模拟方法概率的应用讲解
- 格式:ppt
- 大小:1.41 MB
- 文档页数:7
基于蒙特卡罗模拟的概率潮流计算概率潮流计算是电力系统分析中重要的一环,它可以评估电力系统的稳定性和可靠性。
其中,蒙特卡罗模拟是一种常用的概率潮流计算方法。
本文将介绍蒙特卡罗模拟在概率潮流计算中的应用。
蒙特卡罗模拟是一种基于随机数生成的计算方法,它通过多次模拟试验来估计系统的性能指标。
在概率潮流计算中,蒙特卡罗模拟可以用来计算电力系统的概率分布、可靠性和稳定性等指标。
使用蒙特卡罗模拟进行概率潮流计算的方法包括以下步骤:根据电力系统的实际运行情况,建立相应的数学模型。
利用随机数生成器生成各种随机变量,如负荷波动、新能源出力等。
将随机变量输入到电力系统的数学模型中进行模拟计算,得到系统的运行状态,如电压、电流等。
对大量的模拟结果进行统计分析,得到电力系统的概率分布、可靠性和稳定性等指标。
蒙特卡罗模拟在概率潮流计算中有广泛的应用,例如:在电力系统的可靠性评估中,蒙特卡罗模拟可以用来计算系统的平均故障率和故障时的负荷损失。
在电力系统的稳定性评估中,蒙特卡罗模拟可以用来计算系统的稳定性概率,为系统的规划和设计提供依据。
可以处理复杂的系统模型和随机变量,适用范围广泛。
可以给出系统性能指标的概率分布,为决策提供更多信息。
可以进行事后验证和敏感性分析,帮助优化系统的规划和设计。
模拟次数与计算成本成正比,需要权衡精度和成本之间的关系。
容易出现收敛困难和误差累积等问题,需要改进计算方法和增加模拟次数。
对于某些复杂系统和高维随机变量,蒙特卡罗模拟的效果可能不够理想。
蒙特卡罗模拟是一种有效的概率潮流计算方法,它在电力系统的可靠性评估和稳定性评估中有着广泛的应用。
然而,也存在一些不足之处需要改进和完善,以更好地适应复杂系统和更高维度的计算需求。
今后,随着计算机技术和数值计算方法的不断发展,蒙特卡罗模拟在概率潮流计算中的应用前景将更加广阔。
蒙特卡罗模拟技术是一种以概率论和数理统计为基础,通过随机模拟计算来解决复杂问题的数值方法。
monte carlo 模拟方法Monte Carlo模拟方法是一种通过随机抽样和统计分析来解决问题的数值计算方法。
它的名称来源于摩纳哥的蒙特卡洛赌场,因为模拟方法与赌博的不确定性和随机性相似。
在各个领域,Monte Carlo模拟方法被广泛应用于概率论、统计学、物理学、金融学等领域的计算问题中。
Monte Carlo模拟方法的基本思想是通过随机抽样来模拟系统的行为,从而对系统的特性进行估计。
其核心思想是通过大量的随机抽样来近似计算一个问题的解或概率。
与传统的解析方法相比,Monte Carlo模拟方法不需要求解复杂的方程式或模型,而是通过模拟随机事件的发生频率来得出结果。
Monte Carlo模拟方法的步骤主要包括以下几个方面:1. 定义问题:首先需要明确要解决的问题,并将其转化为数学模型或概率模型。
2. 设定输入参数:根据问题的特性,选择合适的参数,并确定它们的概率分布或可能取值范围。
3. 生成随机样本:根据输入参数的概率分布,使用随机数生成器生成一系列随机样本。
4. 模拟系统行为:根据生成的随机样本,模拟系统的行为,并记录感兴趣的结果或变量。
5. 统计分析:对模拟结果进行统计分析,得出问题的解、概率或其他感兴趣的统计量。
6. 改进模型:根据模拟结果,可以对模型进行调整或改进,进一步提高模拟结果的准确性。
Monte Carlo模拟方法的优势在于可以处理各种复杂的问题,尤其是那些无法通过解析方法求解的问题。
它不需要对问题进行简化或做出过多的假设,能够更好地反映实际系统的不确定性和随机性。
此外,Monte Carlo模拟方法还可以提供问题的概率分布、置信区间等信息,帮助决策者做出准确的决策。
Monte Carlo模拟方法的应用十分广泛。
在金融领域,它可以用于估计期权的价格、风险价值等。
在物理学中,它可以用于模拟粒子运动、能量传输等。
在统计学中,它可以用于估计参数的置信区间、假设检验等。
在工程领域,它可以用于分析系统的可靠性、优化设计等。
§3模拟方法-—概率的应用错误!教学分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.本节的教学需要一些实物模型为教具,教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.三维目标1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P(A)=错误!,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.重点难点教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.课时安排1课时错误!导入新课思路1。
复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?为此我们学习几何概型.思路2。
概率组合知识点总结概率组合是概率论中的一个重要概念,它描述了在一组事件中发生某个组合的可能性。
概率组合在各种领域都有广泛的应用,比如在统计学中用于描述随机变量的组合出现的概率,以及在工程学中用于分析系统的可靠性。
概率组合的基本概念包括排列和组合。
排列描述的是一组元素的有序排列,而组合描述的是一组元素的无序排列。
在概率论中,组合通常是指从n个元素中取出r个元素的不同组合的数目。
在这篇文章中,我们将对概率组合的相关知识点进行总结和介绍。
一、排列和组合1. 排列排列是描述一组元素的有序排列,它的计算公式为:P(n,r) = n! / (n-r)!其中,n为元素的总数,r为取出的元素的个数,!表示阶乘。
排列计算的结果即为从n个元素中取出r个元素的有序排列数目。
2. 组合组合是描述一组元素的无序排列,它的计算公式为:C(n,r) = n! / (r!(n-r)!)其中,n为元素的总数,r为取出的元素的个数,!表示阶乘。
组合计算的结果即为从n个元素中取出r个元素的不同组合的数目。
二、概率组合的计算概率组合的计算通常涉及两个部分:一是确定事件的样本空间,二是确定事件的概率。
在确定事件的样本空间时,需要考虑元素的个数和元素的排列方式;在确定事件的概率时,需要将事件发生的可能性与总样本空间进行比较,计算出事件发生的概率。
1. 样本空间确定事件的样本空间是概率组合计算的第一步。
样本空间是描述所有可能事件的集合,它包括了所有可能的组合和排列。
在确定样本空间时,需要考虑元素的个数和排列方式,这样才能准确描述事件的可能性。
2. 事件的概率确定事件的概率是概率组合计算的第二步。
事件的概率是描述事件发生的可能性,它是用概率值来表示的。
确定事件的概率需要将事件发生的可能性与总样本空间进行比较,然后计算出事件发生的概率。
三、概率组合的应用概率组合在各种领域都有广泛的应用,具体包括以下几个方面:1. 统计学中的应用在统计学中,概率组合用于描述随机变量的组合出现的概率。
马尔可夫链蒙特卡洛是一种强大的数学工具,可以用于概率建模和随机模拟。
在本文中,将探讨马尔可夫链蒙特卡洛的基本原理、应用和实现方法。
1. 马尔可夫链蒙特卡洛的基本原理马尔可夫链蒙特卡洛是一种基于马尔可夫链的随机模拟方法。
马尔可夫链是一种随机过程,具有“无记忆”的性质,即下一时刻的状态只取决于当前时刻的状态,而与过去的状态无关。
蒙特卡洛方法则是一种基于随机抽样的数值计算方法。
将这两种方法结合起来,就得到了马尔可夫链蒙特卡洛方法。
2. 马尔可夫链蒙特卡洛的应用马尔可夫链蒙特卡洛在概率建模和随机模拟中有着广泛的应用。
其中一个典型的应用就是在金融工程领域中的期权定价模型。
通过建立马尔可夫链蒙特卡洛模拟模型,可以对期权的价格进行准确的估计和预测。
此外,马尔可夫链蒙特卡洛还可以用于模拟蛋白质的折叠结构、天气预测、交通流量分析等领域。
3. 马尔可夫链蒙特卡洛的实现方法要实现马尔可夫链蒙特卡洛方法,首先需要确定一个马尔可夫链,然后进行随机抽样。
在确定马尔可夫链时,需要考虑链的状态空间、转移概率矩阵等参数。
在进行随机抽样时,可以使用不同的抽样方法,如Metropolis-Hastings算法、Gibbs抽样等。
4. 马尔可夫链蒙特卡洛的优缺点马尔可夫链蒙特卡洛方法具有很多优点,如能够处理复杂的高维概率分布、能够灵活处理概率模型中的随机变量等。
但是,该方法也存在一些缺点,如需要大量的随机抽样、收敛速度较慢等。
5. 马尔可夫链蒙特卡洛的发展趋势随着计算机技术的不断发展,马尔可夫链蒙特卡洛方法在概率建模和随机模拟中的应用前景十分广阔。
未来,可以期待该方法在更多领域中得到应用,如生物信息学、人工智能、环境科学等。
总结马尔可夫链蒙特卡洛是一种强大的数学工具,可以用于概率建模和随机模拟。
通过建立马尔可夫链蒙特卡洛模型,可以对复杂的随机过程进行准确的建模和分析。
随着计算机技术的不断进步,相信马尔可夫链蒙特卡洛方法在未来会有更广泛的应用和发展。
第三节 模拟方法—概率的应用[考纲传真] 1.了解随机数的意义,能运用随机模拟方法估计概率.2.了解几何概型的意义.1.模拟方法对于某些无法确切知道的概率问题,常借助模拟方法来估计某些随机事件发生的概率.用模拟方法可以在短时间内完成大量的重复试验.2.几何概型(1)向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1G 的概率与G 1的面积成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=G 1的面积G 的面积,则称这种模型为几何概型.(2)几何概型中的G 也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.[常用结论] 几种常见的几何概型(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;(3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)随机模拟方法是以事件发生的频率估计概率. ( ) (2)与面积有关的几何概型的概率与几何图形的形状有关. ( ) (3)在一个正方形区域内任取一点的概率为0. ( ) (4)从区间[1,10]内任取一个数,取到1的概率是110.( )[答案] (1)√ (2)× (3)√ (4)×2.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A .12B .134B [坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.]3.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )A B C DA [∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).]4.已知正方体ABCD A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M ABCD 的体积小于16的概率为________.12 [在正方体ABCD A 1B 1C 1D 1中,设M ABCD 的高为h ,则13×S 四边形ABCD×h =16.又S四边形ABCD=1,所以h =12.若体积小于16,则h <12.即点M 在正方体的下半部分,所以P =12.]5.如图所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.0.18 [由题意知,S 阴S 正=1801 000=0.18,∵S 正=1,∴S 阴=0.18.]与长度(角度)有关的几何概型1.在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形的面积大于20 cm 2的概率为 ( )63C .23D .45C [设|AC |=x ,则|BC |=12-x ,所以x (12-x )>20,解得2<x <10,故所求概率P =10-212=23.] 2.(2017·某某高考)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.59[由6+x -x 2≥0,解得-2≤x ≤3,∴D =[-2,3].如图,区间[-4,5]的长度为9,定义域D 的长度为5,∴P =59.]3.如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.34[过点C 作交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠A 内时,AM <AC .又∠A =45°,所以∠A =67.5°,故所求概率为P =67.5°90°=34.] [规律方法] 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).与面积有关的几何概型►考法1 与平面图形面积有关的问题【例1】 (2017·全国卷Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14 B .π8C .12D .π4B [不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知所求概率P =S 黑S 正方形=π24=π8.故选B.]►考法2 与线性规划知识交汇命题的问题【例2】 在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为( )A .14B .12C .23D .34A [依题意作出图像如图,则P (y ≤2x )=S 阴影S 正方形=12×12×112=14.][规律方法] 1.与平面几何、解析几何等知识交汇问题的解题思路利用平面几何、解析几何等相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率.2.与线性规划交汇问题的解题思路先根据约束条件作出可行域,再确定形状,求面积大小,进而代入公式求概率.(1)已知实数m ∈[0,1],n ∈[0,2],则关于x 的一元二次方程4x 2+4mx -n2+2n =0有实数根的概率是( )A .1-π4B .π4C .π-32D .π2-1(2)在满足不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0的平面内随机取一点M (x 0,y 0),设事件A =“y 0-2x 0”,那么事件A 发生的概率是( )A .14 B .34 C .13D .23(1)A (2)B [(1)方程有实数根,即Δ=16m 2-16(-n 2+2n )≥0,m 2+n 2-2n ≥0,m 2+(n -1)2≥1,画出图形如图所示,长方形面积为2,半圆的面积为π2,故概率为2-π22=1-π4.(2)作出不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0的平面区域即△ABC ,其面积为4,且事件A =“y 0<2x 0”表示的区域为△AOC ,其面积为3,所以事件A 发生的概率是34.]与体积有关的几何概型1.已知正三棱锥S ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ABC<12V S ABC 的概率是( ) A .78 B .34 C .12D .14A [当P 在三棱锥的三条侧棱的中点所在的平面及下底面构成的正三棱台内时符合要求,由几何概型知,P =1-18=78.]2.一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF BCE 内自由飞翔,则它飞入几何体F AMCD 内的概率为( )A .34B .23 C .13D .12D [由题图可知V F AMCD =13×S四边形AMCD×DF =14a 3,V ADF BCE =12a 3,所以它飞入几何体F AMCD内的概率为14a 312a 3=12.][规律方法] 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.1.(2016·全国卷Ⅰ)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13B .12C .23D .34B [如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P =2040=12.故选B.]2.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A .710B .58C .38D .310B [如图,若该行人在时间段AB 的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB 长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.]3.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A .4n mB .2n mC .4m nD .2m nC [因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC内的数对有m个.用随机模拟的方法可得S扇形S正方形=mn,即π4=mn,所以π=4mn.]六概率与统计中的高考热点问题[命题解读] 1. 统计与概率是高考中相对独立的一块内容,处理问题的方式、方法体现了较高的思维含量,该类问题以应用题为载体,注重考查学生的数学建模及阅读理解能力、分类讨论与化归转化能力.2.概率问题的核心是概率计算,其中事件的互斥、对立是概率计算的核心. 统计问题的核心是样本数据的获得及分析方法,重点是频率分布直方图、茎叶图和样本的数字特征,统计与概率内容相互渗透,背景新颖.统计与统计案例以统计图表或文字叙述的实际问题为载体,通过对相关数据的分析、抽象概括,作出估计、判断. 常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查,考查学生的数据处理能力与运算能力及应用意识.【例1】已知某班n名同学的数学测试成绩(单位:分,满分100分)的频率分布直方图如图所示,其中a,b,c成等差数列,且成绩在[90,100]内的有6人.(1)求n的值;(2)规定60分以下为不及格,若不及格的人中女生有4人,而及格的人中,男生比女生少4人,借助独立性检验分析能否在犯错误的概率不超过0.10的前提下认为“本次测试的及格情况与性别有关”?附:P(χ2≥x0)0.100.050.0100.005 x0 2.706 3.841 6.6357.879χ2=n ad-bc2a+b c+d a+c b+d.[解](1)依题意得⎩⎪⎨⎪⎧10×0.035+0.025+c +2b +a =1,2b =a +c ,解得b =0.01.因为成绩在[90,100]内的有6人, 所以n =60.01×10=60.(2)由于2b =a +c ,而b =0.01,可得a +c =0.02,则不及格的人数为0.02×10×60=12,及格的人数为60-12=48,设及格的人中,女生有x 人,则男生有x -4人,于是x +x -4=48,解得x =26,故及格的人中,女生有26人,男生有22人.于是本次测试的及格情况与性别的2×2列联表如下:及格 不及格 总计 男 22 8 30 女 26 4 30 总计481260所以χ2=60×22×4-8×26230×30×48×12=1.667<2.706,故不能在犯错误的概率不超过0.10的前提下认为“本次测试的及格情况与性别有关”.[规律方法] 独立性检验的方法 (1)构造2×2列联表; (2)计算χ2;(3)查表确定有多大的把握判定两个变量有关联.易错提示:查表时不是查最大允许值,而是先根据题目要求的百分比找到第一行对应的数值,再将该数值对应的临界值与求得的χ2相比较.另外,表中第一行数据表示两个变量没有关联的可能性p ,所以其有关联的可能性为1-p .近几年出现各种食品问题,食品添加剂会引起血脂增高、血压增高、血糖增高等疾病.为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:(1)请将如图的列联表补充完整.若用分层抽样的方法在患三高疾病的人群中抽9人,其中女生抽多少人?(2)为了研究患三高疾病是否与性别有关,请计算出统计量χ2,并说明是否可以在犯错误的概率不超过0.005的前提下认为患三高疾病与性别有关.患三高疾病 不患三高疾病总计 男630女 总计36下面的临界值表供参考:P (χ2≥x 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 x 02.0722.7063.8415.0246.6357.87910.828(参考公式χ2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d )[解] (1)完善补充列联表如下:患三高疾病不患三高疾病总计 男 24 6 30 女 12 18 30 总计362460在患三高疾病人群中抽9人,则抽取比例为936=14,所以女性应该抽取12×14=3(人).(2)根据2×2列联表,则 χ2=60×24×18-6×12230×30×36×24=10>7.879.所以可以在犯错误的概率不超过0.005的前提下认为患三高疾病与性别有关.常见概率模型的概率概率. 解决简单的古典概型试题可用直接法(定义法),对于较为复杂的事件的概率,可以利用所求事件的性质将其转化为互斥事件或对立事件的概率求解.【例2】 (2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天数216362574(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率.(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.[解] (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300; 若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100, 所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8,因此Y 大于零的概率的估计值为0.8.[规律方法] 统计以考查抽样方法、样本的频率分布、样本特征数的计算为主,概率以考查概率计算为主,往往和实际问题相结合,要注意理解实际问题的意义,使之和相应的概率计算对应起来,只有这样才能有效地解决问题.某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2,3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的编号之和等于7,则中一等奖,等于6或5,则中二等奖,等于4,则中三等奖,其余结果为不中奖.(1)求中二等奖的概率; (2)求不中奖的概率.[解] (1)记“中二等奖”为事件A .从五个小球中一次任意摸出两个小球,不同的结果有{0,1},{0,2},{0,3},{0,4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共10个基本事件.记两个小球的编号之和为x ,由题意可知,事件A 包括两个互斥事件:x =5,x =6. 事件x =5的取法有2种,即{1,4},{2,3},故P (x =5)=210=15;事件x =6的取法有1种,即{2,4},故P (x =6)=110.所以P (A )=P (x =5)+P (x =6)=15+110=310.(2)记“不中奖”为事件B ,则“中奖”为事件B ,由题意可知,事件B 包括三个互斥事件:中一等奖(x =7),中二等奖(事件A ),中三等奖(x =4).事件x =7的取法有1种,即{3,4},故P (x =7)=110;事件x =4的取法有{0,4},{1,3},共2种,故P (x =4)=210=15.由(1)可知,P (A )=310.所以P (B )=P (x =7)+P (x =4)+P (A )=110+15+310=35.所以不中奖的概率为P (B )=1-P (B )=1-35=25.统计与概率的综合应用统计和概率知识相结合命题统计概率解答题已经是一个新的命题趋向,概率和统计知识初步综合解答题的主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键,在此基础上掌握好样本数字特征及各类概率的计算.【例3】 (本小题满分12分)(2018·全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表 日用 水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) 频数13249265日用 水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6)频数151310165(2)估计该家庭使用节水龙头后,日用水量小于0.35 m 3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)[信息提取]看到作频率分布直方图,想到作频率分布直方图的作图规则; 看到求概率,想到利用频率分布直方图求概率的方法; 看到估计节水量,想到求使用节水龙头前后的用水量. [规X 解答] (1)如图所示.4分(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m 3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,6分因此该家庭使用节水龙头后,日用水量小于0.35 m 3的概率的估计值为0.48.7分 (3)该家庭未使用节水龙头50天日用水量的平均数为x -1=150(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.9分该家庭使用了节水龙头后50天日用水量的平均数为x -2=150(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.11分估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m 3).12分 [易错与防X] 作频率分布直方图时注意纵轴单位是“f iΔx i”,计算平均数时运算要准确,避免“会而不对”的失误.[通性通法] 概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.长时间用手机上网严重影响着学生的身体健康,某校为了解A ,B 两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(1)你能否估计哪个班级平均每周上网时间较长?(2)从A 班的样本数据中随机抽取一个不超过19的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b ,求a >b 的概率.[解] (1)A 班样本数据的平均值为15(9+11+14+20+31)=17,由此估计A 班学生每周平均上网时间为17小时;B 班样本数据的平均值为15(11+12+21+25+26)=19,由此估计B 班学生每周平均上网时间为19小时. 所以B 班学生上网时间较长.(2)A 班的样本数据中不超过19的数据a 有3个,分别为9,11,14,B 班的样本数据中不超过21的数据b 也有3个,分别为11,12,21.从A 班和B 班的样本数据中各随机抽取一个共有9种不同的情况,分别为(9,11),(9,12),(9,21),(11,11),(11,12),(11,21),(14,11),(14,12),(14,21),其中a >b 的情况有(14,11),(14,12),2种,故a >b 的概率P =29.[大题增分专训]1.某校高三期中考试后,数学教师对本次全部数学成绩按1∶20进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如下表所示的频率分布表:分数 段(分) [50,70) [70,90) [90,110) [110,130) [130,150] 总计 频数b 频率 a0.25(1)求表中a ,b 的值及成绩在[90,110)X 围内的样本数,并估计这次考试全校高三学生数学成绩的及格率(成绩在[90,150]内为及格);(2)若从茎叶图中成绩在[100,130)X 围内的样本中一次性抽取两个,求取出两个样本数字之差的绝对值小于或等于10的概率.[解] (1)由茎叶图知成绩在[50,70)X 围内的有2人,在[110,130)X 围内的有3人,∴a =0.1,b =3.∵成绩在[90,110)X 围内的频率为1-0.1-0.25-0.25=0.4, ∴成绩在[90,110)X 围内的样本数为20×0.4=8. 估计这次考试全校高三学生数学成绩的及格率为P =1-0.1-0.25=0.65.(2)所有可能的结果为(100,102),(100,106),(100,106),(100,116),(100,118),(100,128),(102,106),(102,106),(102,116),(102,118),(102,128),(106,106),(106,116),(106,118),(106,128),(106,116),(106,118),(106,128),(116,118),(116,128),(118,128),共21个,取出的两个样本中数字之差小于或等于10的结果为(100,102),(100,106),(100,106),(102,106),(102,106),(106,106),(106,116),(106,116),(116,118),(118,128),共10个,∴P (A )=1021.2.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:日期 12月1日12月2日12月3日12月4日12月5日温差x (℃)101113128程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻的2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y 关于x 的线性回归方程y =bx +a ;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(附:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y =bx +a 的斜率和截距的最小二乘估计分别为b =∑ni =1x i y i -n x y∑ni =1x 2i -n x2,a =y -b x .)[解] (1)设抽到不相邻两组数据为事件A ,因为从5组数据中选取2组数据共有10种情况,每种情况是等可能出现的,其中抽到相邻两组数据的情况共有4种,所以P (A )=1-410=35,故选取的2组数据恰好是不相邻的2天数据的概率为35. (2)由数据,求得x =13×(11+13+12)=12,y =13×(25+30+26)=27,∑3i =1x i y i =11×25+13×30+12×26=977,∑3i =1x 2i =112+132+122=434,所以b =∑3i =1x i y i -3x y∑3i =1x 2i -3x2=977-3×12×27434-3×122=52,a =27-52×12=-3. 所以回归直线方程为y =52x -3.(3)当x =10时,y =22,|22-23|<2,同理当x =8时,y =17,|17-16|<2. 所以该研究得到的线性回归方程是可靠的.。
《概率的简单应用》作业设计方案(第一课时)一、作业目标本作业旨在通过实践操作和理论应用,使学生能够:1. 理解概率的基本概念和计算方法;2. 掌握概率在生活中的简单应用;3. 培养学生的逻辑思维能力和解决问题的能力。
二、作业内容作业内容主要包括以下几个方面:1. 理论复习:要求学生复习概率的基本概念,如事件、概率的定义及计算方法等。
2. 实践操作:设计几个简单的概率实验,如抛硬币、掷骰子等,让学生亲自操作并记录实验结果,计算事件的概率。
3. 情景应用:设计实际生活场景,让学生运用所学概率知识解决实际问题。
例如,设计一个抽奖活动,让学生计算中奖的概率;或者设计一个彩票购买策略,让学生分析购买不同类型彩票的中奖概率。
4. 作业题目:布置一定量的习题,包括选择题、计算题和应用题,以巩固学生对概率知识的理解和应用能力。
三、作业要求1. 实践操作部分:学生需亲自进行实验操作,并准确记录实验数据和结果。
2. 情景应用部分:学生需根据所给情景,运用所学知识进行分析和计算,提出自己的见解和解决方案。
3. 作业题目部分:学生需独立完成作业题目,注意审题,理解题意,运用所学知识进行解答。
同时,要求学生书写规范,步骤清晰,答案准确。
4. 作业提交时,需附上实验记录和解题过程,以便教师了解学生的思考过程和解题方法。
四、作业评价教师将根据以下标准对学生的作业进行评价:1. 实践操作部分:是否亲自进行实验操作,实验数据是否准确,实验结果是否符合理论预期。
2. 情景应用部分:是否能够运用所学知识进行分析和计算,提出的见解和解决方案是否合理。
3. 作业题目部分:是否独立完成作业题目,答案是否准确,步骤是否清晰,书写是否规范。
4. 综合表现:学生是否认真对待作业,是否有独立思考和解决问题的能力。
五、作业反馈教师将对每位学生的作业进行认真批改,指出错误和不足,并提供详细的解题思路和解题方法。
同时,教师将根据学生的作业情况,进行针对性的辅导和指导,帮助学生更好地掌握概率知识。
模拟方法——概率的应用(导学案)使用说明: 1.先精读教材,勾画出本节内容的基本概念,找出问题并进行标注,然后再精读教材150-152页完成本学案;2.要求独立完成预习案. 〖学习目标〗1.了解模拟方法估计概率的实际应用,初步体会几何概型的意义。
2.能够运用模拟方法估计概率。
3.通过模拟实验的过程,掌握用产生随机数模拟试验的方法,并能利用这种方法估计概率。
重点与难点:几何概型的概念、公式及应用. 【预习案】相关知识古典概型的两个基本特点:(1) (2)教材助读模拟方法的基本思想1:取一个正方形,在面积为四分之一的部分画上阴影,随机地向矩形中撒一把芝麻(以数100粒为例),假设每一粒芝麻落在正方形内的每一个位置的可能性大小相等.统计落在阴影内的芝麻数与落在矩形内的总芝麻数,观察它们有怎样的比例关系? 通过计算机做模拟试验,不难得出下面的结论: 落在正方形内的芝麻数内的芝麻数落在区域A反之,向如图长方形中随机撒一把芝麻,例如,散了50粒,这些芝麻均匀地落在长方形中,如果落在区域B 中的芝麻数是10 ,那么区域B 的面积近似地是整个长方形的面积的 。
2. 一般地,在向几何区域D 中随机地投一点,记事件A 为“该点落在其内部一个区域d内”,则事件A 发生的概率为:P(A)= 注:利用这个定理可以求出不规则图形的面积、 体积.预习自测1.已知地铁列车每10 min 一班,在车站停1 min ,则乘客到达站台立即乘上车的概率是( )A.110B.19C.111D.182.《广告法》对插播广告的时间有一定的规定,某人对某台的电视节目做了长期的统计后得出结论,他任意时间打开电视机看该台节目,看不到广告的概率为910,那么该台每小时约有________分钟的广告.3.平面上有一组平行线且相邻平行线间的距离为3 cm ,把一枚半径为1 cm 的硬币任意平掷在这个平面,则硬币不与任何一条平行线相碰的概率是 ( ) A.14 B.13 C.12 D.23【探究案】基础知识探究1.某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.2.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投的点落在E 中的概率是__________.综合应用探究AB d D小明家的晚报在下午5:30~6:30之间的任何一个时间随机地被送到,小明一家人在下午6:00~7:00之间的任何一个时间随机地开始晚餐.(1)你认为晚报在晚餐开始之前被送到和在晚餐开始之后被送到哪一种可能性更大? (2)求晚报在晚餐开始之前被送到的概率是多少?当堂检测1.在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为一边作正方形,则此正方形的面积介于36 cm 2与81 cm 2 之间的概率为 ( ) A.116 B.18 C.14 D.122.有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.。