周期对称分析
- 格式:pptx
- 大小:391.35 KB
- 文档页数:3
函数之周期性与对称性的理解首先请大家辨析一下这几个等式关系:2)2()()62)2()(5)2()()4)2)()30)2()(20)2()(1=++=+-++-=+==++=+-+x f x f x f x f x f x f x f x f x f x f x f x f )()) 以上6个等式,其中1)、4)、5)是在讲对称性,2)、3)、6)是在讲述周期性。
在教学过程中,我们发现很多学生到高三了还无法自如地辨析,其实大家只需记住六字口诀就能加以辨析:“同周期、异对称”1)、4)、5)中x 的系数相同,即为周期,2)、3)、6)中x 的系数相异,即为对称,这样我们就能迅速辨析哪些是在讲周期,哪些是对称。
那具体周期为多少?具体关于什么对称呢?这又是大家一个容易混淆的点。
一、下面先讲对称问题的理解,以1)为例:0)2()(=+-+x f x f我们要从本质上理解这个等式:令第一个括号里的1x x =,22x x =+-,则满足221=+x x ,即横坐标的和为2,那就意味着两个横坐标的中点为1=x 。
同样的,令1)(y x f =,2)2(y x f =+-,则满足021=+y y ,即这两个点的纵坐标和为零,那就意味着纵坐标互为相反数。
那么如果现在我换种方式描述,我说两个点),(),(2211y x y x 与,满足221=+x x ,021=+y y ,那 我们就可以在平面直角坐标系中把这两个点的对称关系画出来了。
由图1我们可以很直观的看出来这两个点关于(1,0)中心对称,这两个点都在y=f(x)上,从而整个函数关于(1,0)中心对称。
同样的,我们分析4),2121,2y y x x ==+,在图像上表示对称关系如下:A 、B两点关于x=1轴对称,那么以后遇到对称性问题,我们只需在脑海里画两个点,这样函数的对称性就清晰了。
同理,我们来看一下6),221=+x x ,221=+y y ,在坐标系下表示两个点后,很容易理解这个函数关于(1,1)中心对称。
三角函数的周期性与对称性解析三角函数是高中数学中非常重要的一部分内容,它在数学、物理、工程等学科中都有广泛的应用。
而其中一个重要的性质就是周期性与对称性。
本文将对三角函数的周期性与对称性进行解析,以增进对该知识点的理解。
一、正弦函数的周期性与对称性正弦函数是三角函数中最常见的一种。
它的函数图像呈现出周期性与对称性的特点。
首先来看正弦函数的周期性。
正弦函数的周期是2π,即f(x+2π)=f(x)。
这意味着,在一个周期内,正弦函数的取值情况是重复的。
例如,当x=0时,f(0)=sin(0)=0;当x=2π时,f(2π)=sin(2π)=0;当x=4π时,f(4π)=sin(4π)=0;以此类推。
所以,正弦函数在每个2π的整数倍处具有相同的取值。
其次,正弦函数还具有关于y轴对称的性质。
即f(-x)=-f(x)。
这意味着,对于任意实数x,正弦函数在x和-x处的取值互为相反数。
例如,当x=π/2时,f(π/2)=sin(π/2)=1;当x=-π/2时,f(-π/2)=sin(-π/2)=-1。
所以,正弦函数在关于y轴对称的点上具有相同的取值。
二、余弦函数的周期性与对称性余弦函数是与正弦函数密切相关的三角函数,其函数图像也呈现出周期性与对称性的特点。
首先来看余弦函数的周期性。
余弦函数的周期也是2π,即f(x+2π)=f(x)。
与正弦函数类似,余弦函数的取值也是在一个周期内重复的。
例如,当x=0时,f(0)=cos(0)=1;当x=2π时,f(2π)=cos(2π)=1;当x=4π时,f(4π)=cos(4π)=1;以此类推。
所以,余弦函数在每个2π的整数倍处具有相同的取值。
其次,余弦函数还具有关于y轴对称的性质,即f(-x)=f(x)。
这意味着,对于任意实数x,余弦函数在x和-x处的取值相等。
例如,当x=π/2时,f(π/2)=cos(π/2)=0;当x=-π/2时,f(-π/2)=cos(-π/2)=0。
一:有关周期性的讨论在已知条件()()f a x f b x +=-或()()f x a f x b +=-中,(1) 等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为2b a x +=。
(2)等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 f (x )的图像具有周期性,其周期T=a +b 。
设a 为非零常数,若对于)(x f 定义域内的任意x 恒有下列条件之一成立周期性规律 对称性规律(1))()(a x f a x f +=- a T 2=⇒ (1))()(x a f x a f -=+ a x =⇒(2))()(a x f x f += a T =⇒ (2))()(x b f x a f -=+ 2b a x +=⇒ (3))()(x f a x f -=+ a T 2=⇒ (3) )()(x b f x a f +=- 2b a x +=⇒ (4))(1)(x f a x f =+ a T 2=⇒ (4) )()(x b f x a f --=+ 中心点)0,2(b a +⇒ (5))(1)(x f a x f -=+ a T 2=⇒ (5) )()(x a f x a f --=+ 为对称中心点)0,(a ⇒ (6)1)(1)()(-+=+x f x f a x f a T 2=⇒ (7) 1()()1()f x f x a f x -+=+ a T 2=⇒ (8) 1()()1()f x f x a f x -+=-+ a T 4=⇒ (9) )(1)(1)(x f x f a x f -+=+ a T 4=⇒ (10) )()()(a x f a x f x f ++-=, 0>a a T 6=⇒(11) 若函数)(x f 同时关于直线a x =, b x =对称则函数)(x f 的周期a b T -=2(12) 若函数)(x f 同时关于点)0,(a , )0,(b 对称,则函数)(x f 的周期a b T -=2(13) 若函数)(x f 同时关于直线a x = 对称,又关于点)0,(b 对称)0(≠b 则函数)(x f 的周期a b T -=4(14) 若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且T=2a(15) 若奇函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且T=4a(16) 若奇函数y=f(x)满足f(x+T)=f(x)(x ∈R ,T ≠0),则f(2T )=0. ⒈ 若)x 2(f y =的图象关于 两类易混淆的函数问题:对称性与周期性例1. 已知函数y = f (x )(x ∈R )满足f (5+x )= f (5-x ),问:y = f (x )是周期函数吗?它的图像是不是轴对称图形?例2. 已知函数y = f (x )(x ∈R )满足f (x+5)= f (x -5),问:y = f (x )是周期函数吗?它的图像是不是轴对称图形?定理1:如果函数y = f (x )(x ∈R )满足)()(x a f x a f -=+,那么y = f (x )的图像关于直线x a =对称。
函数周期性与对称性一、函数周期:对任意的x D ∈,都有()()f x T f x +=,则T 叫做函数()f x 的周期 例如:求11()()(),(),()()1()f x f x a f x f x a f x a f x f x -+=-+=+=+的周期 二、对称性:函数关于原点对称即奇函数:()()f x f x -=- 函数关于y 对称即偶函数:()()f x f x -=函数关于直线 x a =对称:()()f x a f a x +=-或()(2)f x f a x =-或 者 (2)()f x a f x +=-函数关于点(a,b )对称:f(x+a)+f(a-x)=2b1.f(x)是定义在R 上的以3为周期的奇函数,且f(2)=0在区间(0,6)内解的个数的最小值是 A .2; B .3; C .4; D .5 ( )2.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .53.已知f(x)是R 上的偶函数,对R x ∈都有f(x +6)=f(x)+f(3)成立,若f(1)=2,则f(2011)=( )A 、2005B 、2C 、1D 、04. 设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递减,且y=f (x )的图象关于直线x=3对称,则下面正确的结论是 ( )(A)()()()1.5 3.5 6.5f f f <<; (B )()()()3.5 1.5 6.5f f f <<; (C)()()()6.5 3.5 1.5f f f <<; (D)()()()3.5 6.5 1.5f f f <<5.设函数()f x 与()g x 的定义域是{x R ∈}1x ≠±,函数()f x 是一个偶函数,()g x 是一个奇函数,且1()()1f xg x x -=-,则()f x 等于 A.112-x B.1222-x xC .122-x D.122-x x6.已知定义在R 上的函数f (x )的图象关于)0,43(-成中心对称,且满足f (x )=1)1(),23(=-+-f x f , f (0) = –2,则f (1) + f (2) +…+ f (2010)的值为( )A .–2B .–1C .0D .17.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是 A .0 B.12 C.1 D.528.若()f x 是定义在R 上的奇函数,且当x <0时,1()1f x x =+,则1()2f = .9.()y f x =定义域为R ,且对任意x R ∈都有()()()111f x f x f x ++=-,若()21f =f(2009)=_ 10.设f(x)是定义在R 上的奇函数,且y=f(x)的图象关于直线21=x 对称,则f(1)+f(2)+f(3)+f(4)+f(5)= ____。
一:有关周期性的讨论在已知条件()()f a x f b x +=-或()()f x a f x b +=-中,1 等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为2b a x +=; 2等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 fx 的图像具有周期性,其周期T=a +b ;设a 为非零常数,若对于)(x f 定义域内的任意x 恒有下列条件之一成立周期性规律 对称性规律1)()(a x f a x f +=- a T 2=⇒ 1)()(x a f x a f -=+ a x =⇒2)()(a x f x f += a T =⇒ 2)()(x b f x a f -=+ 2b a x +=⇒ 3)()(x f a x f -=+ a T 2=⇒ 3 )()(x b f x a f +=- 2b a x +=⇒ 4)(1)(x f a x f =+ a T 2=⇒ 4 )()(x b f x a f --=+ 中心点)0,2(b a +⇒ 5)(1)(x f a x f -=+ a T 2=⇒ 5 )()(x a f x a f --=+ 为对称中心点)0,(a ⇒ 61)(1)()(-+=+x f x f a x f a T 2=⇒ 7 1()()1()f x f x a f x -+=+ a T 2=⇒ 8 1()()1()f x f x a f x -+=-+ a T 4=⇒ 9 )(1)(1)(x f x f a x f -+=+ a T 4=⇒ 10 )()()(a x f a x f x f ++-=, 0>a a T 6=⇒11 若函数)(x f 同时关于直线a x =, b x =对称则函数)(x f 的周期a b T -=212 若函数)(x f 同时关于点)0,(a , )0,(b 对称,则函数)(x f 的周期a b T -=213 若函数)(x f 同时关于直线a x = 对称,又关于点)0,(b 对称)0(≠b 则函数)(x f 的周期a b T -=414 若偶函数y=fx 的图像关于直线x=a 对称,则fx 为周期函数且T=2a15 若奇函数y=fx 的图像关于直线x=a 对称,则fx 为周期函数且T=4a16 若奇函数y=fx 满足fx+T=fx x ∈R,T ≠0,则f 2T =0. ⒈ 若)x 2(f y =的图象关于 两类易混淆的函数问题:对称性与周期性例1. 已知函数y = fxx ∈R 满足f 5+x = f 5-x ,问:y = fx 是周期函数吗它的图像是不是轴对称图形例2. 已知函数y = fxx ∈R 满足fx+5= fx -5,问:y = fx 是周期函数吗它的图像是不是轴对称图形定理1:如果函数y = fxx ∈R 满足)()(x a f x a f -=+,那么y = fx 的图像关于直线x a=对称;证明:设点()P x y 00,是y = fx 的图像上任一点,点P 关于直线x =a 的对称点为Q,易知,点Q 的坐标为()200a x y -,;因为点()P x y 00,在y = fx 的图像上,所以f x y ()00=于是()()[]()[]()000002y x f x a a f x a a f x a f ==--=-+=-所以点()Q a x y 200-,也在y = fx 的图像上;由P 点的任意性知,y = fx 的图像关于直线x =a 对称;定理2:如果函数y = fxx ∈R 满足fa +x = fb -x ,那么y = fx 的图像关于直线x a b =+2的对称; 定理3:如果函数y = fxx ∈R 满足fx +a = fx -a ,那么y = fx 是以2a 为周期的周期函数;证明:令x a x -=',则x x a x a x a =++=+'',2代入已知条件()()f x a f x a +=-得:()()f x a f x ''++2根据周期函数的定义知,y = fx 是以2a 为周期的周期函数;定理4:如果函数y = fxx ∈R 满足()()f x a f x b +=-,那么y = fx 是以a b +为周期的周期函数;。
高考数学一轮总复习函数的对称性与周期性分析方法高考数学一轮总复习:函数的对称性与周期性分析方法函数是数学中一个重要的概念,对称性与周期性是函数研究中的两个关键方面。
在高考数学中,对于函数的对称性与周期性的分析方法,学生需要掌握清楚并能够熟练运用。
本文将详细介绍高考数学中函数的对称性与周期性分析方法。
一、函数的对称性分析方法1. 基本对称性函数的基本对称性是指关于坐标轴的对称性,包括关于x轴的对称性和关于y轴的对称性。
关于x轴的对称性:如果函数$f(x)$满足$f(x) = f(-x)$,则函数关于x轴对称。
关于y轴的对称性:如果函数$f(x)$满足$f(x) = -f(-x)$,则函数关于y轴对称。
2. 奇偶性函数的奇偶性是对称性的一种特殊情况。
奇函数:如果函数$f(x)$满足$f(-x) = -f(x)$,则函数为奇函数。
奇函数的图像关于原点对称。
偶函数:如果函数$f(x)$满足$f(-x) = f(x)$,则函数为偶函数。
偶函数的图像关于y轴对称。
3. 周期性函数的周期性是指函数在一定区间内有规律地重复的性质。
函数$f(x)$的周期为T:如果对于任意的x值,有$f(x+T) = f(x)$,则函数的周期为T。
二、函数的周期性分析方法1. 函数图像法通过观察函数的图像,可以直观地判断函数的周期。
例如,对于正弦函数$y = \sin(x)$,我们可以观察到在区间[0, 2π]中,函数的图像重复周期为2π。
2. 方程法对于周期函数,可以通过解方程来确定函数的周期。
例如,对于正弦函数$y = \sin(ax)$,其中a为常数,若函数的周期为T,则有:$\sin(a(x+T)) = \sin(ax)$根据正弦函数的性质,上式成立的条件为:$a(x+T)-ax= k2π$其中k为整数,解得:$T = \frac{2π}{a}$通过方程法,我们可以得到正弦函数的周期为$\frac{2π}{a}$。
三、实例分析下面以一个具体的例子来说明函数的对称性与周期性分析方法。
第12章周期对称结构的模态分析ANSYS的周期对称分析支持Static(静力)分析和Modal(模态)分析。
静力分析支持线性和大变形非线性;模态分析支持带有预应力的模态分析和不带有预应力的两种,关于带有预应力的模态分析本书第九章有专门讲述。
本章只讲述不带有预应力的模态分析。
在静力分析和模态分析这两种分析类型中,关于模型建立部分的要求是一致的,不同的是在进行模态分析时需要指定求解的节径数以及指定对于每个节径数的求解的模态阶数。
对于每个节径,ANSYS均将其作为一个载荷步。
ANSYS将周期对称边界条件施加于每一载荷步,并且每求解一个载荷步(即节径)后,都将构成周期对称边界条件的约束方程删除(保留任何用户自定义的约束方程)。
在静力分析中ANSYS只求解零节径,而在模态分析中默认将求解全部节径。
本章中介绍的实例依然是第9章的轮盘,包括模型和边界条件。
12.1 问题描述某型压气机盘,见9.1节的对其描述。
要求查看其低阶频率结构和振动模态。
12.2 建立模型本实例的模型建立过程可以参考第9章相关内容。
需要注意的是在周期对称分析中,在建立几何模型后,划分网格之前,需要指定周期对称选项。
12.2.1 设定分析作业名和标题在进行一个新的有限元分析时,通常需要修改数据库文件名(原因见第2章),并在图形输出窗口中定义一个标题用来说明当前进行的工作内容。
另外,对于不同的分析范畴(结构分析、热分析、流体分析、电磁场分析等)ANSYS6.1所用的主菜单的内容不尽相同,为此我们需要在分析开始时选定分析内容的范畴,以便ANSYS6.1显示出跟其相对应的菜单选项。
1.选取菜单路径Utility Menu | File | Change Jobname,将弹出Change Jobname (修改文件名)对话框,如图12.1所示。
图12.1设定分析文件名2.在Enter new jobname (输入新文件名)文本框中输入文字“CH12”,为本分析实例的数据库文件名。
完整版)函数的周期性与对称性总结在已知条件$f(a+x)=f(b-x)$或$f(x+a)=f(x-b)$中,可以得到以下结论:1.当等式两端的两自变量部分相加得常数,如$(a+x)+(b-x)=a+b$,则$f(x)$的图像具有对称性,其对称轴为$x=\frac{a+b}{2}$。
2.当等式两端的两自变量部分相减得常数,如$(x+a)-(x-b)=a+b$,则$f(x)$的图像具有周期性,其周期$T=a+b$。
如果对于$f(x)$定义域内的任意$x$,恒有下列条件之一成立:周期性规律对称性规律1.$f(x-a)=f(x+a)$,则$T=2a$;$f(a+x)=f(a-x)$,则$x=\frac{a^2+b^2}{2a+b}$。
2.$f(x)=f(x+a)$,则$T=a$;$f(a+x)=f(b-x)$,则$x=\frac{a+b}{2}$。
3.$f(x+a)=-f(x)$,则$T=2a$;$f(a-x)=f(b+x)$,则$x=2a-b$。
4.$f(x+a)=\frac{1}{a+b}$,则$T=2a$;$f(a+x)=-f(b-x)$,则点$(a,-\frac{1}{2})$为对称中心。
5.$f(x+a)=-\frac{1}{a+b}$,则$T=2a$;$f(a+x)=-f(a-x)$,则点$(a,0)$为对称中心。
6.$f(x+a)=\frac{f(x)+1}{1-f(x)}$,则$T=2a$;$f(x+a)=\frac{f(x)-1}{1+f(x)}$,则$T=2a$。
7.$f(x+a)=\frac{1+f(x)}{1-f(x)}$,则$T=4a$。
8.$f(x+a)=-\frac{1-f(x)}{1+f(x)}$,则$T=4a$。
9.$f(x+a)=\frac{1+f(x)}{1+f(x)}$,则$T=4a$。
10.$f(x)=f(x-a)+f(x+a)$,且$a>0$,则$T=6a$。