3-从不同的方向看立体图形和立体图形展开图-练习题
- 格式:docx
- 大小:6.02 MB
- 文档页数:10
三视图、展开图专题【题型一】从不同方向看几何体1、如图所示的立体图形从上面看到的图形是( )2、从左面看图中四个几何体,得到的图形是四边形的几何体共有( ) A. 1个 B. 2个 C. 3个 D. 4个3、从不同方向看一只茶壶,如图,下列选项中从上往下看的效果图是( )。
4、从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )。
A. 圆柱B. 三棱锥C. 球D. 圆锥5、由四个相同的小正方体搭建了一个积木,它的左视图和主视图均如图所示,则这堆积木不可能是( )6、由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A . 从正面看面积最大B . 从左面看面积最大C . 从上面看面积最大D . 三个视图的面积一样大AB CD从左面看 从上面看从正面看ABC D7、5个棱长为1的正方体组成图所示的几何体.(1)该几何体的体积是 (立方单位),表面积是 (平方单位). (2)画出从正面看和从左面看到的平面图形.8、如图,这个图形从正面看是__________,从左面看是__________,从上面看是__________.【题型二】正方体的展开与折叠1、如图是一个长方体包装盒,则它的平面展开图是( )A .B .C .D .2、下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是( )A .B .C .D .3、把如图中的三棱柱展开,所得到的展开图是( )A .B .C .D .4、下列四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .5、小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如1 2 3x y图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是( ).A. B. C. D6、一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是( ) A .建 B .设C .和D .谐7、如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是( )A .我B .中C .国D .梦月8、一个正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )9、下面四个图形中,经过折叠能围成如图所示的几何图形的是【 】10、若要使图中平面展开图按折叠成正方体后,相对面上两个数之和为6,x=_ ___, y=______.A。
立体图形展开图与正方体展开图跟踪训练一.选择题(共23小题)1.下列各图不是正方体表面展开图的是()A.B.C.D.2.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.3.将图1的正四角锥ABCDE沿着其中的四个边剪开后,形成的展开图为图2.判断下列哪一个选项中的四个边可为此四个边?()A.AC、AD、BC、DE B.AB、BE、DE、CD C.AC、BC、AE、DE D.AC、AD、AE、BC4.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.5.下列图形中,是圆锥侧面展开图的是()A.B.C.D.6.下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.7.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是()A.B.C.D.8.如图是一个正方体纸盒,在其中的三个面上各画一条线段构成△ABC,且A、B、C分别是各棱上的中点.现将纸盒剪开展成平面,则不可能的展开图是()A.B.C.D.9.韩老师特制了4个同样的立方块,并将它们如图A放置,然后又如图B放置,则图B 中四个底面正方形中的点数之和为()A.11 B.13 C.14 D.1610.图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美11.如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A. B.C.D.12.将如图所示的圆心角为90°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA 与OB重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是()A.B.C.D.13.下列四个展开图中能够构成如图所示模型的是()A.B.C.D.14.如图是一个由六个小正方体组合而成的几何体,每个小正方体的六个面上都分别写着﹣1,0,1,﹣2,3,﹣4六个数字,现在能看到的数字全部标在面上,那么现在图中所有看不见的面上的数字和是()A.﹣15 B.10 C.8 D.﹣1215.如图是一个正方体的表面展开图,则这个正方体是()A.B.C.D.16.如图(1)是一个小正方体的表面展开图,小正方体从图(2)所示位置依次翻转到第1格、第2格、第3格,这时小正方体朝上一面的字是()A.腾B.飞C.燕D.山17.美术课上,老师要求同学们将如图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是()A.B.C.D.18.如图,哪一个是左边正方体的展开图()A.B.C.D.19.下列四个图形中,每个小正方形都标上了颜色.若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是()A.B.C.D.20.下列平面图中不能围成正方体的是()A. B.C.D.21.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山22.把图①的纸片折成一个三棱柱,放在桌面上如图②所示,则从左侧看到的面为()A.Q B.R C.S D.T23.如图是某一立方体的侧面展开图,则该立方体是()A.B.C.D.二.填空题(共10小题)24.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.25.如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有种拼接方法.26.圆锥有个面,它的侧面展开图是.27.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是.28.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,则x的值是.29.如图,矩形①、②、③、④都是圆柱的侧面展开图.这些圆柱的底面半径与高最接近相等的一个是(填序号).30.如图,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M,P.有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿NO剪开,所得的侧面展开图可以是:(填序号).31.底面直径为m的圆柱体(如图),沿它的一条母线AB(也就是圆柱的高,且AB=h)剪开展平,则圆柱侧面展开后的面积为.32.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A、B、C均是棱的中点,现将纸盒剪开展成平面,则展开图可能是(错填得0分,少填酌情给分)33.如图(1),一个正方体的三个面上分别写有1、2、3,与它们相对的三个面上依次写有6、5、4.这个正方体的每一条棱处各嵌有一根金属条,每根金属条的质量数(单位:克)等于过该棱的两个面上所写数的平均数.(1)这个正方体各棱上所嵌金属条的质量总和为克.(2)沿这个正方体的某些棱(连同嵌条)剪开,得到图(2)所示的展开图,其周边棱上金属条质量之和的最小值为克.在图(2)中把这个正方体的六个面上原有的数字写出来(注:写字的这一面是原正方体的外表面).三.解答题(共7小题)34.操作探究:在一个正四面体(四个面都是等边三角形)上钻透一个圆孔,由于钻孔的位置不同,在四面体的展开图(如图四个连续的三角形)上看到的弧线或圆的数目也不同.探究:有几种“钻透”的情况?画出它们的展开图,并标出相应的弧线或圆.(要求:至少画出两种情况)35.现实生活中,我们常常能见到一些精美的纸质包装盒.现有一正方体形状的无盖纸盒,在盒底上印有一个兑奖的标志“吉”字,如图1所示.现请同学们用剪刀沿这个正方体纸盒的棱将这个纸盒剪开,使之展开成一平面图形.那么,能剪出多少种不同情况的展开图呢?请把剪开后展成的平面图形画出来,要求展开图中的标志“吉”字是正立着的.(其中一种的展开情况如图2,至少再画出六种不同情况的展开图)36.如图,正方体的每个面上都写有一个有理数,已知三对相对的两个面上的两个数之和相等,若15,9,﹣4的对面的数分别是x,y,z,求2x﹣3y+z的值.37.如图,在无阴影的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成正方体表面的不同展开图(填出三种答案).38.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.39.以下哪些图形经过折叠可以围成一个棱柱?40.如图所示是长方体的表面展开图,折叠成一个长方体.(1)与字母F重合的点有哪几个?(2)若AD=4AB,AN=3AB,长方形DEFG的周长比长方形ABMN的周长少8,求原长方体的容积.参考答案与试题解析一.选择题(共23小题)1.解:A、是正方体表面展开图,不符合题意;B、是正方体表面展开图,不符合题意;C、是正方体表面展开图,不符合题意;D、有“田”字格,不是正方体表面展开图,符合题意.故选:D.2.解:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B 错误,正视图的斜线方向相反,故C错误,只有D选项符合条件,故选D3.解:将图1的正四角锥ABCDE沿着其中的四个边剪开后,形成的展开图为图2.四个边可为AC、AD、BC、DE.故选:A.4.解;AB是正方体的边长,AB=1,故选:B.5.解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.6.解:A、另一底面的三角形是直角三角形,两底面的三角形不全等,故本选项错误;B、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C、折叠后能围成三棱柱,故本选项正确;D、折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C.7.解:A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,无法组成长方体,故此选项不合题意;故选:C.8.解:选项A、C、D折叠后都符合题意,只有选项B折叠后两个画一条线段与另一个画一条线段的三角形不交于一个顶点,•与正方体三个画一条线段的三角形交于一个顶点不符.故选B.9.解:根据四个图形的点数,可推断出来,点4对面是点2;点5对面是点1;点6对面是点3.则图B中四个底面正方形中的点数是1,3,6,6,1+3+6+6=16,则图B中四个底面正方形中的点数之和为16.故选D.10.解:第一次翻转梦在下面,第二次翻转中在下面,第三次翻转国在下面,第四次翻转城在下面,城与梦相对,故选:A.11.解:亲自动手折一折,再发挥空间想象力,可以得出正确的结果是C.故选C.12.解:A、B一定重合,与A、B相邻的两个阴影一定在A所在的母线重合,而另一端一定与圆锥的底面相交,即靠近A、B两点的两个空白部分无法围成环并且紧贴底面.故选B.13.解:选项A、B中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项D中折叠后图案的位置不符,所以正确的是C.故选C.14.解:(﹣1+0+1﹣2+3﹣4)×6﹣(1+3﹣4+0+3﹣1+0﹣4+1﹣2+1﹣1+0)=﹣15.故选A.15.解:通过具体折叠结合图形的特征,判断图中的线段折叠后只能平行,所以折叠成正方体后的立体图形是B.故选B.16.解:由图1可得,“祝”和“飞”相对;“愿”和“山”相对;“燕”和“腾”相对;由图2可得,小正方体从图2的位置依次翻到第3格时,“祝”在下面,则这时小正方体朝上面的字是“飞”.故选B.17.解:动手操作折叠成正方体的形状放置到白纸的阴影部分上,所得正方体中的阴影部分应紧靠白纸,故选:B.18.解:根据有图案的表面之间的位置关系,正确的展开图是D.故选D.19.解:选项C中红色面和绿色面都是相邻的,故不可能是一个正方体两个相对面上的颜色都一样,故选C.20.解:A、围成几何体时,有两个面重合,故不能围成正方体.B、C、D均能围成正方体.故选A.21.解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选D.22.解:由图可得,宽为3的长方形是R,则从左侧看到的面为B.故选B.23.解:A、两个圆所在的面是相对的,不相邻,故A错误;B、C中空白的圆圈不与白色的三角形相邻,故B、C错误;D、正确.故选D.24.解:①底面周长为6高为16π,π×()2×16π=π××16π=144;②底面周长为16π高为6,π×()2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.25.解:如图所示:故小丽总共能有4种拼接方法.故答案为:4.26.解:圆锥有二个面组成,它的侧面展开图是扇形.故答案为:二,扇形.27.解:根据题意可知连续3次变换是一循环.所以10÷3=3…1.所以是第1次变换后的图形,即按上述规则连续完成10次变换后,骰子朝上一面的点数是5.故应填:5.28.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∵标注了字母A的面是正面,∴左右面是标注了x2与3x﹣2的面,∴x2=3x﹣2,解得x1=1,x2=2.故答案为:1或2.29.解:由题意得,底面半径与高最接近相等应该是宽等于长的π倍,则底面半径与高最接近相等的一个是④.30.解:圆柱侧面沿NO剪开,根据两点之间线段最短,剪开后所得的侧面是长方形,P点在展开图中长边的中点处,金属丝是线段,且从P点开始到M点为止.故选②.31.解:圆柱的侧面积=π•mh.故答案为:π•mh.32.解:选项A、C、D折叠后都符合题意;只有选项B折叠后两个画一条线段与另一个画一条线段的三角形不交于一个顶点,•与正方体三个画一条线段的三角形交于一个顶点不符.故答案为:ACD.33.解:(1)正方体各棱的质量为:(1+2)÷2=1.5克,(1+3)÷2=2克,(1+4)÷2=2.5克,(1+5)÷2=3克,(6+2)÷2=4克,(6+3)÷2=4.5克,(6+4)÷2=5克,(6+5)÷2=5.5克,(2+3)÷2=2.5克,(3+4)÷2=3.5克,(4+5)÷2=4.5克,(2+5)÷2=3.5克.1.5+2+2.5+3+4+4.5+5+5.5+2.5+3.5+4.5+3.5=42克.故这个正方体各棱上所嵌金属条的质量总和为42克;(2)如图所示:3+4.5+5+4.5+4=21克,42﹣21=21克.故答案为:42,21.34.解:有3种“钻透”的情况,作图(其中两种情况:面面、点面)如下:35.解:能剪出8种不同情况的展开图,作图如下:36.解:∵x+15=y+9=z﹣4,∴x﹣y=﹣6,y﹣z=﹣13.∴2x﹣3y+z=2(x﹣y)﹣(y﹣z)=1.故2x﹣3y+z的值为:1.37.解:根据正方体的展开图作图:38.解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.39.解:(1)中间是三个矩形,矩形两边分别是四边形,故(1)不能围成棱柱;(2)中间是四个矩形,矩形两边分别是四边形,故(2)能围成棱柱;(3)中间是四个矩形,矩形一边有两个四边形,另一边没有四边形,故(3)不能为成棱柱;(4)中间是三个矩形,矩形两边分别是四边形,故(4)不能围成棱柱;答:(2)经过折叠可以围成一个棱柱.40.解:(1)与F重合的点是B.(2)设长方体的长、宽、高分别为x、y、z.根据题意得:解得:.∴原长方体的容积=4×8×12=384.。
第2课时从不同方向看立体图形与立体图形的展开图1.[2017·台州]如图4-1-14所示的工件是由两个长方体构成的组合体,则从正面看到的图形是( )图4-1-142.[2017·襄阳]如图4-1-15所示的几何体是由6个大小完全一样的正方体组合而成的,它从上面看到的图形是( )图4-1-153.[2017·丽水]图4-1-16是底面为正方形的长方体,下面有关它的三个视图的说法正确的是( )图4-1-16A.从上面看到的图形与从正面看到的图形相同B.从左面看到的图形与从正面看到的图形相同C.从左面看到的图形与从上面看到的图形相同D.三个不同方向看到的平面图形都相同4.[2017·北京]图4-1-17是某个几何题的展开图,该几何体是( )图4-1-17A.三棱柱B.圆锥C.四棱柱D.圆柱5.[2017·舟山]一个立方体的表面展开图如图4-1-18所示,将其折叠成立方体后,“你”字对面的字是( )图4-1-18A.中B.考C.顺D.利6.如图4-1-19,从不同方向看一把茶壶,你认为从上面看到的图形是( )7.图4-1-20是一个正方体纸盒的外表面展开图,则这个正方体是( )8.若干个棱长为a的正方体摆放成如图4-1-21所示的几何体,回答下列问题:图4-1-21(1)有几个正方体?(2)表面积是多少?(3)当正方体的棱长为2时,它的表面积是多少?9.如图4-1-22,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体的表面积为 .图4-1-22参考答案第2课时从不同方向看立体图形与立体图形的展开图【分层作业】1.A 2.A 3.B 4.A 5.C 6.A 7.C8.(1)7个(2)30a2(3)120 9.19 48。
《部编版》;统编;新人教版第2课时从不同方向看立体图形和立体图形的展开图【知识与技能】1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看.2.通过实际操作,能认识和判断立体图形的平面展开图.【过程与方法】在立体图形与平面图形相互转换的过程中,初步建立空间观念,培养几何意识.【情感态度】激发学生学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.【教学重点】识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形.【教学难点】画出从正面、左面、上面看正方体及简单组合体的平面图.一、情境导入,初步认识多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境.跨越学科界限,以苏东坡的诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”营造一个崭新的数学学习氛围,并从中挖掘蕴含的数学道理.比一比讲台上依次放置粉笔盒、乒乓球、热水瓶.请四位学生上来后按照不同的方位站好,然后向同学们汇报各自看到的情形.从身边的事物入手,采用游戏的形式,有助于学生积极主动地参与,激发学生的学习潜能,感受新知.自己从中发现从不同的方向看,确实看到的可能不一样.如何进行楼房的图纸设计?出示楼房模型.多媒体展示神舟八号无人飞船.问:如何进行飞船的图纸设计?(出示三张设计平面图),并问每张图分别从什么方向看?看起来,楼房、航天飞船等均是立体图形,但是设计图都是平面图形,建筑单位、工厂均按照平面设计图加工,其中一个小零件如课本第117页图4.1-6,先需要看的图是图(2),所以,我们要研究立体图形从不同方向看它得到的平面图.进一步培养学生的空间想象能力以及与他人合作交流的能力.二、思考探究,获取新知探究 1 分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物)让学生从不同方向观察立体图形,体验立体图形转化为平面图形的过程.长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)这样,我们将立体图形转化成了平面图形,以四人小组为学习单位进行小组创作,培养学生的观察力和创新能力.教科书第117页图4.1-7,从正面、左面、上面观察得到的平面图形你能画出来吗?适当变动正方体的摆放位置,你还能解决吗?【教学说明】小组合作学习,你摆我答,动手画一画,展示此活动设计既能引发学生动脑思考、动手实践,在你摆我答的小组合作学习中,又给学生创造了交流的机会,引导学生学会合作,突破创新,达到共同提高的目的.探究2 (1)出示教材第118页图4.1-9的平面展开图,让学生说一说这是什么立体图形?【教学说明】教师让学生回答,若学生对此有困难,可让学生自己动手画一画,剪一剪,仔细体会.(2)让学生拿出自己的墨水盒或其他正方体方盒,动手剪一剪,看能得到几种正方体的展开图.【教学说明】正方体的展开图是教学重点,教师必须对此重视,让学生以小组为单位展开讨论和剪切,争取尽可能地多剪出几种展开图,教师根据学生回答情况予以板书和归纳.三、典例精析,掌握新知例1 你能画出如图所示的正方体和圆柱体的从不同方向看到的平面图形吗?试试看!【分析】正方体的从不同方向看到的平面图形都是正方形,圆柱体从正面、左面看到的平面图形都是长方形,从上往下看是圆.解:正方体看到的结果分别如图所示:圆柱体看到的结果如下所示:例2 (1)前面所讲的苏东坡的《题西林壁》中有一句传诵千古的名句:“横看成岭侧成峰,远近高低各不同”,请用简单的几何图形画出这句话所表达的意境.(2)同伴交流一下这句话给我们的启示,特别谈谈对我们学习数学知识的启迪.【分析】从诗句的意思中应看出这句话是以群山为背景的.诗句中所蕴含的哲理会是仁者见仁,智者见智,所以,互相交流十分必要.解:(1)如图(2)以下启示供参考:“变换思考角度,获得的结论就不同”.“从不同角度看同一问题,可能获得不同的解决途径”等.例 3 如图,需要再补画一个面,折叠后才能围成一个正方体,下面是四位同学补画另一个面的情况(图中阴影部分),其中正确的是().【分析】A、C、D三项中的展开图都不能围成正方体,只有B项符合要求.【答案】B四、运用新知,深化理解1~3.教材第118~119页练习.【教学说明】这几道题是考查立体图形的视图和展开图的.题目较为简单,教师可让学生举手回答.【答案】1.(1)是从上面看到的;(2)是从正面看到的;(3)是从左面看到的.2.圆柱体—(4),圆锥体—(6),三棱柱—(3).3.C五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?提醒学生注意:多看,多动手,多想象,是学好几何知识的基本途径之一.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.本节教学应通过引导观察和实际动手操作,让学生主动探索来认识知识,在学生自己动手实践、小组合作的基础上,发现从不同角度看物体可以得到不同的结果,在实践中体验认识生活与客观世界,并逐步养成勤于动手,善于观察,勇于思考的学习习惯.。
4.1.2 从不同方向看立体图形与立体图形的展开图分层作业....【答案】C....【答案】D【分析】根据圆柱的展开图的特征可直接得到答案.【详解】解:圆柱由上下底面的圆以及侧面组成,展开后上下底面的圆在侧面的两侧,侧面展开为长方形,故选D.【点睛】本题考查了几何体的展开图,熟悉圆柱的展开图特征是解答此题的关键.A.B.C.D.【答案】D【分析】通过展开图的面数,展开图的各个面的形状进行判断即可.【详解】解:从展开图可知,该几何体有七个面,两个五边形的底面,五个长方形的侧面,因此该几何体是五棱柱,故选:D.【点睛】本题考查棱柱的展开与折叠,掌握棱柱展开图的特征是正确判断的关键.4.如图是由7个相同的小正方体搭成的几何体,则从正面看该几何体得到的平面图形是()A.B.C.D.【答案】A【分析】根据从不同角度看几何体即可判定.【详解】解:从正面看分三层,从上至下依次是一个,二个,三个小正方形,故选:A.【点睛】本题考查了从不同角度看几何体,解题的关键是理解几何体的特征.5.下列图形中,不是正方体平面展开图的是( )A.B.C.D.【答案】D【分析】根据正方体的展开图,逐项分析判断即可求解.【详解】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体;而D选项,上底面不可能有两个,故不是正方体的展开图.故选:D.【点睛】本题主要考查的是正方体的展开图,熟记不能折叠的“凹”,“田”两种特殊形态是解题的关键.6.下列几何体都是由大小相同的小正方体组成的,其中从正面看到的平面图形与从左面看到的平面图形相同的几何体是()A.B.C.D.【答案】C【分析】利用图形的三视图分析即可求出正确答案.【详解】解:由题意可知:A、从正面和左面看到的平面图形分别为和,故不相同,不符合题意;B、从正面和左面看到的平面图形和,故不相同,不符合题意;C、从正面和左面看到的平面图形分别为和,故相同,符合题意;D、从正面和左面看到的平面图形和,故不相同,不符合题意;故选:C.【点睛】本题考查简单图形的几何视图,解题的关键是能够掌握简单组合图形的几何视图.A.只有从左面看到的形状图没有发生变化B.从正面看到的和从上面看到的形状图没有发生变化C.从左面看到的和从上面看到的形状图没有发生变化D.只有从正面看到的形状图没有发生变化【答案】C【点睛】本题考查了从不同方向看几何体,能简单画出从不同的方向看到的几何体的形状是解本题的关键.8.棱柱的表面展开图是两个相同的形和一些形;圆柱的表面展开图是两个相同的一个形;圆锥的表面展开图是一个和一个形.【答案】多边长方圆长方圆【答案】社【分析】利用正方体及其表面展开图的特点解题即可;【详解】解:这是一个正方体的平面展开图,共有六个面,其中【答案】9【分析】根据题意得第一层有4桶,第二层最少有(1)如果A面在长方体的底部,那么(2)这个长方体的体积为【答案】F6【分析】(1)根据展开图,可得几何体,面,可得答案;【点睛】本题考查了几何体的展开图,利用了几何体展开图组成几何体时面与面之间的关系.13.如图是由九块积木搭成,这几块积木都是相同的正方体,请画出从正面、左面、上面看到的这个几何体的形状图.【答案】见解析【分析】由已知条件可知,主视图有4列,每列正方形的的数目从左往右分别为1,3,1,1;左视图有3列,每列正方形的的数目从左往右分别为3,2,1;俯视图有4列,每列正方形的的数目从左往右分别为1,3,1,1,即可画出从正面、左面、上面看到的这个几何体的形状图.【详解】由已知条件可知,主视图有4列,每列正方形的的数目从左往右分别为1,3,1,1;左视图有3列,每列正方形的的数目从左往右分别为3,2,1;俯视图有4列,每列正方形的的数目从左往右分别为1,3,1,1.如下图所示:【点睛】本题考查了从不同方向看组合体,直接画出不同方向看到的图形是解题的关键.14.一个几何体由若干大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置小立方块的个数.请你画出从正面和从左面看到的这个几何体的形状图.【答案】作图见解析【分析】根据从上面看组合体得到的形状图及相应数字可以想象该组合体的空间立体结构,进而得到从正面看与从左面看的形状图.【点睛】本题主要考查从三个方面看组合体得到的形状图,从上面看得到组合体的形状图出发,结合数字空间想象出组合体的空间立体结构是解决问题的关键.15.下图是一个正方体的表面展开图,已知在原正方体中,相对面上的数的和为【答案】9-【分析】观察得到相对面,利用互为相反数的两个数相加得【详解】解:将这个展开图折成正方体,则面,.(1)求出至少用布料多少平方厘米?A.15-B.10【答案】C【分析】先根据正方体的表面展开图,找出相对的面,然后根据正方体中相对的面上的数字或代数式互为相反数,列出方程求出x、y的值,即可得出【详解】由正方体的表面展开图,可知:解得:5x=,=2y-.∴()xy=´-=-.5210故选C.【点睛】本题主要考查了正方体的表面展开图及相反数的概念,准确找出正方体中相对的面上的数字或代数式,再根据相反数的概念列出方程是解题的关键.18.小明用纸(如图)折成一个正方体的盒子,里面装入礼物,混放在下面的盒子里,请观察,礼物所在的盒子是( )A.B.C.D.【答案】B【分析】根据正方体展开图的11种特征,此平面图为正方体展开图的“141--”型,折成正方体后,涂色三角形与斜线三角形有一条直角边重合,据此即可作出选择.【详解】解:把折成一个正方体的盒子是:故选:B【点睛】本题主要考查了正方体展开图,关键弄清这个正方体展开图折成正方体后,涂色三角形与斜线三角形有一条直角边重合。
第四章几何图形初步4.1 几何图形4.1.1 几何图形与平面图形第2课时从不同的方向看立体图形和立体图形的展开图学习目标:1.从不同方向观察一个物体,体会其观察结果的不一样性.2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.3.初步建立空间观念.学习重点:识别并会画出从不同方向看简单几何体所得到的平面图形.学习难点:识别并会画出从不同方向看简单组合体所得到的平面图形.使用要求:1.阅读课本P1192.尝试完成教材P120练习第1题;3.限时15分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.二、合作探究:1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看(2)从正面看从左面看从上面看(3)从正面看从左面看从上面看2.先阅读P119的教材再完成P119的探究.(1)小组合作,可用正立体积木摆出书上的立体图形,再观察.(2)改变正立体积木的摆放位置,你摆我答,合作学习.(3)观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理. 3.P120练习第1题.3.苏东坡有一首诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”为什么横看成岭侧成峰?这有怎样的数学道理?三、学习小结:四、作业:P123习题4.1第4、9、10、13题.(准备长方体形状的包装盒至少一个)2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列各组图形中都是平面图形的是( )A .三角形、圆、球、圆锥B .点、线段、棱锥、棱柱C .角、三角形、正方形、圆D .点、角、线段、长方体2.如图,甲从A 点出发向北偏东70°走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A.125°B.160°C.85°D.105°3.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为( )A.富B.强C.文D.民4.解方程()4.50.79x x +=,最简便的方法应该首先( )A.去括号B.移项C.方程两边同时乘10D.方程两边同时除以4.55.若方程3x -5=1与方程2102a x --=有相同的解,则a 的值为( ) A.2B.0C.32D.12- 6.方程2395123x x x +--=+去分母得( ) A.3(2x+3)-x=2(9x-5)+6 B.3(2x+3)-6x=2(9x-5)+1C.3(2x+3)-x=2(9x-5)+1D.3(2x+3)-6x=2(9x-5)+6 7.下面合并同类项正确的是( )A.23325x x x +=B.2221a b a b -=C.0ab ab --=D.220xy xy -+= 8.下列各式中,与xy 2是同类项的是( )A .-2xy 2B .2x 2yC .xyD .x 2y 29.已知整数a 0,a 1,a 2,a 3,a 4,…,满足下列条件:a 0=0,a 1=﹣|a 0+1|,a 2=﹣|a 1+2|,a 3=﹣|a 2+3|,…,以此类推,a 2019的值是( )A.﹣1009B.﹣1010C.﹣2018D.﹣2020 10.小明做了以下4道计算题:①(-1)2010=2010;②0-(-1)=-l ;③-+=-;④÷(-)=-1. 其中做对的共有 A .1道 B .2道 C .3道 D .4道11.在下列各数: ()2-+, 23-, 413⎛⎫- ⎪⎝⎭, 325⎛⎫- ⎪⎝⎭, ()01-, 3-中,负有理数的个数是( )A .2个 B .3个 C .4个 D .512.﹣1+3的结果是( )A .﹣4B .4C .﹣2D .2二、填空题13.将一副三角板如图放置,若∠AOD=30°,则∠BOC=______.14.已知AOB 100∠=,BOC 60∠=,OM 平分AOB ∠,ON 平分BOC ∠,那么MON ∠等于______度.15.一件上衣按成本价提高50%后标价为105元,这件上衣的成本价为_____元.16.已知关于x 的一元一次方程1x-3=4x+3b 2017的解为x=4,那么关于y 的一元一次方程1y-1-3=4y-1+3b 2017()()的解y=____. 17.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12- ,则这个常数是_______. 18.将多项式xy 3-x 2y+2x 3-5y 2按字母x 降幂排列是:______.19.-4的倒数是________,相反数是_______.绝对值是_________.20.﹣(﹣82)=_____;﹣(+3.73)=_____;﹣(﹣27)=_____.三、解答题21.已知:AOD 160∠=,OB ,OM ,ON 是AOD ∠内的射线.()1如图1,若OM 平分AOB ∠,ON 平分BOD.∠当射线OB 绕点O 在AOD ∠内旋转时,MON ∠=______度.()2OC 也是AOD ∠内的射线,如图2,若BOC 20∠=,OM 平分AOC ∠,ON 平分BOD ∠,当BOC ∠绕点O 在AOD ∠内旋转时,求MON ∠的大小. ()3在()2的条件下,若AOB 10∠=,当BOC ∠在AOD ∠绕O 点以每秒2的速度逆时针旋转t 秒,如图3,若AOM ∠:DON 2∠=:3,求t 的值.22.如图,某景区内的环形路是边长为1200米的正方形ABCD ,现有1号、2号两辆游览车分别从出口A 和景点C 同时出发,1号车沿A→B→C→D→A 路线、2号车沿C→B→A→D→C 路线连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为300米/分.(1)如图1,设行驶时间为t 分(0≤t≤8)①1号车、2号车离出口A 的路程分别为_____米,_____米;(用含t 的代数式表示)②当两车相距的路程是600米时,求t 的值;(2)如图2,游客甲在BC 上的一点K (不与点B 、C 重合)处候车,准备乘车到出口A ,设CK=x 米. 情况一:若他刚好错过2号车,则他等候并搭乘即将到来的1号车;情况二:若他刚好错过1号车,则他等候并搭乘即将到来的2号车.请判断游客甲在哪种情况下乘车到出口A 用时较多?(含候车时间)23.在某市一项城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙一起做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)已知甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲、乙两队全程一起做完成该工程省钱?24.某中学七年级一班有44人,某次活动中分为四个组,第一组有a人,第二组比第一组的一半多5人,第三组人数等于前两组人数的和.(1)求第四组的人数(用含a的代数式表示).(2)试判断a=12时,是否满足题意.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE= ;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.26.先化简,再求值(1)求代数式14(4a2-2a-8)-(12a-1),其中a=1;(2)求代数式12x-2(x-13y2)+(-32x+13y2)的值,其中x=23,y=-2.27.已知|x+1|+(y+2)2=0,求x+y的值.28.计算:-3- 2 +(-4)-(-1).【参考答案】***一、选择题1.C2.A3.A4.D5.A6.D7.D8.A9.B10.B11.C12.D二、填空题13.150°14. SKIPIF 1 < 0 或80解析:20或8015.70元16.517.118.2x3-x2y+xy3-5y219.- SKIPIF 1 < 0 , 4, 4;解析:-14, 4, 4;20.﹣3.73 SKIPIF 1 < 0解析:﹣3.73 2 7三、解答题21.(1) 80;(2) 70°;(3)t为21秒.22.2400﹣300t23.(1)90天.(2)由甲乙两队全程合作完成该工程省钱.24.(1)(34-3a)(2)a=12时,第四组的人数为-2,不符合题意25.(1)30;(2)答案见解析;(3)65°或52.5°.26.(1)-1(2)227.﹣3.28.-82019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,C ,D 是线段 AB 上两点,若 CB=4cm ,DB=7cm ,且 D 是 AC 的中点,则 AB 的长等于( )A.6cmB.7cmC.10cmD.11cm2.题目文件丢失!3.如图,点C 、D 是线段AB 上的两点,点D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则线段DB 的长等于( )A.2cmB.3cmC.6cmD.7cm4.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x 名,则可列方程为( )A .3×10x=2×16(34﹣x)B .3×16x=2×10(34﹣x)C .2×16x=3×10(34﹣x)D .2×10x=3×16(34﹣x)5.将一个周长为42cm 的长方形的长减少3cm ,宽增加2cm ,能得到一个正方形.若设长方形的长为xcm ,根据题意可列方程为( )A .x+2=(21﹣x )﹣3B .x ﹣3=(21﹣x )﹣2C .x ﹣2=(21﹣x )+3D .x ﹣3=(21﹣x )+26.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元7.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab ba ab b a +---++= 26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A.+2abB.+3abC.+4abD.-ab 8.已知a+b =4,c ﹣d =3,则(b+c )﹣(d ﹣a )的值等( )A .1B .﹣1C .7D .﹣79.单项式4223ab c -的系数与次数分别是( ) A .2,5- B .2,5 C .2,63- D .2,73- 10.下列各式从左到右的变形错误的是( )A .(y ﹣x )2=(x ﹣y )2B .﹣a ﹣b=﹣(a+b )C .(a ﹣b )3=﹣(b ﹣a )3D .﹣m+n=﹣(m+n )11.﹣(﹣2)等于( )A.﹣2B.2C.12D.±212.下列运算结果为正数的是()A.-22 B.(-2)2 C.-23 D.(-2)3二、填空题13.将一副三角板如图放置,若∠AOD=30°,则∠BOC=______.14.已知x﹣2y+3=8,则整式x﹣2y的值为_____.15.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.16.请写出一个系数含π,次数为3的单项式,它可以是________.17.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①和图②,已知大长方形的长为a,两个大长方形未被覆盖部分,分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是______.(用含a的代数式表示)18.若||2a=,则a=__________.19.比较大小:23⎛⎫-+ ⎪⎝⎭___34--.(选用>、<、=号填写)20.已知∠A=35°10′48″,则∠A的余角是__________.三、解答题21.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.22.如图,O为直线AB上一点,∠AOC=50°20′,OD平分∠AOC,∠DOE=90°.(1)求∠DOB的度数;(2)请你通过计算说明OE是否平分∠COB.23.如图,AB=12cm,点C是线段AB上的一点,BC=2AC.动点P从点A出发,以3cm/s的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动.设它们同时出发,运动时间为ts.当点P与点Q第二次重合时,P、Q两点停止运动.(1)AC=__cm,BC=__cm;(2)当t为何值时,AP=PQ;(3)当t为何值时,PQ=1cm.24.小明家使用的是分时电表,按平时段(6:00﹣22:00)和谷时段(22:00一次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2005年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图),同时将前4个月的用电量和相应电费制成表格(如表)根据上述信息,解答下列问题:(1)计算5月份的用电量和相应电费,将所得结果填入表1中;(2)小明家这5个月的月平均用电量为度;(3)小明家这5个月的月平均用电量呈 趋势(选择“上升”或“下降”);这5个月每月电费呈 趋势(选择“上升”或“下降”);(4)小明预计7月份家中用电量很大,估计7月份用电量可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.25.先化简,再求值:[(x ﹣y )2+(x+y )(x ﹣y )]÷2x,其中x =﹣1,y =2.26.先化简,再求值:2(﹣3xy+52x 2)+5(2xy ﹣x 2),其中x =﹣2,y =12. 27.计算:28.(1)计算1114125522-+---();(2)计算()()32112321133⎛⎫-+⨯-⨯-÷- ⎪⎝⎭.【参考答案】***一、选择题1.C2.B3.D4.B5.D6.C7.A8.C9.D10.D11.B12.B二、填空题13.150°14.15.1216.πx3或πr2h 或 SKIPIF 1 < 0πr2h(答案不唯一)解析:πx 3或πr 2h 或13πr 2h(答案不唯一)17. SKIPIF 1 < 0解析:1 a 218. SKIPIF 1 < 0解析:219.>.20.54°49′12″三、解答题21.(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.22.(1) 154°50′;(2)见解析23.824.(1)65+45=110,46.95;(2)99;(3)上升;下降;(4)平时段300度,谷时用200度.25.x-y,-3.26.4xy,-4.27.-128.(1)-2;(2)-14.。
立体图形与平面图形的转化
知识梳理:
立体图形可以通过从不同方向看立体图形(三视图)或立体图形的展开图转化为平面图形问题进行研究。
1. 从不同方向看立体图形
(1)从不同方向看是指从正面(从前向后)、上面和左面三个方向看立体图形。
当我们分别从正面、上面和左面看一个立体图形时,就得到这个立体图形的三个平面图形,然后把这三个平面图形按一定的规则放在同一个平面上,就把立体图形转化成了平面图形。
从不同方向看把立体图形转化成平面图形的规则是:
①从上面看的图形放在从正面看的图形的下面;从左面看的图形放在从正面看的图形的右面。
②长对正:从上面、正面观察,所得的图形长度相等;高平齐:从上面、左面观察,所得的图形高度相等;宽相等:从上面、左面观察,所得的图形宽度相等。
(2)常见的几种几何体从正面、左面、上面看到的几何图形:
2. 立体图形的展开图
(1)对于由一些平面围成的立体图形,将它们的表面适当的剪开,展开成平面图形,这个平面图形叫做这个立体图形的展开图。
(2)几种常见的立体图形的展开图
名称正方体长方体五棱柱圆柱圆锥
立方体
展开图
(举例)
解析:[1] 不是所有的立方体图形都可以展开,如球就不能展开;
[2] 对于同一个立方体按不同的方式展开,可以得到不同的展开图,如正方体有11种展开图;
[3] 由立方体的展开图可以识别出立方体的形状,具体方法是:展开图中有圆,一般考虑圆柱或圆锥;展开图中有三角形,一般考虑棱柱或棱锥;展开图中有长方形或正方形,一般考虑棱柱。
[4]
[5]
[6] 立体图形展开图中,相邻面的规律:①有公共顶点的面是相邻的面;②有公共边的面是相邻的面。
如图三棱柱的展开图是()
(2)
练习题
知识点1 从不同的方向看立体图形
知识点2 立体图形的展开图
综合练习
18.。