第6讲 解析函数与调和函数
- 格式:ppt
- 大小:423.00 KB
- 文档页数:23
解析函数与调和函数的定义与性质函数在数学中扮演着重要的角色,不同类型的函数具有不同的性质和定义。
解析函数与调和函数就是其中两种重要的函数类型。
本文将对解析函数和调和函数的定义与性质进行详细解析。
一、解析函数的定义与性质解析函数是复变函数中的一种特殊类型,其定义如下:设f(z)=u(x,y)+iv(x,y)是定义在D上的复变函数,其中u(x,y)和v(x,y)是实变函数,如果f(z)在D内是可导的,且f'(z)在D内处处存在,则称f(z)在D内是解析的。
解析函数具有以下几个重要性质:1. 解析函数的实部和虚部均是调和函数。
即u(x,y)和v(x,y)都满足拉普拉斯方程,即∇^2u=∂^2u/∂x^2+∂^2u/∂y^2=0,以及∇^2v=∂^2v/∂x^2+∂^2v/∂y^2=0。
2. 解析函数的复共轭也是解析函数。
即若f(z)=u(x,y)+iv(x,y)是解析函数,则其复共轭f*(z)=u(x,y)-iv(x,y)也是解析函数。
3. 解析函数满足柯西-黎曼方程。
即若f(z)=u(x,y)+iv(x,y)是解析函数,则其满足柯西-黎曼方程∂u/∂x=∂v/∂y和∂u/∂y=-∂v/∂x。
二、调和函数的定义与性质调和函数是实变函数中的一种特殊类型,其定义如下:设u(x,y)是定义在二维欧氏空间R^2上的二次连续可微函数,如果u(x,y)满足拉普拉斯方程∇^2u=∂^2u/∂x^2+∂^2u/∂y^2=0,则称u(x,y)为调和函数。
调和函数具有以下几个重要性质:1. 调和函数的高阶导数也是调和函数。
即如果u(x,y)是调和函数,则其高阶偏导数∂^nu/∂x^n和∂^nu/∂y^n也是调和函数。
2. 调和函数的积分在闭合曲线上的值为0。
即对于调和函数u(x,y)和任意的闭合曲线C有∮C[∂u/∂s(ds/dt)dt]=0,其中∮C表示对曲线C 上点P到点P绕行一周的积分,s为曲线C上的弧长参数,t为弧长参数t与x轴正向的夹角。
§4. 解析函数与调和函数一、教学目标或要求:掌握解析函数与调和函数的关系熟练计算二、教学内容(包括基本内容、重点、难点):基本内容:解析函数与调和函数的关系例题重点:解析函数与调和函数的关系难点: 例题三、教学手段与方法:讲授、练习四、思考题、讨论题、作业与练习:16、17、18§4. 解析函数与调和函数在前一节,我们已经证明了,在区域D内解析的函数具有任何阶的导数。
因此,在区域D内它的实部与虚部都有二阶连续偏导数。
现在我们来研究应该如何选择才能使函数在区域D内解析。
设在区域D上解析,则C--R条件成立,.下一章将证明,某个区域上的解析函数在该区域上必有任意阶的导数,因此可对上式求偏导数,两式相加可得同理可得定义3.5若二元实函数在区域内有二阶连续偏导数且满足拉普拉斯方程,则称为区域内的调和函数。
记,则为运算符号,称为拉普拉斯算子。
定义3.6 在区域D 内满足C.— R.条件y v x u ∂∂=∂∂, xv y u ∂∂-=∂∂ 的两个调和函数中),(y x u ,),(y x v 中, ),(y x v 称为),(y x u 的轭调和函数. 共轭调和函数的几何意义设是区域D 上的解析函数,则,两式相乘得即所以就是说,梯度跟梯度正交. 我们知道,和分别是曲线族“”和“”的法向矢量,因而上式表示“”与“”两族曲线相互正交. 这就解析函数实部),(y x u 与虚部),(y x v 的几何意义。
定理3.18 若),(i ),()(y x v y x u z f +=在区域D 内解析,则在区域D 内),(y x v 必为),(y x u 的轭调和函数.证 由在内解析知,,从而。
又解析函数具有的无穷可微性保证,在内均连续,故必相等,于是在内。
同理,即,满足拉普拉斯方程。
定理3.19 设若),(y x u 是在单连通区域D 内的调和函数,则存在由(3.22)式所确定的函数),(y x v ,使),(i ),()(y x v y x u z f +=在区域D 内解析. 解析函数的又一等价定理),(i ),()(y x v y x u z f +=在区域D 内解析当且仅当在区域D 内),(y x v 是),(y x u 的共轭调和函数。
§2.2 解析函数和调和函数的关系 教学目的:弄清调和函数与共轭调和函数的概念,能理解并掌握解 析函数与调和函数的关系;并能灵活利用常用得三种方法 (不定积分法、偏积分法、曲线积分法)求以调和函数为实 部或虚部的解析函数.重点:不定积分法和偏积分法求解析函数.难点:曲线积分法求解析函数.教学方法:启发式讲授与指导练习相结合教学过程:§2.2.1 调和函数的概念调和函数是有着广泛实际应用的一类函数(平面静电场中的电位函数、无源无旋的平面流速场中的势函数与流函数都是特殊的二元实函数,即调和函数),它与解析函数有着密切的联系.本节,我们将详细地介绍解析函数与调和函数的关系,并介绍利用调和函数来求解析函数的若干方法.【定义2.3】 若二元实函数(,)H x y 在区域D 内具有二阶连续的偏导数,且满足二维拉普拉斯方程(Laplace )22220H H x y∂∂+=∂∂,则称(,)H x y 为D 内的调和函数(或称(,)H x y 在D 内调和),称为拉普拉斯算子. 【定理2.3 】 若函数()(,)(,)f z u x y iv x y =+在区域D 内解析, 则()f z 的实部(,)u x y 和虚部(,)v x y 都是D 内的调和函数. 证 ()f z 在区域D 内解析,所以(,)u x y ,(,)v x y 在D 内可微,且在D 内满足C-R 方程u v x y ∂∂=∂∂,u v y x∂∂=-∂∂,由解析函数的无穷可微性知(,)u x y 和(,)v x y 在D 内都具有任意阶连续的偏导数,从而也具有二阶连续的偏导数 222u v x y x ∂∂=∂∂∂ 222u v y x y∂∂=-∂∂∂, 所以2222220u u v v x y x y y x ∂∂∂∂+=-+=∂∂∂∂∂∂;同理可证22220v v x y∂∂+=∂∂. 故实部 (,)u x y 和虚部 (,)v x y 都是D 内的调和函数.§2.2.2 共轭调和函数【义2.4】 若(,)u x y ,(,)v x y 都是区域D 内的调和函数,且在D 内满足柯西—黎曼方程, 即 u v x y ∂∂=∂∂,u v y x∂∂=-∂∂, 则称(,)v x y 为(,)u x y 的共轭调和函数.下面研究复变函数的实部、虚部两个二元实函数与调和函数的关系.【定理2.4】若函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件是在D 内()f z 的虚部函数(,)v x y 是实部函数(,)u x y 的共轭调和函数.证明 (必要性) 因为()(,)(,)f z u x y iv x y =+在D 内解析, (,)u x y 和(,)v x y 都是D 内的调和函数,且满足柯西—黎曼条件所以 在D 内()f z 的虚部函数(,)v x y 是实部函数(,)u x y 的共轭调和函数.(充分性)在D 内()f z 的虚部函数(,)v x y 是实部函数(,)u x y 的共轭调和函数.所以 (,)v x y ,(,)u x y 具有二阶连续偏导数且满足C R -方程 所以(,)v x y ,(,)u x y 具有一阶连续偏导数且满足C R -方程 故 ()(,)(,)f z u x y iv x y =+在区域D 内解析.注:10.由解析函数的无穷可微性知,若函数()(,)(,)f z u x y iv x y =+在区域D 内解析,则()f z 的任意阶导数在区域D 内也解析,从而 (,)u x y 和(,)v x y 的任意阶偏导数也都是D 内的调和函数.20.两个二元实函数(,)u x y 和(,)v x y 都是区域D 内的调和函数,不一定能保证复函数()(,)(,)f z u x y iv x y =+在区域D 内解析. 20的反例:易证(,)u x y x =,(,)v x y y =-都是平面上的调和函数, 但 ()f z x iy z =-=在平面上处处不解析.30.由第二章的解析函数的判别法知,设(,)u x y 和(,)v x y 都是定义在区域D 内的二元实函数,若(,)v x y 为(,)u x y 的共轭调和函数,则()(,)(,)f z u x y iv x y =+在D 内一定解析.提问:1.函数),(),()(y x iv y x u z f +=解析,则下列命题中错误的是( C )A 、v u ,均为调和函数B 、v 是u 的共轭调和函数C 、v u 是的共轭调和函数D 、v u 是-的共轭调和函数2.解析函数的实部是其虚部的共轭调和函数. ( × )3.解析函数的虚部是其实部的共轭调和函数. ( √ ) §2.2.3 解析函数与调和函数的关系根据定理2.4来建立单连通区域内解析函数的一种求法.假设D 是一个单连通区域, (,)u x y 是D 内的一个调和函数,即 (,)u x y 在D 内具有二阶连续的偏导数,并且22220u u x y ∂∂+=∂∂ 从而u y ∂-∂,u x∂∂在D 内具有一阶连续的偏导数, ()()u u y y x x∂∂∂∂-=∂∂∂∂(曲线积分与路径无关的条件). 再由高数中有关曲线积分与路径无关的条件得, 存在D 内的二元函数(,)v x y ,使得 (,)u u dv x y dx dy y x∂∂=-+∂∂, 于是 00(,)(,)(,)x y x y u u v x y dx dy C y x∂∂=-++∂∂⎰, 其中00(,)x y 是D 内的一个定点, (,)x y 是D 内的一个动点, C 是任意实常数.另外我们还有u v x y ∂∂=∂∂,u v y x∂∂=-∂∂, 即(,)u x y 和(,)v x y 在D 内满足柯西—黎曼条件, 从而易得 2222220v v u u x y y x x y∂∂∂∂+=-+=∂∂∂∂∂∂ 所以 (,)v x y 也是D 内的调和函数,并且(,)v x y 为(,)u x y 的共轭调和函数.故 由定理2.4, 我们构造函数()(,)(,)f z u x y iv x y =+, ()f z 就是D 内以(,)u x y 为实部的解析函数.【定理】※(1)若(,)u x y 是单连通区域D 内的一个调和函数,则一定存在函数(,)v x y , 使得 ()(,)(,)f z u x y iv x y =+为D 内的解析函数, 并且还有00(,)(,)(,)x y x y u u v x y dx dy C y x∂∂=-++∂∂⎰,其中00(,)x y 是D 内的一个定点, (,)x y 是D 内的一个动点, C 是任意实常数.(2)同理可得 若(,)v x y 是单连通区域D 内的一个调和函数,则一定存在函数(,)u x y ,使得 ()(,)(,)f z u x y iv x y =+为D 内的解析函数, 并且还有00(,)(,)(,)x y x y v v u x y dx dy C y x∂∂=-+∂∂⎰,其中00(,)x y 是D 内的一个定点, (,)x y 是D 内的一个动点, C 是任意实常数.注: 此定理给出了已知解析函数的实部(或虚部),求虚部(或实部),从而求出解析函数的一种方法――曲线积分法.由解析函数的实部或虚部求解析函数的举例例1 证明32(,)3u x y x xy =-是平面上的调和函数, 并求以 (,)u x y 为实部的解析函数()f z ,使得(0)f i =.证明: 因为2233u x y x ∂=-∂,6u xy y ∂=-∂,226u x x ∂=∂,226u x y ∂=-∂, 32(,)3u x y x xy =-为正式函数,所以有二阶连续偏导数,所以 22220u u x y∂∂+=∂∂, 即32(,)3u x y x xy =-是平面上的调和函数.下面,我们用三种方法来求满足题设条件的解析函数.方法1: (曲线积分法)由补充定理知取00(,)(0,0)x y =,(如图3.20)(,)(0,0)(,)x y u u v x y dx dy C y x∂∂=-++∂∂⎰ (,)22(0,0)6(33)x y xydx x y dy C =+-+⎰ 220060(33)x yx dx x y dy C =⋅+-+⎰⎰233x y y C =-+所以 3223()3(3)f z x xy i x y y C =-+-+,再由条件(0)f i =,可得1C =.故 32233()3(31)f z x xy i x y y z i =-+-+=+.方法2(微分方程中的常数变异法或称偏积分法)由C R -条件得 2233v u x y y x∂∂==-∂∂ ------------ (Ⅰ) (6)6v u xy xy x y∂∂=-=--=∂∂ ----------- (Ⅱ) 由(Ⅰ)积分得 22(,)(33)v x y x y dy =-⎰233()x y y x ϕ=-+ ----------- (Ⅲ) 求(Ⅲ)对x 的偏导数代入(Ⅱ)得 6()6xy x xy ϕ'+= , 即 ()0x ϕ'=, 所以 ()x C ϕ=(常数),从而 23(,)3v x y x y y C =-+,所求解析函数为 3223()3(3)f z x xy i x y y C =-+-+. 再由条件(0)f i =,可得1C =.故 32233()3(31)f z x xy i x y y z i =-+-+=+.方法3(不定积分法):..()C R u v u u f z i i x xx y ∂∂∂∂'=+=-∂∂∂∂, 其中 1()2x z z =+, 1()2y z z i =- 因为 2233u x y x∂=-∂,6u xy y ∂=-∂, 由解析函数的导数公式: ..()C R u v u u f z i i x xx y ∂∂∂∂'=+=-∂∂∂∂ 得 ()u u f z i x y∂∂'=-∂∂ 222233(6)336x y i xy x y i xy =---=-+ 将1()2x z z =+, 1()2y z z i=- 代入上式 整理得 222()3363f z x y i xy z '=-+= , 所以 3()f z z C =+再由条件(0)f i =,可得C i =. 故 3()f z z i =+.说明:从例1中所给的三种方法中,大家不难体会到,三种方法各有特点:方法1利用了高数中的第二型曲线积分的计算方法;方法2利用了求解微分方程的方法(常数变异法);方法3是纯粹的复变函数的方法.在实际计算时可以根据具体的问题选择合适的方法计算.例2 设),(,()(y x iv y x u z f +=为iy x z +=的解析函数,且已知y x y x v y x u +=-),(),(,求函数()f z .解:方程y x y x v y x u +=-),(),(两边分别对y x ,求偏导数得:110111C R x y x x x y y y x y u u u v u u v u u u -+=-==⎧⎧⎧⎪⎪⎪⇒⇒⎨⎨⎨-==-+=⎪⎪⎪⎩⎩⎩方程, 由0x u =得: )(),(y g y x u = 代入1y u =得:1)(='y g , C y y g +=)((C 为任意常数)从而C y y x u +=),(,(,)(,)()v x y u x y x y x C =-+=-+,所求函数为:C i iz C x i C y iv u z f )1()()(++-=+-++=+= 练习:(1)已知调和函数y x u )1(2-=,i f -=)2(,求解析函数iv u z f +=)(.解:用不定积分法求解如下:2x u y =,22y u x =-,()2(22)2(1)x y f z u iu y i x i z '=-=--=--221()2(1)2(1)(1)2f z i z dz i z C i z C =--=-⨯-+=--+⎰ 由i f -=)2(得 2(21)i C i --+=-,0=C ,所以:2()(1)f z i z =--(2) 已知 22()yi f z u x y=++是解析函数,且(2)0f =,求()f z .解:22222()x y x y u v x y -''==+,2222()y x xy u v x y ''=-=+ 对此,用偏积分求u 比较方便:2222()()()y xdy u u dy g x g x x y =+=++⎰⎰22()x g x x y=-++ 将积分结果求对x 的偏导数得 22(,)()x u x y g x x y=-++ 2222212(),()x x u g x x y x y -'=++++()0,()g x g x c '== 所以 2222()x yi f z c x y x y =-++++ 1(2)02f c =-+= 得12c =,11()2f z z=- . 例3 证明(,)arctan y v x y x = (0x >)在右半平面内是调和函数, 并求以此为虚部的解析函数.证明 因为22v y x x y ∂-=∂+,22v x y x y∂=∂+, 则 222222()v xy x x y ∂=∂+, 222222()v xy y x y ∂-=∂+, 从而 22220v v x y ∂∂+=∂∂, 故(,)arctany v x y x = 是右半平面内的调和函数.下面用方法2(微分方程中的常数变异法)来求解析函数的实部(,)u x y .由C R -条件得22u v x x y x y ∂∂==∂∂+ -------------- (Ⅰ)2222u v y y y x x y x y ∂∂-=-=-=∂∂++ -------------- (Ⅱ) 由(Ⅰ)得 221(,)ln()()2u x y x y y ϕ=++ 代入(Ⅱ)得2222()y yy x y x y ϕ'+=++, 即()0y ϕ'=,从而 ()y C ϕ=(常数), 221(,)ln()2u x y x y C =++. 故 所求解析函数为221()ln()arctan 2y f z x y C i x=+++(0x >)ln arg ln z C i z z C =++=+ (Re 0z >). 例4 已知调和函数 (cos sin )xv e y y x y x y =+++,求一个解析函数 ()f z u iv =+使(0)0f =. 解(不定积分法) 因为(cos sin sin )1x ve y y x y y x∂=+++∂,(cos sin cos )1x ve y y y x y y∂=-++∂ 所以 ..()C R u v v v f z i i x x y x∂∂∂∂'=+=+∂∂∂∂(cos sin cos )1xe y y y x y =-+++ [(cos sin sin )1]xi e y y x y y +++1z z ze e i =+++,积分得 ()(1)zf z ze i z C =+++,由(0)0f =得0C =, 故 ()f z 1z zze e i =+++.例5 已知调和函数 22u x y xy =-+, 求一个解析函数()f z u iv =+使()1f i i =-+.解2ux y x∂=+∂,2u y x y ∂=-+∂ ..()2(2)2C R u v u uf z i i x y i y x z iz x x x y∂∂∂∂'⇒=+=-=++-=-∂∂∂∂,积分得 21()(2)2f z i z C =-+,由()1f i i =-+得2iC =, 故 2()122i i f z z ⎛⎫=-+ ⎪⎝⎭. 练习: 已知 22()(4)2()u v x y x xy y x y +=-++-+,试确定解析函数 ()f z u iv =+.解 :2222(4)()(24)2(4)()(42)2,x x y y x x y xu v x xy y x y x y u v x xy y x y x y u v u v ⎧+=+++-+-⎪+=+++-+-⎨⎪==-⎩226332x yv xyv x y =⎧⎪⇒⎨=--⎪⎩ 222()332632v vf z i x y i xy z y x∂∂'⇒=+=--+=-∂∂, 积分得 3()2f z z z C ⇒=-+.例6 若()f z u iv =+为解析函数,且满足892003u v +=, 试证:()f z 必为常数.解 对892003u v +=分别求对,x y 的导数得128900890()0x x x y y y xy u v u u u C u v f z C v v v C C R ⎧+===⎧=⎧⎪⎪+=⇒⇒⇒=⎨⎨⎨===⎪⎩⎪⎩-⎩方程(常数). 例7 求调和函数(,)x y xy φ= 的共轭调和函数. 提示 设解析函数()(,)(,),(,),(,)x y y x f z x y iv x y v x y x v x y y φφφ=+=-===2(,)()2x y v x y dy ydy g x φ===+⎰⎰,2(,)()()2x y x v x y g x x g x c φ'==-=-⇒=-+故 (,)x y xy φ= 的共轭调和函数221(,)()2v x y y x c =-+. 例8 证明:函数2222,y x xv y x u +=-=都是调和函数,但iv u z f +=)(不是解析函数.证明:y u x u y x 2,2-== ,2,2-==yy xx u u()()222222222,y xxyv y xy x v y x +-=+-=()()222322232,2yxy v yxy v yy xx +-=+=0=+∴yy xx u u 0=+yy xx v v 即u 是复平面上的调和函数,v 除原点外在复平面上调和。
解析函数和调和函数的定义
解析函数和调和函数是数学中的两个概念,它们的定义如下:
解析函数(Analytic Function):
一个函数f(x)在某一点x处是解析的,如果它在该点附近的某个区域内满足柯西-黎曼方程,即f'(x)=[f(x)]^n,其中n为正整数,f(x)在该点处连续。
如果一个函数在整个定义域内都是解析函数,则称它为全解析函数。
常见的解析函数包括多项式函数、三角函数、指数函数、对数函数等等。
调和函数(Harmonic Function):
一个函数f(x)在某一点x处是调和的,如果它满足拉普拉斯方程,即Δf(x)=0,其中Δ为二阶拉普拉斯方程。
调和函数具有许多优良的性质,如最大值原理、最小值原理、格林公式等等,因此在物理学和工程学中有着广泛的应用。
常见的调和函数包括正弦函数、余弦函数、指数函数、对数函数等等。
总的来说,解析函数和调和函数都是数学中非常重要的概念,它们具有不同的性质和应用领域。
解析函数主要用于研究函数的导数和微分
方程,而调和函数主要用于研究波动现象和物理学中的振动问题。