十大数学思想方法
- 格式:docx
- 大小:37.75 KB
- 文档页数:2
数学十大思想总结数学十大思想总结数学是一门研究数量、结构、变化以及空间等概念的学科,其应用广泛,对于科学、工程、经济等领域都有着重要的作用。
数学的发展历程中涌现出了许多重要的思想和理论,下面将对数学十大思想进行总结。
1. 质数与因数分解:质数是指不能被其他整数除尽的数,它们是数学中的基本构件。
数论研究质数及其性质,其中最重要的结果是因数分解定理,它表明任何一个正整数都可以被唯一地分解为质数的乘积。
因数分解不仅在数论中有重要应用,还在密码学等领域中发挥着关键作用。
2. 数列与极限:数列是由一系列数按照一定规律排列而成的序列,极限是数列中的一个重要概念。
极限的研究使得数学家能够描述和分析无穷大和无穷小的概念,从而建立了微积分的基础。
3. 微积分与物理:微积分是数学中最为重要的分支之一,它研究函数的变化规律以及它们的极限、导数和积分。
微积分的发展不仅提供了解决问题的工具,还为物理学和其他科学提供了理论基础。
4. 群论与对称性:群论是一门研究代数结构的数学分支,它研究的是集合上定义的一种运算满足一定规律的性质。
对称性是群论中的一个关键概念,它在几何学、物理学和化学中有重要应用。
5. 概率与统计学:概率论是研究随机现象的数学分支,而统计学是利用数据进行推断和决策的学科。
概率与统计学的发展为风险管理、决策分析和科学研究等提供了重要的理论支持。
6. 线性代数与矩阵论:线性代数是一门研究向量、矩阵和线性变换的数学学科,它在科学、工程和计算机科学中都有广泛的应用。
矩阵论是线性代数的一个重要分支,它研究矩阵的性质和运算规律。
7. 图论与网络流:图论是一门研究图和网络的数学学科,它研究的是由节点和边组成的图结构。
图论的应用涵盖了计算机科学、通信网络和运筹学等领域,网络流问题是图论中的一个重要问题,它研究的是在网络中物质、信息或能量的流动问题。
8. 几何与拓扑学:几何学是研究形状、大小和变换的数学分支,拓扑学是研究空间结构和连续性的数学学科。
不怕难题不得分,就怕每题扣点分!常用的数学思想和方法一.数学思想:1.数形结合的思想;2.分类与整合的思想;3.函数与方程的思想;4.转化与化归的思想;5.特殊与一般的思想;6.有限与无限的思想;7.或然与必然的思想;8.正难则反的思想.二.数学基本方法:配方法、换元法、反证法、割补法、待定系数法;分析法、比较法、综合法、归纳法、观察法、定义法、等积法、向量法、解析法、构造法、类比法、放缩法、导数法、参数法、消元法、不等式法、判别式法、数形结合法、分类讨论法、数学归纳法、分离参数法、整体代换、正难则反、设而不求、设而求之.【解题时:方法多,思路广,运算准,化简快.】三.数学逻辑方法:分析与综合、归纳与演绎、比较与类比、具体与抽象等.【也称数学思维方法.】四.选择题的方法:四个选项有极大的参考价值!千万不要小题大做!①求解对照法(直接法);②逆推代入法(淘汰法);③数形结合法(不要得意忘形);④特值检验法(定值问题);⑤特征分析法(针对选项);⑥合理存在性法(针对选项);⑦逻辑分析法(充要条件);⑧近似估算法(可能性).五.填空题的方法:①直接法;②特例法(定值问题);③数形结合法;④等价转化法.六.熟练掌握数学语言的三种形式:自然语言、符号语言、图形语言的相互转化.七.计算与化简:这是一个值得十分注意的问题!平时的训练中,要多思考如何快速准确的计算和熟练的化简!八.学会自学!课堂上不可能把所有的题型都讲到!所以要多看例题,多思考!看之前一定要想自己会怎么做!怎么看:一看解题思路【看完后要归纳步骤、总结方法】,二看规范表达【尽量学会使用数学语言、符号】.学会总结归类:①从数学思想上归类;②从知识应用上归类;③从解题方法上归类;④从题型类型上归类.【特别提醒】1.一道题有没有简便解法,关键就在于你能不能发现其中的一些条件的特殊性,并能加以灵活运用!(灵机一动)【转化、联想、换元等,另外,解题时有时对一些细节的处理也很关键,会起到峰回路转、柳暗花明的作用.】2.解函数、解析几何、立体几何的客观题,应特别注意数形结合思想的运用!但在解答题中,不能纯粹只凭借图象来解答问题;图象只起到帮助找到解题思路的作用【图象尽量画准,甚至在有时给出图象时也需要自己重新准确画一遍】;解题过程还是要进行严谨的理论推导【用数学语言表达】,不能纯粹以图象代替推理、证明.3.转化数量关系时,若是写不等式,则要注意是否可以取“=”.特别是求取值范围时,端点一定要准确处理.4.平常做解答题应该做完整:解题过程的表达是否流畅、简洁.否则到考试时,还需为如何组织语言表达去思考而耽误时间.这是平时训练值得注意的【条理分明、言简意赅、字迹工整】!表达也是思维的一部分!5.在解答题中,某些局部问题解答过程的书写的详略,取决于整个解题书写过程的长短:长则略写,可用易证、易知等字眼;短则详写.如果要应用教材中没有的重要结论,那么在解题过程中要给出简单的证明.6.在设置有几问的解答题中,后面问题的解决有时候依赖于如何灵活运用前面已解决的问题的结论.有些解答题某一问貌似与前面无关,实则暗【明】示你必须把它与前面联系起来,才能解决问题.7.平常要多积累解题经验和解题技巧.熟记一些数学规律和数学小结论对解题也是很有帮助的.8.数学总分上不上得去,很大程度上取决于选择题、填空题得分高不高.而选择题、填空题更注重对基础知识,基本数学思想、方法和技能的全面考察.因此,要熟练掌握解选择题、填空题的特有方法:在解选择题或填空题时,优秀的解题方法更显得重要.建议每天做一份选择、填空题,花大力气提高解选择、填空题的准确率和速度.【注意:选择题的四个选项中有且只有一个是正确的,是一个需要特别重视的已知条件.】9.可以在专门的笔记本上,收集作业、考试中的错题,学习中遇到的经典题,便于日后考前复习巩固.⒑作业本上的错题、试卷上的错题一定要及时更正!做错了不可怕,可怕的是做错了不去纠正!我的成功归功于精细的思考,只有不断地思考,才能到达发现的彼岸。
十大数学思想方法数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
下面请欣赏店铺为大家带来的十大数学思想方法,希望对大家有所帮助~1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2—4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
初中数学八大思想方法总结初中数学的八大思想方法是指数学学科中的八种基本思想方法,即归纳、演绎、分类、比较、抽象、联想、推测和分析。
这些思想方法在数学学习和问题解决过程中起到了重要的指导作用,能够帮助学生理解和掌握数学知识,培养数学思维能力。
下面将对每一种思想方法进行详细阐述。
首先是归纳。
归纳思想方法是通过观察和实验,从具体的个别事物或现象中寻找共同点、相似之处,从而总结出一般规律或定律。
归纳是数学研究和解决问题的重要手段,能够培养学生的观察能力和归纳能力。
第二是演绎。
演绎思想方法是从已知事实、条件或前提出发,运用逻辑推理的方法,得出结论。
演绎是数学推理的基本方法,能够帮助学生分析问题、确定解题步骤,并推导出准确的答案。
第三是分类。
分类思想方法是将事物或现象按照某种规则或特征进行划分和组织。
分类能够帮助学生理清数学概念之间的关系,搞清楚各个概念的边界和特点,从而更好地理解和应用数学知识。
第四是比较。
比较思想方法是将不同事物或现象进行对比和分析,找出它们的共同点和差异点。
比较能够帮助学生深入理解数学概念和知识,发现问题的本质和特点,从而培养学生的分析思维能力和解决问题的能力。
第五是抽象。
抽象思想方法是将具体的事物或现象中的共同特点联系起来,形成一个更为一般的概念或理论体系。
抽象是数学研究和发展的核心方法之一,能够帮助学生理解和应用抽象概念,拓展数学思维的广度和深度。
第六是联想。
联想思想方法是在解决问题时,将已有的知识和经验与新的问题进行联系和应用。
联想能够帮助学生迅速找到解决问题的思路和方法,提高解题效率和准确性。
第七是推测。
推测思想方法是根据已有的事实、条件或观察结果,推断出可能的结论或规律。
推测是数学研究和创新的重要方法,能够培养学生的假设能力和创造性思维。
最后是分析。
分析思想方法是将复杂的问题或现象进行分解和研究,找出其中的关键因素和规律。
分析能够帮助学生深入思考问题的本质和特点,提高解决问题的能力和水平。
初中数学解题必备10大思想方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
数学中的思想方法
数学中的思想方法包括:
1. 分析思维:对问题进行分解,找出其中的关键因素,并分析它们之间的关系。
2. 抽象思维:将具体的问题抽象化,转换成数学模型或符号,以便进行推理和计算。
3. 归纳思维:通过观察和总结已有的规律和模式,得出普遍性的结论。
4. 推理思维:基于已知的事实和定理,推导出新的结论。
5. 反证法:通过假设问题的对立面,推导出矛盾的结论,从而证明原命题的正确性。
6. 直觉思维:凭借一种“直觉”或“感觉”来找到解决问题的思路和方法。
7. 创造性思维:发散思维,尝试不同的方法和视角,寻找新的解决方案。
8. 形象思维:通过图形、图表等形象化的方式来理解和解决问题。
9. 比较思维:将不同的问题或对象进行比较,找出它们的共同点和差异,从而
得到更深入的理解。
10. 逆向思维:从问题的解决结果出发,反推回问题的条件和前提。
这些思维方法在数学中起到重要作用,帮助人们理解和解决各种数学问题。
同时,这些思维方法也可以应用到其他领域,培养人们的逻辑思维、创新思维和问题解决能力。
数学思想十大数学思想方法数学思想十大数学思想方法一、假设法当应用题用一般方法很难解答时,可假设题中的情节发生了变化,假设题中两个或几个数量相等,假设题中某个数量增加了或减少了,然后在假设的基础上推理,调整由于假设而引起变化的数量的大小,题中隐蔽的数量关系就可能变得明显,从而找到解题方法。
例:在一次登山活动中,胖楚楚上山时每分钟走50米,到达山顶后沿原路下山,每分钟走75米,胖楚楚上山下山的平均速度是多少?【分析与解】我们要求平均速度,就必须知道上、下山共走了多少米的路,可它是个未知数,我们一点也不知道,这时我们就可以假设上、下山的总路程是150米(150是50和75的最小公倍数),那么平均速度就是用总路程除以总时间就可以了。
假设上山和下山分别都是150米;150÷50=3分,150÷75=2分;150×2=300米;所以平均速度是:300÷(2+3)=60(米/分)。
在这其中我们也用到了另外一种方法,在数学上叫做“特殊值”代入法,在以后的学习中我们将会更多的接触到这种方法。
还有在我们的经典类型——鸡兔同笼当中,大部分题型都是用我们的假设法。
二、对应法应用题的一些数量关系之间存在着对应关系,如总数与总份数的对应,路程与时间的对应,分数、百分数应用题中量与率的对应等。
解题时找准数量之间的对应关系,就能实现由未知向已知的转化。
这种运用对应关系解题的方法,就是对应法。
例:如果把两个连在一起的圆称为一对,那么图(1)中相连的圆共有多少对?将各圆心用线段连起来,两圆心的“连线”与“一对圆”之间可建立“一对一”的对应关系。
于是将数有多少个圆,转化为数有多少条相邻圆心之间的连线。
而每个“正摆”的小等边三角形有三条“连线”。
所以相连的圆共有(1+2+3+4+5)X3=45对。
三、从简单情况考虑有时候我们碰到的题目很复杂,乍一看似乎无从入手,这时候我们往往可以先从简单的情况出发,看看有什么规律。
小学十大数学思想方法数学是一门抽象而又具体的学科,它是一种思维方式,也是一种解决问题的工具。
在小学阶段,数学思想方法的培养尤为重要,它不仅能够帮助学生更好地理解数学知识,还能够培养学生的逻辑思维能力和解决问题的能力。
下面,我们就来介绍小学十大数学思想方法。
1. 观察法。
观察是数学思维的起点,通过观察,学生可以发现问题的规律和特点,从而更好地解决问题。
例如,通过观察不同形状的图形,学生可以总结出它们的特点和性质,从而更好地理解几何知识。
2. 比较法。
比较是一种重要的思维方式,通过比较不同的数学对象,学生可以找出它们的相同点和不同点,从而更好地理解数学概念。
例如,比较不同大小的数值,可以帮助学生理解数值的大小关系。
3. 分类法。
分类是整理和归纳的一种重要方式,通过分类,学生可以将问题进行归类,找出其中的规律和特点。
例如,将不同形状的图形进行分类,可以帮助学生更好地理解图形的性质和特点。
4. 推理法。
推理是数学思维的核心,通过推理,学生可以从已知的条件出发,得出未知的结论。
例如,通过已知的几何定理,可以推导出一些未知的几何性质。
5. 归纳法。
归纳是从具体到一般的思维方式,通过归纳,学生可以从具体的事例中总结出一般的规律和结论。
例如,通过观察一系列数列的规律,学生可以总结出数列的通项公式。
6. 演绎法。
演绎是从一般到具体的思维方式,通过演绎,学生可以从一般的规律出发,得出具体的结论。
例如,通过已知的数学定理,可以推导出一些具体的数学问题的解法。
7. 抽象法。
抽象是数学思维的重要特点,通过抽象,学生可以将具体的问题转化为符号或者图形,从而更好地进行推理和计算。
例如,将实际问题转化为代数方程式,可以帮助学生更好地解决问题。
8. 反证法。
反证是一种重要的证明方法,通过反证,学生可以通过假设反命题,从而推导出矛盾,从而证明原命题的正确性。
例如,通过反证法可以证明平行线的性质。
9. 递归法。
递归是数学思维的一种重要方式,通过递归,学生可以通过递推关系得出数列的通项公式。
小学十大数学思想方法
1. 预测和推论:预测和推论是数学思想方法的重要部分。
小学生可以通过观察数据和图表来做出预测,并据此推断出结果。
2. 抽象和分类:数学思维可以通过分类和抽象来提高。
小学生可以按照特定的属性将事物分组,并将它们视为一个整体。
3. 排列和组合:排列和组合是掌握初级数学思维的重要步骤。
小学生可以利用排列和组合来解决问题,从而提高他们的思维能力。
4. 逻辑推理:数学思维方法中的逻辑推理是使小学生思考的关键。
通过逻辑推理,小学生可以理解和解决问题的思考逻辑。
5. 连续性和平滑性:在数学思维中,连续性和平滑性很重要。
小学生应能够察觉到不同形状和尺寸之间的变化。
6. 比较与对比:比较和对比可让小学生看到不同事物之间的共性和差异。
这种思维方式可以在计算能力和问题解决方面帮助他们。
7. 建模与测量:建模以及测量纪录对于小学生的数学思维发展也是至关重要的。
他们可以用模型来表示数学规律,并通过测量和比较得出结论。
8. 模式发现:模式发现是小学生学习数学的关键之一。
他们应该能够看到形式之间的关系,并识别出有规律的模式。
9. 变化和变形:变化和变形是数学思维方法中的关键。
小学生应该能够理解数学概念和数据之间的变化和变形。
10. 探索和发现:小学生应该主动去探索和发现,发现新的数学规律和规则。
在探索和发现过程中,他们可以更好地理解数学规律并得到更深刻的体验。
数学思维十种思维方式一、定义式思维法定义式思维是一种innate的数学思维能力,它允许我们对某个概念或问题直接进行定义和抽象,我们可以把各种属性和关系捆绑到一起形成一个抽象的概念,并表述成定义式,以便解释问题或设计解决方案。
二、抽象思维法抽象思维是在解决问题时特别有效的数学思维方式,它有助于我们将数学问题拆分成多个抽象步骤,以便理解问题的本质和核心解决思路。
通过快速想象与推断,我们可以把复杂的表达式提炼成简洁的形式,进而找出问题的解决方案。
三、科学推理思维法科学推理思维法是在分析复杂数学问题时相当有用的一种思维方式。
它有助于我们把不同的因素拆解成可以进行计算的有效小部分,从而发现潜在的联系,最终实现可见的推理。
四、强调计算思维法强调计算法是一种特殊的数学思维方式,它可以帮助我们将复杂的数学概念转化为能够快速进行计算的精确定义式,从而更快地求出结果。
这是分析、推断、验证以及答题等常见数学操作中至关重要的方面。
五、解构思维法解构思维法能够帮助我们有效地理解复杂的数学概念,它通过将复杂问题细分成可以容易理解的基本概念,不断重构与变换,从而实现问题的全面把握和解决。
六、比较思维法比较思维法是数学解决方案中必不可少的一步,其重点在于比较各个因素间的相似与不同,从概念、元素、定义形式以及推理上全方位筛选有效成果,以期获得最佳最优解决办法。
七、系统分析思维法系统分析思维法是基于定义和组织的数学思维方式,它有助于我们分析数学问题的细节,并形成一个可以基于定义与流程进行解释的数学模型,以帮助我们回答问题和推理有效结果。
八、逻辑应用思维法逻辑应用思维法是根据数学证据和论证,把具体的数学元素和属性串联在一起,架构出在算术操作以及假设和结论上有系统性、有效性的推理方式。
它为统计、推断等数学基础知识模块提供更复杂的解决途径。
九、综合能力思维法综合能力思维法是建立在积累和运用多种数学思维方式之上的整体能力,也可以称为“大思维”。
十大数学思想方法
数学思想是数学研究活动中解决问题的根本方法,是数学的灵魂和生
命力。
因此,在教学过程中,要重视数学思想的提炼、渗透。
分析近几年的
高考试题,高考中重点考察学生函数与方程思想、分类讨论思想、数形结
合思想、转化或化归思想。
在不等式解题中,若能恰当地运用这些思想方法,可使许多复杂问题化难为易,化繁为简,从而达到优化解题过程,提高思
维能力的目的。
一、函数与方程思想函数与方程是高中数学内容之重点,应用广泛,是解决数学问题的有力工具,在高考中占据非常重要的地位。
因此,在教学中要培养学生如何建立函数关系或构造函数,运用函数的图像、性质去分析问题,解决问题。
例1已知某∈(0,+∞),求证: 根据不等式
的结构特征,恰当地构造辅助函数,此时,若均值不等式取最值时等号不成立,常常考虑利用函数的单调性来解决。
二、分类讨论思想分类讨论
是数学能力培养的一个重要组成部分,在解某些数学问题时,当在整个范围
内不易解决时,往往可以将这个大范围划分成若干个小范围来讨论研究。
分类讨论只能确定一个标准,必须坚持不重不漏的原则。
例2.设a为实数,函数f(某)=2某2+(某-a)|某-a|。
(1)求f(某)的最小值; (2)设函
数h(某)=f(某),某∈(a,+∞)解不等式h(某)≥1评注:分类讨论的关键
是要根据问题实际找到分类的标准,本题函数解析式中含有绝对值,所以首
先必须分类讨论去绝对值,其次在解不等式中必须对判别式△进行讨论,当△>0时还需讨论根的大小。
分类时标准的确定须使任何两类交集为空集
且并集为全集,这样才能在解题过程中,做到分类合理,并力求最简。
三、数形结合思想数与形是现实世界中客观事物的抽象与具体的反映。
数形
结合思想,其实质是将代数式的精确刻划与几何图形的直观描述有机结合
起来,通过对图形的处理,实现代数问题几何化,几何问题代数化。
解题时
要充分进行数形转换,借助数的逻辑推演与形的直观特性求解,既直观又深
刻。
例3.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料
3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨
甲产品可获得利润5万元,每吨乙产品可获得利润3万元。
该企业在一个
生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么该企业可获
得最大利润是多少作出可行域后求出可行域边界上各端点的坐标,经验
证知; 当某=3,y=5时可获得最大利润为27万元。
评注:本题从实际情
境中抽象出二元一次不等式组模型,用平面区域表示二元一次不等式组,使
学生从中体会到数形结合思想的实质。
四、转化或化归思想等价转化
是把复杂、生疏的问题转化为简单、熟悉的问题的一种重要的思想方法。
诸如代数中的恒等变形,几何中的图形变换等都是化归思想的具体运用。
等价转化要求转化后的结果仍为原问题的结果,因此在转化过程中前因后
果必须是充分必要的。
在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,运用转化或化归,可以化难为易,驾轻就熟,有利于培养学生思维的针对性和灵活性。
例4.当某∈R时,不等式
m+co2某。