核磁共振(1HNMR)
- 格式:ppt
- 大小:17.63 MB
- 文档页数:102
3.2 化学位移定义:在照射频率确定时,同种核因在分子中的化学环境不同而在不同共振磁场强度下显示吸收峰的现象称为化学位移。
因此一个质子的化学位移是由其周围的电子环境决定的。
3.2.1 化学位移的由来——屏蔽效应化学位移是由核外电子的屏蔽效应引起的。
H 核在分子中不是完全裸露的,而是被价电子所包围的。
因此,在外加磁场作用下,由于核外电子在垂直于外加磁场的平面绕核旋转,从而产生与外加磁场方向相反的感生磁场H ’。
这样,H 核的实际感受到的磁场强度为:若质子的共振磁场强度只与γ(磁旋比)、电磁波照射频率v 有关,那么,试样中符合共振条件的1H 都发生共振,就只产生一个单峰,这对测定化合物的结构是毫无意义的。
实验证明:在相同的频率照射下,化学环境不同的质子将在不同的磁场强度处出现吸收峰。
)1('H 0000σσ-=-=-=H H H H H 实式中:σ为屏蔽常数3.3 影响化学位移的因素凡影响电子云密度的因素都将影响化学位移。
其中影响最大的是:诱导效应和各向异性效应。
a. 双键碳上的质子烯烃双键碳上的质子位于π键环流电子产生的感生磁场与外加磁场方向一致的区域(称为去屏蔽区),去屏蔽效应的结果,使烯烃双键碳上的质子的共振信号移向稍低的磁场区,其δ= 4.5~5.7 ppm。
同理,羰基碳上的H质子与烯烃双键碳上的H质子相似,也是处于去屏蔽区,存在去屏蔽效应,但因氧原子电负性的影响较大,所以,羰基碳上的H 质子的共振信号出现在更低的磁场区,其δ= 9.4~10 ppm。
b.三键碳上的质子:碳碳三键是直线构型,π电子云围绕碳碳σ键呈筒型分布,形成环电流,它所产生的感应磁场与外加磁场方向相反,故三键上的H质子处于屏蔽区,屏蔽效应较强,使三键上H质子的共振信号移向较高的磁场区,其δ= 2~3 ppm。
3.3.3 共轭效应O)取代,由于p–苯环上的氢被给电子基(如CH3π共轭,使苯环的电子云密度增大,δ值高场位移;吸电子基(如C=O、NO)取代,由于π–π共轭,使苯2环的电子云密度降低,δ值低场位移。
第二章核磁共振氢谱(1H-NMR)§1 概述基本情况1H天然丰度:99.9844%,I=1/2,γ=26.752(107radT-1S-1)共振频率:42.577 MHz/Tδ: 0~20ppm§2 化学位移1.影响δ值的因素A.电子效应(1)诱导效应a电负性电负性强的取代基使氢核外电子云密度降低,其共振吸收向低场位移,δ值增大b.多取代有加和性c.诱导效应通过成键电子传递,随着与电负性取代基距离的增大,诱导效应的影响逐渐减弱,通常相隔3个以上碳的影响可以忽略不计(2).共轭效应氮、氧等杂原子可与双键、苯环共轭。
苯环上的氢被推电子基取代,由于p-π共轭,使苯环电子云密度增大, δ值向高场移动苯环上的氢被吸电子基取代,由于p-π共轭或π-π共轭,使苯环电子云密度降低, δ值向低场移动(3). 场效应在某些刚性结构中,一些带杂原子的官能团可通过其电场对邻近氢核施加影响,使其化学位移发生变化.这些通过电场发挥的作用称为场效应(4). 范德华(Van der Waals)效应在某些刚性结构中,当两个氢核在空间上非常接近,其外层电子云互相排斥使核外电子云不能很好地包围氢核,相当于核外电子云密度降低,δ值向低场移动B.邻近基团的磁各向异性某些化学键和基团可对空间不同空间位置上的质子施加不同的影响,即它们的屏蔽作用是有方向性的。
磁各向异性产生的屏蔽作用通过空间传递,是远程的。
(1)芳环在苯环的外周区域感应磁场的方向与外加磁场的方向相同(顺磁屏蔽),苯环质子处于此去屏蔽区,其所受磁场强度为外加磁场和感应磁场之和,δ值向低场移动。
(2)双键>C=O, >C=C<的屏蔽作用与苯环类似。
在其平面的上、下方各有一个锥形屏蔽区(“+”),其它区域为去屏蔽区。
(3)三键互相垂直的两个π键轨道电子绕σ键产生环电流,在外加磁场作用下产生与三键平行但方向与外加磁场相反的感应磁场。
三键的两端位于屏蔽区(“+”),上、下方为去锥形屏蔽区(“-”)δ值比烯氢小。
核磁共振氢谱(PMR或1HNMR)核磁共振氢谱(PMR或1HNMR)核磁共振技术是20世纪50年代中期开始应⽤于有机化学领域,并不断发展成为有机物结构分析的最有⽤的⼯具之⼀。
它可以解决有机领域中的以下问题:(1)结构测定或确定,⼀定条件下可测定构型和构象;(2)化合物的纯度检查;(3)混合物分析,主要信号不重叠时,可测定混合物中各组分的⽐例;(4)质⼦交换、单键旋转、环的转化等化学变化速度的测定及动⼒学研究。
NMR的优点是:能分析物质分⼦的空间构型;测定时不破坏样品;信息精密准确。
NMR通常与IR并⽤,与MS、UV及化学分析⽅法等配合解决有机物的结构问题,还⼴泛应⽤于⽣化、医学、⽯油、物理化学等⽅⾯的分析鉴定及对微观结构的研究。
⼀、基本概念核磁共振(简称为NMR)是指处于外磁场中的物质原⼦核系统受到相应频率(兆赫数量级的射频)的电磁波作⽤时,在其磁能级之间发⽣的共振跃迁现象。
检测电磁波被吸收的情况就可以得到核磁共振波谱。
因此,就本质⽽⾔,核磁共振波谱是物质与电磁波相互作⽤⽽产⽣的,属于吸收光谱(波谱)范畴。
根据核磁共振波谱图上共振峰的位置、强度和精细结构可以研究分⼦结构。
发展历史1.1946 年美国斯坦福⼤学的F. Bloch 和哈佛⼤学E.M .Purcell领导的两个研究组⾸次独⽴观察到核磁共振信号,由于该重要的科学发现,他们两⼈共同荣获1952 年诺贝尔物理奖。
NMR发展最初阶段的应⽤局限于物理学领域,主要⽤于测定原⼦核的磁矩等物理常数。
2.1950 年前后W .G. Proctor等发现处在不同化学环境的同种原⼦核有不同的共振频率,即化学位移。
接着⼜发现因相邻⾃旋核⽽引起的多重谱线,即⾃旋—⾃旋耦合,这⼀切开拓了NMR 在化学领域中的应⽤和发展。
3.20 世纪60 年代,计算机技术的发展使脉冲傅⾥叶变换核磁共振⽅法和谱仪得以实现和推⼴,引起了该领域的⾰命性进步。
随着NMR 和计算机的理论与技术不断发展并⽇趋成熟,NMR ⽆论在⼴度和深度⽅⾯均出现了新的飞跃性进展,具体表现在以下⼏⽅⾯:1)仪器向更⾼的磁场发展,以获得更⾼的灵敏度和分辨率,现⼰有300、400、500、600MHz,甚⾄1000MHz 的超导NMR 谱仪;2)利⽤各种新的脉冲系列,发展了NMR 的理论和技术,在应⽤⽅⾯作了重要的开拓;3)提出并实现了⼆维核磁共振谱以及三维和多维核磁谱、多量⼦跃迁等NMR 测定新技术,在归属复杂分⼦的谱线⽅⾯⾮常有⽤。
核磁共振氢谱(1H NMR)是一种非常重要的谱学技术,用于确定有机化合物中氢原子的类型和数量。
它是通过测量原子核自旋磁矩的变化,来反映分子内部的结构和化学环境。
氢原子作为最简单的原子核,其磁矩相对较强,因此在核磁共振中扮演着至关重要的角色。
通过对氢谱的测量,科学家可以深入了解分子的微观结构和动态行为。
每种不同的化学基团都有其独特的化学位移范围,这是由于它们所处分子环境中的电子分布和分子内相互作用所致。
因此,通过核磁氢谱的测定和分析,可以确定有机化合物中的特定官能团,进而推测其可能的结构和性质。
醛基(-CHO)是典型的活泼基团,它具有较强的反应活性。
在核磁氢谱中,醛基上的氢原子通常出现在9-10ppm的区域,这个范围相对较高,反映了其电子云密度较低的化学环境。
醇羟基(-OH)则呈现出较低的化学位移,通常出现在1-3ppm的区域。
这是由于醇羟基上的氧原子具有较高的电子云密度,从而影响了其邻近氢原子的化学环境。
在醇类化合物中,羟基氢的位移和裂分情况可以提供关于分子内部结构的重要信息。
酚羟基(-OH)同样具有较低的化学位移,通常出现在12-13ppm 的区域。
与醇羟基类似,酚羟基上的氧原子具有较高的电子云密度,导致其邻近氢原子的化学环境发生变化。
此外,酚羟基还受到分子内其他基团的影响,因此其化学位移可能发生进一步的变化。
醚基(-O-)的核磁氢谱位移相对较低,通常出现在3-4ppm的区域。
醚基中的氧原子同样具有较高的电子云密度,使得其邻近氢原子的化学环境发生改变。
在分析醚类化合物时,醚基氢的位移和裂分情况对于确定分子结构具有重要意义。
胺基(-NH2)的核磁氢谱位移相对较低,通常出现在2.5-3ppm的区域。
这是由于胺基中的氮原子具有较高的电子云密度,影响了其邻近氢原子的化学环境。
分析胺类化合物时,胺基氢的位移和裂分情况能够提供关于分子结构的有价值信息。
硝基(-NO2)的核磁氢谱位移相对较高,通常出现在8-9ppm的区域。
核磁共振氢谱(PMR或1HNMR)核磁共振技术是20世纪50年代中期开始应用于有机化学领域,并不断发展成为有机物结构分析的最有用的工具之一。
它可以解决有机领域中的以下问题:(1)结构测定或确定,一定条件下可测定构型和构象;(2)化合物的纯度检查;(3)混合物分析,主要信号不重叠时,可测定混合物中各组分的比例;(4)质子交换、单键旋转、环的转化等化学变化速度的测定及动力学研究。
NMR的优点是:能分析物质分子的空间构型;测定时不破坏样品;信息精密准确。
NMR通常与IR并用,与MS、UV及化学分析方法等配合解决有机物的结构问题,还广泛应用于生化、医学、石油、物理化学等方面的分析鉴定及对微观结构的研究。
一、基本概念核磁共振(简称为NMR)是指处于外磁场中的物质原子核系统受到相应频率(兆赫数量级的射频)的电磁波作用时,在其磁能级之间发生的共振跃迁现象。
检测电磁波被吸收的情况就可以得到核磁共振波谱。
因此,就本质而言,核磁共振波谱是物质与电磁波相互作用而产生的,属于吸收光谱(波谱)范畴。
根据核磁共振波谱图上共振峰的位置、强度和精细结构可以研究分子结构。
发展历史1.1946 年美国斯坦福大学的F. Bloch 和哈佛大学E.M .Purcell领导的两个研究组首次独立观察到核磁共振信号,由于该重要的科学发现,他们两人共同荣获1952 年诺贝尔物理奖。
NMR发展最初阶段的应用局限于物理学领域,主要用于测定原子核的磁矩等物理常数。
2.1950 年前后W .G. Proctor等发现处在不同化学环境的同种原子核有不同的共振频率,即化学位移。
接着又发现因相邻自旋核而引起的多重谱线,即自旋—自旋耦合,这一切开拓了NMR 在化学领域中的应用和发展。
3.20 世纪60 年代,计算机技术的发展使脉冲傅里叶变换核磁共振方法和谱仪得以实现和推广,引起了该领域的革命性进步。
随着NMR 和计算机的理论与技术不断发展并日趋成熟,NMR 无论在广度和深度方面均出现了新的飞跃性进展,具体表现在以下几方面:1)仪器向更高的磁场发展,以获得更高的灵敏度和分辨率,现己有300、400、500、600MHz,甚至1000MHz的超导NMR 谱仪;2)利用各种新的脉冲系列,发展了NMR 的理论和技术,在应用方面作了重要的开拓;3)提出并实现了二维核磁共振谱以及三维和多维核磁谱、多量子跃迁等NMR 测定新技术,在归属复杂分子的谱线方面非常有用。
核磁共振氢谱的基本特点
核磁共振氢谱(1H NMR)是一种通过检测有机化合物分子中氢原子在磁场中的核磁共振现象来分析化合物结构的技术。
以下是核磁共振氢谱的基本特点:
1. 氢原子具有高磁矩:氢原子是所有元素中磁矩最高的,因此对磁场有强烈的响应,适合用于核磁共振分析。
2. 化学位移:核磁共振氢谱中,氢原子的化学环境不同会导致其对应的共振频率发生偏移,这种偏移称为化学位移。
化学位移是核磁共振氢谱中最重要的特征之一,可以用来推测化合物的结构和鉴定化合物。
3. 自旋-自旋耦合:核磁共振氢谱中,相邻的氢原子之间会产生自旋-自旋耦合(spin-spin coupling)。
这种耦合会导致信号的分裂和多重峰,可以提供分子结构的信息。
4. 峰的强度:核磁共振氢谱中,每个氢原子对应的峰的强度反映了该氢原子在分子中的数量和所处化学环境。
峰的强度可以用于定性和定量分析。
5. 分辨率:核磁共振氢谱的分辨率受到多种因素的影响,如磁场强度、射频脉冲的质量、化合物的结构和温度等。
高分辨率的核磁共振氢谱可以提供更详细的分子结构信息。
这些特点使得核磁共振氢谱成为一种强有力的分析工具,广泛应用于有机化学、生物化学、药物化学等领域。