博物馆)生产队的分配比例: 拿1万斤粮食分配给社员家庭, 其中30%按人口比例分配, 70%按工分比例分配, 每家应得的粮食斤数.二、比例的几何表示y 与x 成比例, 即0,>=k kx y , y 的图形为xy 坐标系中过原点的直线. 若)(x f y ∝, 在坐标系中横轴表示f (x ), 纵轴表示y , 这时y 的图形也为直线. 下图为25.0x y =的图形: 注: 比例的图形为直线, 但图形为直线的量未必成比例. 例如42+=x y , y 与x 并不成比例. 但是, 4-y 与x 成比例.著名公式中的比例关系Hooke's law: F = kS (虎克定律: 弹力与形变成正比) Newton's law: F = ma Ohm's law: V = iRBoyle's law: V = k /p (玻尔定律: 常温下一定量的气体体积与压强成反比, 即与压强的倒数成正比)Einstein's theory of relativity: E = c 2MKepler's third law: T = cR 3/2, 开普勒第三定律:T 为行星绕太阳运行的周期, R 为行星到太阳的平均距离.例1 以著名的开普勒第三定律(Kepler's third law)为例进行讨论. 1601年, 德国天文学家Johannes Kepler 成为Prague 天文台的主任. Kepler 曾帮助Tycho Brahe 收集了13年的火星相对运动的资料. 到了1609年, Kepler 建立了他的前两个定律:1. 每个行星沿一个椭圆运动, 太阳位于此椭圆的一个焦点上.2. 对于每个行星, 太阳到此行星的直线在相同的时间里扫过相同的面积.Kepler 花费了许多年推导了这两个定律, 并进而得到了上述的第三定律, 此定律把行星的轨道运行周期和到太阳的平均距离联系了起来. 以下是1993年世界年鉴(World Almanac)给出的资料:表1 行星的轨道周期和到太阳的平均距离行星周期T (天) 平均距离R (百万哩) Mercury 水星 88.0 36 V enus 金星 224.7 67.25 Earth 地球 365.3 93 Mars 火星 687.0 141.75 Jupiter 木星 4331.8 483.80 Saturn 土星 10760.0 887.97 Uranus 天王星 30684.0 1764.50 Neptune 海王星 60188.3 2791.05 Pluto 冥王星90466.83653.90以2/3R 为横坐标, T 为纵坐标, 用Matlab 画出其图形(编制程序为period1.m)如下:可见各点基本上是在过原点的直线2/3cR T =上, 由于各点相对距离相差较大, 前四个点重叠在一起. 把上述方程两边同取对数, 改写为等价的形式R c T ln 23ln ln +=,其图形相当于上述图形中坐标刻度向原点压缩, 在画出上述图形的程序中把画图命令plot(R.^(3/2), T)改为loglog(R.^(3/2), T)即可. 图形如下. 各点仍基本在一条直线上, 体现了ln T 和ln R 间的线性关系, 但直线不过原点, 因为直线在ln P 轴上有截距ln c . c 可用最小二乘法求出为0.4095.若假设αcR T =, 对表1中给出的T 和R 的数据, 用最小二乘法可求出c = 0.4043, α = 1.5016. 这也验证了Kepler 第三定律的正确性.对给定的两组数据{x i }和{y i }, 如何建立它们间的比例关系呢?进行数学实验, 在坐标系中画出点{x i , y i }, 如不是直线或不过原点, 可通过试验, 寻找y 0和函数f (x ), 使{y i - y 0, f (x i )}基本在过原点的直线上, 则有)(0x f y y ∝-. 可供选择的函数类型有)ln(,,ax e x ax a等等.三、比例的应用之一: 几何相似定义: 两个物体称为是几何相似的, 如果在这两个物体的各点之间有一个一一对应, 使得两个物体上所有对应点对距离之比恒为常数.这个常数称为这两个几何相似物体间的比例因子. 若两个物体相似, 其比例因子为k , 则这两个物体的表面积之比为k 2, 体积之比为k 3. 对相似的几何体, 可选取一个所谓特征量纲, 例如, 对圆柱体, 可用其高h , 或底半径r , 直径d , 或底面积S d , 侧面积S c , 表面积S , 或体积V 作为特征量纲. 两个相似几何体的比例因子k 确定后, 不但它们的表面积之比, 体积之比也可得到, 而且所有(不限于两个, 甚至可以是无穷多个)相似几何体的表面积或体积与特征量纲的某次幂的比也为常数. 例如, 若取某个长度l 为特征量纲, 则222'','l l k S S k l l ===, 故有22''l S l S =.由传递性, 对所有相似的几何体, 有常数≡2lS, 2l S ∝.同理有常数≡3lV, 3l V ∝.于是, 如果要考查一个依赖于物体长度, 表面积和体积的函数, 比如),,(V S l f y =,则可通过选择特征量纲, 例如l , 把此函数表为),,(32l l l g y =.例2 从静止的云上落下的雨滴. 假设雨滴从具有足够高度的静止的云上落下, 雨滴在下落过程中受到两个力的作用: 竖直向下的重力F g 和竪直向上的空气阻力F d . 由流体力学的原理知, 可设空气阻力F d 与雨滴的表面积S 和下落速度v 的平方的乘积成正比; 而重力F g 与雨滴的质量m 成正比(假设在涉及的高度内重力加速度为常数), 因此也与其体积V 成正比. 雨滴下落过程中, 随着下落速度v 的增加, 阻力F d 也在增加, 但重力F g 保持不变. 因此下落一段时间后, 阻力F d 与重力F g 达到平衡, 雨滴受到的合力为零, 保持匀速下落. 这时,d g F F =. 再假设所有的雨滴都是几何相似的, 有23,l S l V ∝∝, 从而3/23/2m V S ∝∝. 由于m F ∝g ,23/22v m Sv F ∝∝d , 且d g F F =, 得23/2v m m ∝,化简得6/1m v ∝, 或6/1km v =,即雨滴最终保持匀速下落的速度与其质量的六次方根成正比. 又一解法:0,023/2=-=-==t d g v v km mg F F dtdv, .)2(,0)1(23/2v kmmg k ≥>其中分离变量解得vk m g v k m g m kg t -+=6/16/16/5ln 21, 上式左端趋于无穷大, 并由条件(1), (2)有)(06/1∞→+→-t v k m g ,即在极限状态下,6/1m v ∝.。
P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。
学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。
解:设P 表示人数,N 表示要分配的总席位数。
i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。
首先,我们先按比例分配委员席位。
23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。
经比较可得,最后一席位应分给 A 宿舍。
所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。
QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。
点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。
数学建模与数学实验
数学建模与数学实验是当前数学教育和科学研究中的重要组成部分。
数学建模是将自然物理现象和复杂的现实问题建立数学模型,用数学
模型来描述、分析和分解实际问题。
数学实验是运用有关实验方法和
手段,从数字、图像、运算器等收集有关数据,反映实际物理现象,
分析发现规律并做出推断,从而检验和发展数学理论的研究体系。
一、数学建模
1、建模对象:将自然物理现象和复杂的现实问题建立为数学模型。
2、建模过程:确定问题范畴、确定建模目标与解决方案、建立计算模
型并解决、形成模型解、结论分析模型合理性。
3、建模应用:建模可以帮助人们更好地了解宇宙万物的规律,对把握
事件发展趋势,作出更精准的预测有重要意义,在社会发展、政策研
判等方面有着重要作用。
二、数学实验
1、实验方法:收集有关数据,反映实际物理现象,分析发现规律,并
作出推断,开展实用化的研究。
2、实验过程:选择恰当的实验方法,建立实验模型,进行实验的采集、处理和整理,分析实验数据,做验证性结论,实施实验报告记录。
3、实验应用:数学实验除了掌握数学理论外,还有助于理解数学建模
过程。
数学实验容易解释,可以运用到各种数学应用中,在社会经济发展、技术进步和新材料制备等各个领域中发挥重要的作用。