幂函数复习.
- 格式:doc
- 大小:368.57 KB
- 文档页数:20
幂函数分类专题复习幂函数是数学中一种重要的函数类型,具有形如 $f(x) =ax^b$ 的特征形式,其中 $a$ 和 $b$ 是常数。
在幂函数的分类专题复中,我们将介绍几种常见的幂函数及其性质。
一次幂函数一次幂函数的形式为 $f(x) = ax$,其中 $a$ 是常数。
一次幂函数的图像是一条经过原点且斜率为 $a$ 的直线。
当 $a > 0$ 时,图像是上升的;当 $a < 0$ 时,图像是下降的。
性质:- 零点:一次幂函数的零点为 $x=0$。
- 斜率:一次幂函数的斜率恒为 $a$。
- 定义域和值域:一次幂函数的定义域和值域都是全体实数。
二次幂函数二次幂函数的形式为 $f(x) = ax^2$,其中 $a$ 是常数且 $a \neq 0$。
二次幂函数的图像是开口朝上或朝下的抛物线,具体取决于$a$ 的正负性。
性质:- 零点:二次幂函数的零点可以通过解方程 $f(x) = 0$ 来求得。
- 顶点:二次幂函数的顶点坐标为 $\left(-\frac{b}{2a},\frac{4ac-b^2}{4a}\right)$,其中 $b$ 和 $c$ 是常数。
- 对称轴:二次幂函数的对称轴为直线 $x = -\frac{b}{2a}$。
- 定义域和值域:二次幂函数的定义域为全体实数,值域视$a$ 的正负性而定。
三次及更高次幂函数三次及更高次幂函数的形式为 $f(x) = ax^n$,其中 $a$ 是常数且 $a \neq 0$,$n$ 是大于等于3的整数。
这些函数的图像具有更复杂的曲线特征,通常会有多个极值点和拐点。
性质:- 零点:三次及更高次幂函数的零点可以通过解方程 $f(x) =0$ 来求得。
- 极值点:三次及更高次幂函数可能存在多个极值点,可以通过求导数和解方程 $f'(x) = 0$ 来找到。
- 拐点:三次及更高次幂函数的拐点是曲线的转折点,可以通过求二阶导数和解方程 $f''(x) = 0$ 来找到。
三、幂函数(1)幂函数的定义:一般地,函数y=xα叫做幂函数,其中x为自变量,α是常数.(2)幂函数的图像:规律:①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高)②幂指数互为倒数时,图像关于y=x对称(3)幂函数的性质:①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限。
②过定点:所有的幂函数在(0,+∞) 都有定义(具体的定义域要根据具体幂函数决定)并且图象都通过点(1,1)③单调性:如果α>0 ,则幂函数的图象过原点,并且在[0,+∞)上为增函数.如果α<0 ,则幂函数的图象在(0,+∞) 上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当 α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.【扩展】:当α=q p (其中,pq 互质,p 和q ∈Z ),若p 为奇数q 为奇数时,则y=x q 是奇函数,若p 为奇数q 为偶数时,则y=x q 是偶函数,若p 为偶数q 为奇数时,则y=x q p 是非奇非偶函数(定义域肯定不是关于原点对称) ⑤图象特征:幂函数y=x α,当x ∈(0,+∞)当α>1时,若0<x<1,其图象在直线y=x 下方,若x>1,其图象在直线y=x 上方, 当α<1时,若0<x<1,其图象在直线y=x 上方,若x>1,其图象在直线y=x 下方。
练习:1.函数f (x )=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f (x )是单调增函数,则m的值为________.2.在第一象限内,函数y =x 2(x ≥0)与y =x 12的图象关于________对称.3.函数f (x )=(1-x )0+(1-x )12的定义域为________.4.如图,曲线C 1与C 2分别是函数y =x m 和y =x n 在第一象限内的图象,则m ,n 与0的大小关系是________.5.函数f (x )=x 1m 2+m +1(m ∈N +)为________函数.(填“奇”,“偶”,“奇且偶”,“非奇非偶”)6.下面4个图象都是幂函数的图象,函数y =x -23的图象是________.7.写出下列四个函数:①y =x 13;②y =x -13;③y =x -1;④y =x 23.其中定义域和值域相同的是________.(写出所有满足条件的函数的序号)8.已知函数f (x )=x -m +3(m ∈N *)是偶函数,且f (3)<f (5),求m 的值,并确定f (x )的函数解析式.9.已知函数f(x)=x2+1x2.(1)判断f(x)的奇偶性;(2)求f(x)的单调区间和最小值.。
高考数学复习幂函数知识点归纳形如y=xa(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数,以下是幂函数知识点归纳,期望对考生有关心。
幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情形如下:假如a为任意实数,则函数的定义域为大于0的所有实数;假如a为负数,则x确信不能为0,只是这时函数的定义域还必须根[据q的奇偶性来确定,即假如同时q 为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;假如同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情形如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
性质:关于a的取值为非零有理数,有必要分成几种情形来讨论各自的特性:第一我们明白假如a=p/q,q和p差不多上整数,则x^(p/q)=q次根号(x 的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是[0,+)。
当指数n是负整数时,设a=-k,则x=1/(x^k),明显x0,函数的定义域是(-,0)(0,+).因此能够看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就能够明白:排除了为0与负数两种可能,即关于x0,则a能够是任意实数;排除了为0这种可能,即关于x0和x0的所有实数,q不能是偶数;排除了为负数这种可能,即关于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就能够得到当a为不同的数值时,幂函数的定义域的不同情形如下:假如a为任意实数,则函数的定义域为大于0的所有实数;假如a为负数,则x确信不能为0,只是这时函数的定义域还必须依照q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;假如同时q为奇数,则函数的定义域为不等于0的所有实数。
幂函数高考知识点总结幂函数是高中数学中非常重要的一部分内容,也是高考中经常出现的知识点之一。
幂函数在数学中具有广泛的应用,不仅仅体现在纵坐标的数值关系上,更是涉及到图像特征、函数性质以及解题方法等方面。
下面我将对幂函数的相关知识进行总结和梳理,希望对大家复习和备考有所帮助。
1、幂函数的定义和性质幂函数的一般形式可以表示为:f(x) = ax^b,其中a和b是常数,而x是变量。
其中,a称为幂函数的系数,b称为幂函数的指数。
幂函数的定义域由指数b的正负决定,若b为正整数,则定义域是全体实数;若b为负整数,则定义域是x ≠ 0的一切实数;若b为0,则幂函数的定义域是x > 0的一切实数。
当只考虑幂函数f(x)在正数定义域上的取值时,幂函数的图像可以分为两种情况:当a > 1时,图像呈现递增趋势;当0 < a < 1时,图像则呈现递减趋势。
2、幂函数的图像特征通过观察幂函数的图像,我们可以得出一些重要的结论。
首先,当幂函数的系数a为正数时,图像都经过第一象限的点(1, a)。
其次,当幂函数的指数b为奇数时,幂函数的图像对称于y轴;当幂函数的指数b为偶数时,幂函数的图像具有原点对称性。
除此之外,我们还可以通过改变系数a和指数b的值,来改变幂函数图像的特征,如峰值的高低、函数图像的陡峭程度等。
3、幂函数的运算与应用幂函数的求导是高中数学中的重要内容之一。
对于幂函数f(x) =ax^b,其中a为常数,b为实数,我们可以通过求导的方法来确定幂函数的导函数形式。
具体来说,当指数为整数时,我们可以利用幂函数的定义进行求导;当指数为实数且不为整数时,我们则需要利用对数函数的性质来求导。
此外,由于幂函数具有多种性质和特点,在解决实际问题时也能够提供很多启示和方法。
4、幂函数的解题技巧和例题分析在高考中,幂函数常常出现在各种数学题目中,因此熟练掌握幂函数的解题方法是非常重要的。
对于幂函数的解题技巧,我们可以利用以下几点进行分析和总结:首先,要熟悉幂函数的性质和特点,了解其图像形态和函数性质;其次,要能够根据题目给出的条件和要求,建立幂函数方程或不等式;最后,要善于运用数学方法和思维工具,进行合理的推导和计算。
高考数学专题复习题:幂函数一、单项选择题(共5小题)1.幂函数()f x x α=的图象过点1(,22,则()4f 等于( )2.若函数()22211mm y m m x −−=−−是幂函数,且在()0,x ∈+∞上是减函数,则实数m 的值为( )A.2B.-2C.1D.-13.已知幂函数()f x x α=的图象过点15,5⎛⎫ ⎪⎝⎭,则函数()(3)()g x x f x =−在区间1,13⎡⎤⎢⎥⎣⎦上的最小值是( )A.-1B.-2C.-4D.-84.已知a ===A.a b c << B.c b a << C.b c a << D.c a b <<5.已知幂函数()f x x α=的图象过点11,28⎛⎫ ⎪⎝⎭,且(2)(2)f a f a +<,则实数a 的取值范围是( )A.(,2)−∞B.(2,)+∞C.(2,2)−D.(2,)−+∞二、多项选择题(共2小题)6.若幂函数()()23231mm f x a x −+=−+,其中a ,m ∈R ,则下列说法正确的是( )A.a =−1m <<时,()()21f f > C.若4m =时,()y f x =关于y 轴对称 D.()f x 恒过定点()1,1−−8.已知112,1,,,1,2,322α⎧⎫∈−−−⎨⎬⎩⎭,若幂函数()f x x α=为奇函数,且在()0,+∞上是严格减函数,则α取值的集合是________.9.函数32y x α=−的图象过定点________.四、解答题(共3小题)10.已知幂函数()()2157m f x m m x −=−+为偶函数. (1)求()f x 的解析式.(2)若()()34g x f x x =−+,求函数()g x 在区间[]1,2−上的值域.11.已知幂函数()23()69m f x m m x +=++在(0,)+∞上单调递减. (1)求实数m 的值.(2)若11(32)(4)m m a a −−−−−<+,求实数a 的取值范围.12.已知幂函数()m f x x =的图象过点()25,5. (1)求()4f 的值.(2)若()()132f a f a +>−,求实数a 的取值范围.。
幂函数复习一、知识要点1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.二、典型例题及对应习题1、幂函数的概念、解析式、定义域、值域1.若幂函数y=f (x )的图象过点(5,),则为( ) A . B . C . D .﹣1 2.设α∈{﹣2,﹣1,,1,2,3},则使幂函数y=x a 为奇函数且在(0,+∞)上单调递减的a 个数为( )A .1B .2C .3D .43.已知函数f (x )=x k (k 为常数,k ∈Q ),在下列函数图象中,不是函数y=f (x )的图象是( )A .B .C .D . 4.已知函数f (x )=(m 2﹣m ﹣1)x﹣5m ﹣3是幂函数且是(0,+∞)上的增函数,则m 的值为( )A .2B .﹣1C .﹣1或2D .05.已知点(a ,)在幂函数f (x )=(a 2﹣6a +10)x b 的图象上,则函数f (x )是( )A .奇函数B .偶函数C .定义域内的减函数D .定义域内的增函数2、幂函数的图像6.幂函数y=f (x )的图象过点(4,2),则幂函数y=f (x )的图象是( )A.B.C.D.9.幂函数y=x m,y=x n,y=x p的图象如图所示,以下结论正确的是()A.m>n>p B.m>p>n C.n>p>m D.p>n>m10.函数f(x)=﹣1的图象大致是()A.B.C.D.3、幂函数的图像及其与指数的关系11.函数y=x3和图象满足()A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于直线y=x对称12.已知点在幂函数f(x)的图象上,则f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数13.若0<x<y<1,则()A.3y<3x B.x0.5<y0.5 C.log x3<log y3 D.log0.5x<log0.5y14.已知幂函数y=(a2﹣2a﹣2)x a在实数集R上单调,那么实数a=()A.一切实数B.3或﹣1 C.﹣1 D.315.函数y=的单调递增区间是()A.(﹣∞,1)B.(0,1)C.(1,2)D.(1,+∞)4、幂函数的性质16.幂函数f(x)=(m2﹣4m+4)x在(0,+∞)为减函数,则m的值为()A.1或3 B.1 C.3 D.217.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图,则a、b、c、d的大小关系是()A.d>c>b>a B.a>b>c>d C.d>c>a>b D.a>b>d>c18.幂函数y=(m2﹣m﹣1),当x∈(0,+∞)时为减函数,则实数m的值为()A.m=2 B.m=﹣1 C.m=﹣1或2 D.m≠19.若幂函数f(x)=(m2﹣m﹣1)x1﹣m是偶函数,则实数m=()A.﹣1 B.2 C.3 D.﹣1或25、幂函数的单调性、奇偶性及其应用20.已知﹣1<α<0,则()A.B.C.D.21.若a=0.5,b=0.5,c=0.5,则a,b,c的大小关系为()A.a>b>c B.a<b<c C.a<c<b D.a>b>c22.若,则a、b、c的大小关系是()A.a<b<c B.c<a<b C.b<c<a D.b<a<c23.函数y=在第二象限内单调递增,则m的最大负整数是()A.﹣4 B.﹣3 C.﹣2 D.﹣124.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a 的取值集合为()A.{a|1<a≤2}B.{a|a≥2}C.{a|2≤a≤3}D.{2,3}25.使不等式成立的实数a的范围是.6、幂函数的实际应用26.已知函数f(x)=(m∈Z)为偶函数,且f(3)<f(5).(1)求函数f(x)的解析式;(2)若g(x)=log a[f(x)﹣ax](a>0且a≠1)在区间[2,3]上为增函数,求实数a的取值范围.27.已知函数是幂函数且在(0,+∞)上为减函数,函数在区间[0,1]上的最大值为2,试求实数m,a的值.28.已知幂函数的图象关于y轴对称,且在(0,+∞)上是减函数.(1)求m的值;(2)求满足的a的取值范围.29.已知幂函数在区间(0,+∞)上是单调增函数,且为偶函数.(1)求函数f(x)的解析式;(2)设函数,若g(x)>0对任意x∈[﹣1,1]恒成立,求实数q 的取值范围.30.已知幂函数(m∈Z)的图象关于y轴对称,且在区间(0,+∞)为减函数(1)求m的值和函数f(x)的解析式(2)解关于x的不等式f(x+2)<f(1﹣2x).2017年09月15日dragon的高中数学幂函数复习参考答案与试题解析一.选择题(共24小题)1.若幂函数y=f(x)的图象过点(5,),则为()A.B.C.D.﹣1【解答】解:∵幂函数y=f(x)的图象过点(5,),设f(x)=xα,∴5α=,解得α=﹣1.∴f(x)=x﹣1.∴=f()=f()=()﹣1=,故选C.2.设α∈{﹣2,﹣1,,1,2,3},则使幂函数y=x a为奇函数且在(0,+∞)上单调递减的a个数为()A.1 B.2 C.3 D.4【解答】解:幂函数y=x﹣2为偶函数且在(0,+∞)上单调递减;幂函数y=x﹣1为奇函数且在(0,+∞)上单调递减;幂函数y=x为奇函数且在(0,+∞)上单调递增;幂函数y=x为奇函数且在(0,+∞)上单调递增;幂函数y=x2为偶函数且在(0,+∞)上单调递增;幂函数y=x3为奇函数且在(0,+∞)上单调递增.综上可得,符合条件的函数只有一个.故选:A.3.已知函数f(x)=x k(k为常数,k∈Q),在下列函数图象中,不是函数y=f(x)的图象是()A.B.C.D.【解答】解:函数f(x)=x k(k为常数,k∈Q)为幂函数,图象不过第四象限,所以C中函数图象,不是函数y=f(x)的图象.故选:C.4.已知函数f(x)=(m2﹣m﹣1)x﹣5m﹣3是幂函数且是(0,+∞)上的增函数,则m的值为()A.2 B.﹣1 C.﹣1或2 D.0【解答】解:因为函数f(x)=(m2﹣m﹣1)x﹣5m﹣3是幂函数,所以m2﹣m﹣1=1,即m2﹣m﹣2=0,解得m=2或m=﹣1.又因为幂函数在(0,+∞),所以﹣5m﹣3>0,即m<﹣,所以m=﹣1.故选B.5.已知点(a,)在幂函数f(x)=(a2﹣6a+10)x b的图象上,则函数f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数【解答】解:幂函数f(x)=(a2﹣6a+10)•x b的图象经过点(a,),∴a2﹣6a+10=1且a b=,解得a=3,b=﹣1;∴f(x)=x﹣1在定义域(﹣∞,0)∪(0,+∞)的奇函数.故选:A.6.幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是()A.B.C.D.【解答】解:设幂函数的解析式为y=x a,∵幂函数y=f(x)的图象过点(4,2),∴2=4a,解得a=∴,其定义域为[0,+∞),且是增函数,当0<x<1时,其图象在直线y=x的上方.对照选项.故选C7.函数y=的图象是()A.B. C.D.【解答】解:∵函数y=的定义域为[0,+∞)∴所求图象在第一象限,可排除A、C,再根据函数y=的图象横过(4,2),可排除B,故选D.8.函数的图象是()A. B.C. D.【解答】解:因为函数的定义域是[0,+∞),所以图象位于y轴右侧,排除选项C、D;又函数在[0,+∞)上单调递增,所以排除选项B.故选A.9.幂函数y=x m,y=x n,y=x p的图象如图所示,以下结论正确的是()A.m>n>p B.m>p>n C.n>p>m D.p>n>m 【解答】解:在第一象限作出幂函数y=x m,y=x n,y=x p的图象.在(0,1)内取同一值x0,作直线x=x0,与各图象有交点.则“点低指数大”,如图,知0<p<1,﹣1<m<0,n>1,∴n>p>m故选:C.10.函数f(x)=﹣1的图象大致是()A.B.C.D.【解答】解:因为0,所以f(x)在[0,+∞)上递增,排除B;当x=0时,f(0)=﹣1,即f(x)的图象过点(0,﹣1),排除C、D;故选A.11.函数y=x3和图象满足()A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于直线y=x对称【解答】解:由得到x=y3,所以这两个函数互为反函数,根据反函数图象的性质可知函数y=x3和的图象关于直线y=x对称.故选D.12.已知点在幂函数f(x)的图象上,则f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数【解答】解:设幂函数为f(x)=xα,∵点在幂函数f(x)的图象上,∴f()=(),即,∴,即α=﹣1,∴f(x)=为奇函数,故选:A.13.若0<x<y<1,则()A.3y<3x B.x0.5<y0.5C.log x3<log y3 D.log0.5x<log0.5y【解答】解:因为:0<x<y<1,y=3x为增函数,则3y>3x,故A错误,因为:0<x<y<1,y=x0.5为增函数,则x0.5>x0.5,故B正确,因为:0<x<y<1则log x3>log y3,故C错误,因为:0<x<y<1,log0.5x为减函数,则log0.5x>log0.5y,故D错误,故选:D.14.已知幂函数y=(a2﹣2a﹣2)x a在实数集R上单调,那么实数a=()A.一切实数B.3或﹣1 C.﹣1 D.3【解答】解:由幂函数的定义及其单调性可得:a2﹣2a﹣2=1,a>0,解得a=3.∴a=3.故选:D.15.函数y=的单调递增区间是()A.(﹣∞,1)B.(0,1) C.(1,2) D.(1,+∞)【解答】解:设u=﹣x2﹣2x,在(﹣∞,1)上为增函数,在(1,+∞)为减函数,因为函数y=为减函数,所以f(x)的单调递增区间(1,+∞,),故选:D16.幂函数f(x)=(m2﹣4m+4)x在(0,+∞)为减函数,则m的值为()A.1或3 B.1 C.3 D.2【解答】解:∵为幂函数∴m2﹣4m+4=1,解得m=3或m=1.由当x∈(0,+∞)时为减函数,则m2﹣6m+8<0,解得2<m<4.∴m=3,故选:C.17.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图,则a、b、c、d的大小关系是()A.d>c>b>a B.a>b>c>d C.d>c>a>b D.a>b>d>c【解答】解:幂函数a=2,b=,c=﹣,d=﹣1的图象,正好和题目所给的形式相符合,在第一象限内,x=1的右侧部分的图象,图象由下至上,幂指数增大,所以a>b >c>d.故选B.18.幂函数y=(m2﹣m﹣1),当x∈(0,+∞)时为减函数,则实数m 的值为()A.m=2 B.m=﹣1 C.m=﹣1或2 D.m≠【解答】解:∵y=(m2﹣m﹣1)为幂函数,∴m2﹣m﹣1=1,即m2﹣m﹣2=0.解得:m=2或m=﹣1.当m=2时,m2﹣2m﹣3=﹣3,y=x﹣3在(0,+∞)上为减函数;当m=﹣1时,m2﹣2m﹣3=0,y=x0=1(x≠0)在(0,+∞)上为常数函数(舍去),∴使幂函数y=(m2﹣m﹣1)为(0,+∞)上的减函数的实数m的值为2.故选A.19.若幂函数f(x)=(m2﹣m﹣1)x1﹣m是偶函数,则实数m=()A.﹣1 B.2 C.3 D.﹣1或2【解答】解:∵幂函数f(x)=(m2﹣m﹣1)x1﹣m是偶函数,∴,解得m=﹣1.故选:A.20.已知﹣1<α<0,则()A.B.C.D.【解答】解:∵﹣1<α<0,故函数y=x a在(0,+∞)上是减函数,∵0.2,故,故选:A21.若a=0.5,b=0.5,c=0.5,则a,b,c的大小关系为()A.a>b>c B.a<b<c C.a<c<b D.a>b>c【解答】解:构造函数f(x)=0.5x,因为函数f(x)=0.5x,为单调递减函数.且,所以,即,所以a<b<c.故选B.22.若,则a、b、c的大小关系是()A.a<b<c B.c<a<b C.b<c<a D.b<a<c【解答】解:∵在第一象限内是增函数,∴,∵是减函数,∴,所以b<a<c.故选D.23.函数y=在第二象限内单调递增,则m的最大负整数是()A.﹣4 B.﹣3 C.﹣2 D.﹣1【解答】解:∵函数y==x m﹣1在第二象限内单调递增,当m=﹣1时,y=x﹣2在第二象限内单调递增,﹣1是最大的负整数,∴m的最大负整数是﹣1,故选:D.24.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值集合为()A.{a|1<a≤2}B.{a|a≥2}C.{a|2≤a≤3}D.{2,3}【解答】解:由log a x+log a y=3,可得log a(xy)=3,得,在[a,2a]上单调递减,所以,故⇒a≥2故选B.二.填空题(共1小题)25.使不等式成立的实数a的范围是(﹣∞,﹣1)∪(,).【解答】解:∵函数y=为奇函数,且在(﹣∞,0)和(0,+∞)上均为减函数故不等式可化为0>a+1>3﹣2a…①或a+1<0<3﹣2a…②或a+1>3﹣2a>0…③不等式①无解解②得a<﹣1解③得<a<故实数a的范围是(﹣∞,﹣1)∪(,)故答案为:(﹣∞,﹣1)∪(,)三.解答题(共5小题)26.已知函数f(x)=(m∈Z)为偶函数,且f(3)<f(5).(1)求函数f(x)的解析式;(2)若g(x)=log a[f(x)﹣ax](a>0且a≠1)在区间[2,3]上为增函数,求实数a的取值范围.【解答】解:(1)∵f(x)为偶函数,∴﹣2m2+m+3为偶数,又f(3)<f(5),∴<,即有:<1,∴﹣2m2+m+3>0,∴﹣1<m<,又m∈Z,∴m=0或m=1.当m=0时,﹣2m2+m+3=3为奇数(舍去),当m=1时,﹣2m2+m+3=2为偶数,符合题意.∴m=1,f(x)=x2(2)由(1)知:g(x)=log a[f(x)﹣ax]=log a(x2﹣ax)(a>0且a≠1)在区间[2,3]上为增函数.令u(x)=x2﹣ax,y=log a u;①当a>1时,y=log a u为增函数,只需u(x)=x2﹣ax在区间[2,3]上为增函数.即:⇒1<a<2②当0<a<1时,y=log a u为减函数,只需u(x)=x2﹣ax在区间[2,3]上为减函数.即:⇒a∈∅,综上可知:a的取值范围为:(1,2).27.已知函数是幂函数且在(0,+∞)上为减函数,函数在区间[0,1]上的最大值为2,试求实数m,a的值.【解答】解:因为函数是幂函数且在上为减函数,所以有解得m=﹣1.∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣5’①当,[0,1]是f(x)的单调递减区间,∴∴a=﹣6<0,∴a=﹣6﹣﹣﹣﹣﹣﹣﹣﹣7’②当,,解得a=﹣2(舍)或a=3(舍)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣9’③,[0,1]为f(x)的单调递增区间,∴,解得﹣﹣﹣﹣﹣﹣﹣﹣11’综合①②③可知﹣﹣﹣﹣﹣﹣﹣﹣12’28.已知幂函数的图象关于y轴对称,且在(0,+∞)上是减函数.(1)求m的值;(2)求满足的a的取值范围.【解答】解:(1)∵函数在(0,+∞)上递减,∴m2﹣2m﹣3<0即﹣1<m<3,又m∈N*∴m=1或2,又函数图象关于y轴对称,∴m2﹣2m﹣3为偶数,故m=1为所求.(2)函数在(﹣∞,0),(0,+∞)上均为减函数∴等价于a+1>3﹣2a>0或0>a+1>3﹣2a或a+1<0<3﹣2a,解得故a的取值范围为29.已知幂函数在区间(0,+∞)上是单调增函数,且为偶函数.(1)求函数f(x)的解析式;(2)设函数,若g(x)>0对任意x∈[﹣1,1]恒成立,求实数q的取值范围.【解答】解:(1)∵f(x)在区间(0,+∞)上是单调增函数,∴﹣m2+2m+3>0即m2﹣2m﹣3<0∴﹣1<m<3又∵m∈Z∴m=0,1,2而m=0,2时,f(x)=x3不是偶函数,m=1时,f(x)=x4是偶函数.∴f(x)=x4(2)由f(x)=x4知g(x)=2x2﹣8x+q﹣1,g(x)>0对任意x∈[﹣1,1]恒成立⇔g(x)min>0,x∈[﹣1,1].又g(x)=2x2﹣8x+q﹣1=2(x﹣2)2+q﹣9∴g(x)在[﹣1,1]上单调递减,于是g(x)min=g(1)=q﹣7.∴q﹣7>0,q>7故实数q的取值范围是(7,+∞).30.已知幂函数(m∈Z)的图象关于y轴对称,且在区间(0,+∞)为减函数(1)求m的值和函数f(x)的解析式(2)解关于x的不等式f(x+2)<f(1﹣2x).【解答】解:(1)幂函数(m∈Z)的图象关于y轴对称,且在区间(0,+∞)为减函数,所以,m2﹣4m<0,解得0<m<4,因为m∈Z,所以m=2;函数的解析式为:f(x)=x﹣4.(2)不等式f(x+2)<f(1﹣2x),函数是偶函数,在区间(0,+∞)为减函数,所以|1﹣2x|<|x+2|,解得,又因为1﹣2x≠0,x+2≠0所以,。