四年级数学三角形面积计算1
- 格式:ppt
- 大小:508.50 KB
- 文档页数:19
部编人教版四年级数学下册第一单元测试题及答案部编人教版四年级数学下册第一单元测试题及答案部编人教版四年级数学下册第一单元主要讲述了整数乘法的基础知识,包括乘法规则、乘法竖式和乘法的应用等内容。
为了检验学生对这一单元的掌握情况,我们特地准备了一份测试题及答案,供学生们自测使用。
一、基础知识考核1、请计算以下各题: (1) 2×4= ? (2) 5×8= ? (3) 9×6= ?2、请用竖式计算以下各题: (1) 3×7= ? (2) 4×9= ? (3) 5×6= ?3、请根据乘法规则,填写以下各题的答案: (1) 5×7=35,那么5×70= ? (2) 6×8=48,那么6×800= ? (3) 9×5=45,那么90×5= ?二、应用能力考核1、学校举行运动会,每个班级有5名运动员,一共有4个班级,请问一共有多少名运动员?2、超市出售一种糖果,每袋售价6元,一天可以卖出4袋。
请问一天可以获得多少元收入?3、小明有90元钱,他买了一本8元的书,请问他还剩下多少钱?三、挑战能力考核1、请计算以下各题的答案: (1) (2×3)×4= ? (2) 6×(3×4)= ? (3) 2×5×7= ?2、请根据乘法分配律,计算以下各题的答案: (1) (2+4+6)×3= ? (2) (10+20+30)×2= ? (3) (4+8+12)×5= ?测试题及答案如下:一、基础知识考核1、(1) 8 (2) 40 (3) 54 【解析】根据乘法的规则,两数相乘,相同数位对齐,从个位开始相乘,得出的结果从右向左依次排列。
2、(1) 21 (2) 36 (3) 30 【解析】用竖式计算时,相同数位对齐,从个位开始相乘,得出的结果依次排列。
小学数学基础知识整理(一到六年级)小学一年级九九乘法口诀表。
学会基础加减乘。
小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级学会乘法交换律,几何面积周长等,时间量及单位。
路程计算,分配律,分数小数。
小学四年级线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级比例百分比概率,圆扇圆柱及圆锥。
必背定义、定理公式三角形的面积=底×高÷2。
公式 S= a×h÷2正方形的面积=边长×边长公式 S= a×a长方形的面积=长×宽公式 S= a×b平行四边形的面积=底×高公式 S= a×h梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。
1---9年级数学所有公式汇总三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πr h圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2 s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
小学数学公式大全一、小学数学几何形体周长面积体积计算公式长方形的周长=(长+宽)×2 C=(a+b)×2正方形的周长=边长×4 C=4a长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a.a= a三角形的面积=底×高÷2 S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2直径=半径×2 d=2r 半径=直径÷2 r= d÷2圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 圆的面积=圆周率×半径×半径三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
《三角形的面积》教学设计《三角形的面积》教学设计1学习内容:第9页的例4、例5、及“试一试”、“练一练”练习二中相关题。
学习目标:1、经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。
2、进一步体会转化方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
学习重点:理解并掌握三角形面积的计算公式学习难点:理解三角形面积公式的推导过程学习过程:一、先学探究■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)1、出示一个底是4分米,高是3分米的平行四边形。
这是一个什么图形?它的面积如何计算?■学情预判:学生对三角形面积公式的推导过程可能有点困惑,这一点要加强教学。
二.交流共享■后教预设:出示二个板块的挂图,通过讨论交流,解决问题。
【板块一】学习例4:仔细观察这3个平行四边形,请说出如何求每个涂色的三角形的面积?先自己想,随后在小组中交流。
你是怎样求出每个涂色的三角形的面积?三角形与平行四边形究竟有怎样的关系?三角形的面积应当如何计算?【板块二】学习例5:(1)出示例5:用例5中提供的三角形拼成平行四边形。
(注意:组内所选的三角形都要齐全)(2)小组交流:你认为拼成一个平行四边形所需要的两个三角形有什么特点?(3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。
小组交流:如何计算一个三角形的面积?从表中可以看出三角形与拼成的平行四边形还有怎样的关系?得出以下结论:这两个的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成这个平行四边形的底等于这个平行四边形的高等于因为每个三角形的面积等于拼成的平行四边形面积的所以三角形的面积=(4)用字母表示三角形面积公式:三、反馈完善1、完成试一试:2、完成练一练:(1)先回忆拼得过程,再回答。
(2)你是如何想的。
3.判断。
(1)两个形状一样的三角形,可以拼成一个平行四边形.……(2)平行四边形面积一定比三角形面积大.……(3)一个平行四边形与一个三角形等底等高,那么平行四边形的面积一定是三角形的2倍.………(4)底和高都是0.2厘米的三角形,面积是0.2平方厘米…….4.完成课本第17页第6题。
三角形的分割(一)同学们大家好!三角形的面积的计算方法大家已经知道了,今天我再告诉大家一个规律:等底等高的三角形面积相等。
这是一个非常重要的规律,在解决多边形面积的许多问题中都要用到它。
今天,我们就一起来研究应用这一规律可以解决哪些问题。
【典型例题】一. 阅读思考:例1. 有一个三角形花坛,想把它平均分成两个相等的三角形,可以怎样分?分析与解答:因为“等底等高的三角形面积相等”,所以要把这个三角形花坛平均分成两个相等的三角形,就是把这个三角形花坛分成两个等底等高的三角形就可以了。
而三角形的每条边都可以作三角形的底,所以我们只要把这三条边分别二等分,再把中点与这条边相对的顶点连接起来就可以了。
例2. 将任一三角形分成面积相等的六个三角形,应怎么分?分析与解:根据等底等高的三角形面积相等这一结论,只要把原三角形分成六个等底等高的小三角形,它们的面积就必然相等。
而要找这六个等底等高的小三角形,只需把三角形的某一边六等分,再将各分点与这边相对的顶点连结起来即可。
如图(1)图(1)又因为,所以,如果我们把每一个小三角形的面积看成1,即而可以看成是先把原三角形等分两份,再把每一份分别等分成三份。
C图(2)同理,可以看成是先把原三角形等分成三份,然后再把每一份等分成两份。
即A A AB C图(3)类似于这样的分法,我们还可以画出许多,这里就不一一列举了。
这两道例题有一个共同的思路,就是想办法找出等底等高的三角形,而找这种三角形,就要几等分某一条线段。
如果两个三角形的底相等,高不相等,它们的面积有什么关系呢?如果两个三角形底的长度相等,高的长度不相等,那么它们的面积之比正好等于这两个三角形高的长度比。
同样的道理,我们还可以推出,如果两个三角形高的长度相等,底的长度不相等,那么这两个三角形的面积之比正好等于它们的底的长度比,因此我们有下面的结论:如果甲、乙两个三角形的底(高)的长度相等,那么甲、乙两个三角形的面积之比等于它们的高(底)的长度之比。