NMR(核磁共振)
- 格式:ppt
- 大小:4.66 MB
- 文档页数:86
NMRNMR(Nuclear Magnetic Resonance)为核磁共振。
是磁矩不为零的原子核,在外磁场作用下自旋能级发生蔡曼分裂,共振吸收某一定频率的射频辐射的物理过程。
核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核蔡曼能级上的跃迁。
国内叫NMR,国外叫MR,因为国外比较避讳Nuclear这个单词。
目录基本原理核磁共振应用核磁共振发展动向二维核磁共振波谱的基本原理划分区域基本原理自旋量子数I不为零的核与外磁场 H0相互作用,使核能级发生2I+1重分裂,此为蔡曼分裂。
核磁共振是1946年由美国斯坦福大学布洛赫(F.Block)和哈佛大学珀赛尔(E.M.Purcell)各自独立发现的,两人因此获得1952年诺贝尔物理学奖。
50多年来,核磁共振已形成为一门有完整理论的新学科。
核磁共振应用核磁共振适合于液体、固体。
如今的高分辨技术,还将核磁用于了半固体及微量样品的研究。
核磁谱图已经从过去的一维谱图(1D)发展到如今的二维(2D)、三维(3D)甚至四维(4D)谱图,陈旧的实验方法被放弃,新的实验方法迅速发展,它们将分子结构和分子间的关系表现得更加清晰。
在世界的许多大学、研究机构和企业集团,都可以听到核磁共振这个名词,包括我们在日常生活中熟悉的大集团。
而且它在化工、石油、橡胶、建材、食品、冶金、地质、国防、环保、纺织及其它工业部门用途日益广泛。
在中国,其应用主要在基础研究方面,企业和商业应用普及率不高,主要原因是产品开发不够、使用成本较高。
但在石油化工、医疗诊断方法应用较多。
核磁共振发展动向20世纪后半叶,NMR技术和仪器发展十分快速,从永磁到超导,从60MHz到800MHz的NMR谱仪磁体的磁场差不多每五年提高一点五倍,这是被NMR在有机结构分析和医疗诊断上特有功能所促进的。
现在有机化学研究中NMR已经成为分析常规测试手段,同样,在医疗上MRI(核磁共振成像仪器)亦成为某些疾病的诊断手段。
实验九 核磁共振(NMR )实验目的1、了解核磁共振基本原理和实验方法。
2、以含氢核的水作样品,观测影响核磁共振吸收信号大小及线宽的因素。
3、学会利用核磁共振测量磁场强度。
4、测量原子核的旋磁比γ和朗德因子。
核磁共振(Neclear Magnetic resonance 简称NMR )现象是1939年发现的。
到1946年应用了射频技术,简化了实验设备,使NMR 实验走向实用阶段。
近年来随着实验技术的发展,特别是计算机的应用,使NMR 实验方法更加完善。
因此它已成为物理、化学、生物、医学、材料科学等许多领域内进行研究的重要手段和方法。
NMR 技术以快速,准确和不破坏样品等显著的优点,通过对原子核磁性质的研究,获得物质结构方面的丰富信息。
在基本计量测试方面也是精确测量磁场标准方法之一,其精度可达0.001%以上。
因此NMR 实验已成为国内外高等院校近代物理实验基本内容之一。
实验原理一、NMR 现象的经典描述原子核具有固有磁矩u I ,其值为 1μ=I m e Np g p2式中g N 为原子核的朗德因子,p I 为核的自旋角动量,m P 的质子的质量。
当原子核处于稳恒磁场B 0中,则它受到由磁场产生的力矩作用,其值为L=M l ⨯B 0。
此力矩使原子核的角动量P l 发生变化,角动量的变化率就是力矩0p B L dtd I⨯==μ (12-1)由于力矩的方向垂直于B 0和P l ,它不改变角动量的大小,而使角动量的方向不断改变,即使P l 在图12-1所示的方向连续地旋进。
从图12-1(a )上面向下看,Pl 的端点作半径为P l sinaw 0的圆周运动,如图12-1(b )所示。
设其角速度为ω0,则线速度为P l sinaw 0,由此可求出P l 的时间变化率=0sin θωI dt dp p I= ,则根据(12-1)式有θμθωsin sin 00B p I I = 000B B II p γωμ==(12-2)式中 hNp NI g μμπγ21== 称为核的旋磁比,不同元素的核有不现的g N 值,故其γ值也不同,所以γ也是一个反映核的固有性质的物理理,其值可由实验测定。
核磁共振的原理及应用核磁共振(Nuclear Magnetic Resonance,NMR)是一种基于原子核的物理现象,通过磁场对原子核进行激发并测量其电磁信号来获得有关样品结构和性质的信息。
本文将介绍核磁共振的基本原理以及其在医学、化学和材料科学等领域的应用。
一、核磁共振的原理核磁共振的原理基于原子核具有自旋(spin)的特性。
当样品中的原子核处于静态磁场中时,它们的自旋轴会与磁场方向产生内禀的取向。
外加的射频脉冲能够改变原子核自旋的取向,使其发生共振。
当射频脉冲结束后,原子核会重新恢复到基态,并释放出一定的能量。
通过检测和分析这些能量的释放,可以获得样品的谱图。
二、核磁共振的应用1. 医学应用核磁共振成像(Magnetic Resonance Imaging,MRI)是医学诊断中常用的无创检测技术之一。
它利用核磁共振的原理对人体或动物进行扫描,生成具有空间分辨率的图像,可以用于观察身体各部位的结构、病变以及器官的功能。
MRI在肿瘤、神经系统疾病和心血管疾病等方面有着广泛的应用。
2. 化学应用核磁共振光谱(Nuclear Magnetic Resonance Spectroscopy,NMR)是化学领域中常用的结构分析方法。
它可以通过检测不同化学环境下原子核的共振信号,推断出样品中各种化合物的结构和相对含量。
核磁共振光谱可以应用于有机化学、无机化学、生物化学等各个领域,为化学研究提供了重要的分析手段。
3. 材料科学应用核磁共振可以用于材料科学中对材料的表征和研究。
通过对材料样品进行核磁共振实验,可以获得材料中原子核的结构、动力学和相互作用等信息。
核磁共振在催化剂、聚合物、金属合金等材料研究中具有重要的应用价值。
此外,核磁共振还可以用于测量材料的纯度、含量和质量等。
总结:核磁共振作为一种基于原子核的物理现象,具有重要的科学研究和应用前景。
它在医学、化学和材料科学等领域发挥着重要的作用,为人们深入理解物质的结构和性质提供了强有力的手段。