模拟方法(几何概型)、概率的应用
- 格式:ppt
- 大小:3.29 MB
- 文档页数:57
2009------2010学年高一数学必修3导学案 使用时间2010.4. 编制人:阮雪剑 张春鑫 审核人: 领导签字: 班级: 小组 : 姓名: 组内评价:§3 模拟方法——概率的应用【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高;2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。
【重点】几何概型的概念及其概率的求法 【难点】求一些几何概型中事件的概率一、学习目标:1、了解随机数的意义,能用模拟方法估计事件的概率2、了解几何概型的意义3、会求一些简单的与长度,面积,体积相关的几何概型的概率问题 二、问题导学:(阅读课本,回答以下问题) 1、几何概型的概念:向平面上______区域G 内随机地投掷点M ,若点M 落在子区域G G 1⊆的概率与的1G 面积________,而与1G 的_____,______无关,即:P (点M 落在子区域1G )=________________ 则称这种模型为____________说明:几何概型中的G 也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比2、几何概型试验的两个基本特征:(1)无限性:在一次试验中,可能出现的结果有无数个 (2)等可能性:每个结果出现的可能性相等3、几何概型与古典概型的异同点:相同点:(1)____________________________(2)求解思路相同,同属于“比例解法” 不同点:_______________________________________________4、几何概型的主要应用: 它主要用来计算基本事件可“连续”发生的有关概率问题,如与时间,温度变化有关的物理问题,与长度,面积,体积有关的实际生产生活问题三.合作探究:例1(A 级).如图所示:边长为2的正方形中随机撒一把大豆,计算落在正方形的内切圆中的豆子数与落在正方形的豆子数之比,并以此估计圆周率π的值.例2、小明家的晚报在下午5:30—6:30之间的任何一个时间随机地被送到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚餐。
模拟方法---概率的应用 (附参考答案)一、选择题1.取一根长度为4 m 的绳子,拉直后在任意位置剪断,那么剪得的两段都不少于1 m 的概率是( ).A.14B.13C.12D.23解析 把绳子4等分,当剪断点位于中间两部分时,两段绳子都不少于1 m ,故所求概率为P =24=12. 答案 C2.在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36 cm 2与81 cm 2之间的概率为( ).A.14B.13C.427D.415解析 面积为36 cm 2时,边长AM =6,面积为81 cm 2时,边长AM =9,∴P =9-612=312=14. 答案 A3、如图,在边长为25cm 的正方形中挖去边长为23cm 的两个等腰直角三角形,现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是多少? A. 62596B.98625C. 529625D. 68625解析 因为均匀的粒子落在正方形内任何一点是等可能的所以符合几何概型的条件。
设A =“粒子落在中间带形区域”则依题意得正方形面积为:25×两个等腰直角三角形的面积为:2×21×23×23=529带形区域的面积为:625-529=96∴ P (A )= 62596答案 A4.一只蚂蚁在如图所示的地板砖(除颜色不同外,其余全部相同)上爬来爬去,它最后随意停留在黑色地板砖上的概率是( )A.14B.13C.15D. 12 解析 每个小方块的面积相等,而黑色地板砖占总体的41123 ,故蚂蚁停留在黑色地板砖上的概率是13答案 B5.在面积为S 的△ABC 的边上AB 上任取一点P ,则△PBC 的面积大于S 4的概率是( ).A.14B.12C.34D.23解析 由△ABC ,△PBC 有公共底边BC ,所以只需P 位于线段BA 靠近B 的四分之一分点E 与A 之间,这是一个几何概型,∴P =AE AB =34. 答案 C6.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ). A.π4 B .1-π4 C.π8 D .1-π8解析 如图,要使图中点到O 的距离大于1,则该点需取在图中阴影部分,故概率为P =2-π22=1-π4. 答案 B7.分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为( ).A.4-π2B.π-22C.4-π4D.π-24解析 设正方形边长为2,阴影区域的面积的一半等于半径为1的圆减去圆内接正方形的面积,即为π-2,则阴影区域的面积为2π-4,所以所求概率为P =2π-44=π-22. 答案 B二、填空题8.如图,四边形ABCD 为矩形,, BC=1,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是 .解析 连接AC 交弧DE 于P ,则tan ∠=所以∠CAB=30°,当直线AP 在∠CAB 内时AP 与BC 相交,所以概率P=301903︒=︒ 答案 139.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________. 解析 设A ={小波周末去看电影},B ={小波周末去打篮球},C ={小波周末在家看书},D ={小波周末不在家看书},如图所示,则P(D)=1-122π-142ππ=1316.答案13 1610.已知平面区域U={(x,y)|x+y≤6,x≥0,y≥0},A={(x,y)|x≤4,y≥0,x-2y≥0},若向区域U内随机投一点P,则点P落入区域A的概率为________.解析依题意可在平面直角坐标系中作出集合U与A所表示的平面区域(如图),由图可知S U=18,S A=4,则点P落入区域A的概率为P=SASU=29.[来源:学#科#网] 答案2911.在区间[0,1]上任取两个数a,b,则关于x的方程x2+2ax+b2=0有实数根的概率为________.解析由题意得Δ=4a2-4b2≥0,∵a,b∈ [0,1],∴a≥b.∴⎩⎨⎧0≤a≤1,0≤b≤1,a≥b,画出该不等式组表示的可行域(如图中阴影部分所示).故所求概率等于三角形面积与正方形面积之比,即所求概率为12.答案1212.如图所示,在直角坐标系内,射线OT落在30°角的终边上,任作一条射线OA,则射线OA落在∠yOT内的概率为________.解析如题图,因为射线OA在坐标系内是等可能分布的,则OA落在∠yOT内的概率为60360=16. 答案 16三、解答题13. 在1升高产小麦种子中混入了一粒带麦锈病种子,从中随机取出10毫升,则取出的种子中含有麦锈病的种子的概率是多少?解析 病种子在这1升中的分布可以看作是随机的,取得的10毫升种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.取出10毫升种子,其中“含有病种子”这一事件记为A ,则 P(A) ==取出的种子体积所有种子的体积100.011000= 所以取出的种子中含有麦锈病种子的概率是0.01.14.已知关于x 的一次函数y =mx +n .(1)设集合P ={-2,-1,1,2,3}和Q ={-2,3},分别从集合P 和Q 中随机取一个数作为m 和n ,求函数y =mx +n 是增函数的概率;(2)实数m ,n 满足条件⎩⎨⎧ m +n -1≤0,-1≤m ≤1,-1≤n ≤1,求函数y =mx +n 的图象经过一、二、三象限的概率.解析 (1)抽取的全部结果的基本事件有:(-2,-2),(-2,3),(-1,-2),(-1,3),(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3),共10个基本事件,设使函数为增函数的事件为A ,则A 包含的基本事件有:(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3),共6个基本事件,所以,P (A )=610=35.(2)m 、n 满足条件⎩⎨⎧ m +n -1≤0,-1≤m ≤1,-1≤n ≤1的区域如图所示:要使函数的图象过一、二、三象限,则m >0,n >0,故使函数图象过一、二、三象限的(m ,n )的区域为第一象限的阴影部分,∴所求事件的概率为P =1272=17. 15.已知|x |≤2,|y |≤2,点P 的坐标为(x ,y ),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.思路分析 由题意画出图象可求面积之比.解析 如图,点P 所在的区域为正方形ABCD 的内部(含边界),满足(x -2)2+(y -2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).∴所求的概率P 1=14π×224×4=π16. 【点评】 解决几何概型的概率问题一般利用图形辅助解题,分析题目,找到区域,对照定义可求得结果,较好地体现了数形结合思想的重要性.16.已知集合A ={-2,0,2},B ={-1,1},设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1上的概率; (2)求以(x ,y )为坐标的点位于区域D :⎩⎨⎧ x -y +2≥0,x +y -2≤0,y ≥-1内(含边界)的概率.解析 (1)记“以(x ,y )为坐标的点落在圆x 2+y 2=1上”为事件A ,则基本事件总数为6.因落在圆x 2+y 2=1上的点有(0,-1),(0,1)2个,即A 包含的基本事件数为2,所以P (A )=26=13. (2)记“以(x ,y )为坐标的点位于区域内”为事件B ,则基本事件总数为6,由图知位于区域D 内(含边界)的点有:(-2,-1),(2,-1),(0,-1),(0,1),共4个,即B 包含的基本事件数为4,故P (B )=46=23.。
简述概率的四种确定方法
概率是数学中的一个重要分支,它研究的是随机事件发生的可能性大小。
在实际应用中,我们需要确定概率的大小,这就需要使用概率的
四种确定方法。
第一种方法是古典概型法。
这种方法适用于随机事件的样本空间是有
限的情况。
例如,掷一枚硬币的样本空间为{正面,反面},掷一颗骰子的样本空间为{1,2,3,4,5,6}。
在古典概型法中,我们可以通过
样本空间中有利事件的个数除以样本空间中总事件的个数来确定概率。
第二种方法是几何概型法。
这种方法适用于随机事件的样本空间是连
续的情况。
例如,一个圆形的面积为πr²,那么一个随机点落在圆形内的概率就是圆形面积与总面积的比值。
第三种方法是频率概率法。
这种方法适用于随机事件的样本空间是无
限的情况。
例如,我们可以通过大量的实验来确定一个事件发生的概率。
在频率概率法中,我们可以通过事件发生的次数除以实验总次数
来确定概率。
第四种方法是主观概率法。
这种方法适用于随机事件的概率无法通过
实验或计算得到的情况。
例如,一个人对于某个事件发生的可能性的
主观判断。
在主观概率法中,我们可以通过个人的主观判断来确定概率。
总之,概率的四种确定方法分别是古典概型法、几何概型法、频率概率法和主观概率法。
在实际应用中,我们需要根据具体情况选择合适的方法来确定概率的大小。
几何概型概率(实用版)目录1.几何概型概率的定义与性质2.几何概型概率的计算方法3.几何概型概率的应用举例正文一、几何概型概率的定义与性质几何概型概率是概率论中的一种概率类型,它是研究随机现象在几何空间中的分布规律。
几何概型概率具有以下性质:1.有限性:试验结果的数量是有限的。
2.等可能性:每个试验结果发生的可能性相等。
二、几何概型概率的计算方法几何概型概率的计算方法通常使用概率公式:P(A) = 满足条件 A 的试验结果数 / 所有可能的试验结果数。
例如,从 n 个不同元素中任选 2 个进行组合,可以得到的组合数为C(n, 2),那么组合的概率为 P(C(n, 2)) = C(n, 2) / C(n, n) = (n*(n-1)) / (2*1) = n*(n-1) / 2。
三、几何概型概率的应用举例几何概型概率在实际应用中有很多例子,下面举两个常见的例子:1.投针问题:在平面上随机投掷一根针,求针与 x 轴正半轴的夹角小于等于θ的概率。
解答:假设针的长度为 1,投针点距离 x 轴正半轴的距离为 d,则根据三角函数的性质,有 d = 2 * sin(θ/2)。
因为针的长度为 1,所以投针点在以原点为圆心、半径为 1 的圆内。
因此,针与 x 轴正半轴的夹角小于等于θ的概率为θ/2。
2.随机分割问题:将一个边长为 1 的正方形随机分割成两个三角形,求分割后两个三角形的面积比值小于等于 k 的概率。
解答:假设分割线段的长度为 x,其中一个三角形的面积为 S1 = (1-x)^2/2,另一个三角形的面积为 S2 = x^2/2。
因此,S1/S2 = (1-x)^2 / x^2 = (1-2x+x^2) / x^2 = 1 - 2x/x^2 + x^2/x^2 = 1 - 2/x + 1/x^2。
要求S1/S2 <= k,即 1 - 2/x + 1/x^2 <= k,解得 x >= 2/sqrt(k) 或x <= -2/sqrt(k)。
§3模拟方法-—概率的应用错误!教学分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.本节的教学需要一些实物模型为教具,教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.三维目标1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P(A)=错误!,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.重点难点教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.课时安排1课时错误!导入新课思路1。
复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?为此我们学习几何概型.思路2。