调和函数与解析函数.ppt
- 格式:ppt
- 大小:1.06 MB
- 文档页数:12
§2.2 解析函数和调和函数的关系 教学目的:弄清调和函数与共轭调和函数的概念,能理解并掌握解 析函数与调和函数的关系;并能灵活利用常用得三种方法 (不定积分法、偏积分法、曲线积分法)求以调和函数为实 部或虚部的解析函数.重点:不定积分法和偏积分法求解析函数.难点:曲线积分法求解析函数.教学方法:启发式讲授与指导练习相结合教学过程:§2.2.1 调和函数的概念调和函数是有着广泛实际应用的一类函数(平面静电场中的电位函数、无源无旋的平面流速场中的势函数与流函数都是特殊的二元实函数,即调和函数),它与解析函数有着密切的联系.本节,我们将详细地介绍解析函数与调和函数的关系,并介绍利用调和函数来求解析函数的若干方法.【定义2.3】 若二元实函数(,)H x y 在区域D 内具有二阶连续的偏导数,且满足二维拉普拉斯方程(Laplace )22220H H x y∂∂+=∂∂,则称(,)H x y 为D 内的调和函数(或称(,)H x y 在D 内调和),称为拉普拉斯算子. 【定理2.3 】 若函数()(,)(,)f z u x y iv x y =+在区域D 内解析, 则()f z 的实部(,)u x y 和虚部(,)v x y 都是D 内的调和函数. 证 ()f z 在区域D 内解析,所以(,)u x y ,(,)v x y 在D 内可微,且在D 内满足C-R 方程u v x y ∂∂=∂∂,u v y x∂∂=-∂∂,由解析函数的无穷可微性知(,)u x y 和(,)v x y 在D 内都具有任意阶连续的偏导数,从而也具有二阶连续的偏导数 222u v x y x ∂∂=∂∂∂ 222u v y x y∂∂=-∂∂∂, 所以2222220u u v v x y x y y x ∂∂∂∂+=-+=∂∂∂∂∂∂;同理可证22220v v x y∂∂+=∂∂. 故实部 (,)u x y 和虚部 (,)v x y 都是D 内的调和函数.§2.2.2 共轭调和函数【义2.4】 若(,)u x y ,(,)v x y 都是区域D 内的调和函数,且在D 内满足柯西—黎曼方程, 即 u v x y ∂∂=∂∂,u v y x∂∂=-∂∂, 则称(,)v x y 为(,)u x y 的共轭调和函数.下面研究复变函数的实部、虚部两个二元实函数与调和函数的关系.【定理2.4】若函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件是在D 内()f z 的虚部函数(,)v x y 是实部函数(,)u x y 的共轭调和函数.证明 (必要性) 因为()(,)(,)f z u x y iv x y =+在D 内解析, (,)u x y 和(,)v x y 都是D 内的调和函数,且满足柯西—黎曼条件所以 在D 内()f z 的虚部函数(,)v x y 是实部函数(,)u x y 的共轭调和函数.(充分性)在D 内()f z 的虚部函数(,)v x y 是实部函数(,)u x y 的共轭调和函数.所以 (,)v x y ,(,)u x y 具有二阶连续偏导数且满足C R -方程 所以(,)v x y ,(,)u x y 具有一阶连续偏导数且满足C R -方程 故 ()(,)(,)f z u x y iv x y =+在区域D 内解析.注:10.由解析函数的无穷可微性知,若函数()(,)(,)f z u x y iv x y =+在区域D 内解析,则()f z 的任意阶导数在区域D 内也解析,从而 (,)u x y 和(,)v x y 的任意阶偏导数也都是D 内的调和函数.20.两个二元实函数(,)u x y 和(,)v x y 都是区域D 内的调和函数,不一定能保证复函数()(,)(,)f z u x y iv x y =+在区域D 内解析. 20的反例:易证(,)u x y x =,(,)v x y y =-都是平面上的调和函数, 但 ()f z x iy z =-=在平面上处处不解析.30.由第二章的解析函数的判别法知,设(,)u x y 和(,)v x y 都是定义在区域D 内的二元实函数,若(,)v x y 为(,)u x y 的共轭调和函数,则()(,)(,)f z u x y iv x y =+在D 内一定解析.提问:1.函数),(),()(y x iv y x u z f +=解析,则下列命题中错误的是( C )A 、v u ,均为调和函数B 、v 是u 的共轭调和函数C 、v u 是的共轭调和函数D 、v u 是-的共轭调和函数2.解析函数的实部是其虚部的共轭调和函数. ( × )3.解析函数的虚部是其实部的共轭调和函数. ( √ ) §2.2.3 解析函数与调和函数的关系根据定理2.4来建立单连通区域内解析函数的一种求法.假设D 是一个单连通区域, (,)u x y 是D 内的一个调和函数,即 (,)u x y 在D 内具有二阶连续的偏导数,并且22220u u x y ∂∂+=∂∂ 从而u y ∂-∂,u x∂∂在D 内具有一阶连续的偏导数, ()()u u y y x x∂∂∂∂-=∂∂∂∂(曲线积分与路径无关的条件). 再由高数中有关曲线积分与路径无关的条件得, 存在D 内的二元函数(,)v x y ,使得 (,)u u dv x y dx dy y x∂∂=-+∂∂, 于是 00(,)(,)(,)x y x y u u v x y dx dy C y x∂∂=-++∂∂⎰, 其中00(,)x y 是D 内的一个定点, (,)x y 是D 内的一个动点, C 是任意实常数.另外我们还有u v x y ∂∂=∂∂,u v y x∂∂=-∂∂, 即(,)u x y 和(,)v x y 在D 内满足柯西—黎曼条件, 从而易得 2222220v v u u x y y x x y∂∂∂∂+=-+=∂∂∂∂∂∂ 所以 (,)v x y 也是D 内的调和函数,并且(,)v x y 为(,)u x y 的共轭调和函数.故 由定理2.4, 我们构造函数()(,)(,)f z u x y iv x y =+, ()f z 就是D 内以(,)u x y 为实部的解析函数.【定理】※(1)若(,)u x y 是单连通区域D 内的一个调和函数,则一定存在函数(,)v x y , 使得 ()(,)(,)f z u x y iv x y =+为D 内的解析函数, 并且还有00(,)(,)(,)x y x y u u v x y dx dy C y x∂∂=-++∂∂⎰,其中00(,)x y 是D 内的一个定点, (,)x y 是D 内的一个动点, C 是任意实常数.(2)同理可得 若(,)v x y 是单连通区域D 内的一个调和函数,则一定存在函数(,)u x y ,使得 ()(,)(,)f z u x y iv x y =+为D 内的解析函数, 并且还有00(,)(,)(,)x y x y v v u x y dx dy C y x∂∂=-+∂∂⎰,其中00(,)x y 是D 内的一个定点, (,)x y 是D 内的一个动点, C 是任意实常数.注: 此定理给出了已知解析函数的实部(或虚部),求虚部(或实部),从而求出解析函数的一种方法――曲线积分法.由解析函数的实部或虚部求解析函数的举例例1 证明32(,)3u x y x xy =-是平面上的调和函数, 并求以 (,)u x y 为实部的解析函数()f z ,使得(0)f i =.证明: 因为2233u x y x ∂=-∂,6u xy y ∂=-∂,226u x x ∂=∂,226u x y ∂=-∂, 32(,)3u x y x xy =-为正式函数,所以有二阶连续偏导数,所以 22220u u x y∂∂+=∂∂, 即32(,)3u x y x xy =-是平面上的调和函数.下面,我们用三种方法来求满足题设条件的解析函数.方法1: (曲线积分法)由补充定理知取00(,)(0,0)x y =,(如图3.20)(,)(0,0)(,)x y u u v x y dx dy C y x∂∂=-++∂∂⎰ (,)22(0,0)6(33)x y xydx x y dy C =+-+⎰ 220060(33)x yx dx x y dy C =⋅+-+⎰⎰233x y y C =-+所以 3223()3(3)f z x xy i x y y C =-+-+,再由条件(0)f i =,可得1C =.故 32233()3(31)f z x xy i x y y z i =-+-+=+.方法2(微分方程中的常数变异法或称偏积分法)由C R -条件得 2233v u x y y x∂∂==-∂∂ ------------ (Ⅰ) (6)6v u xy xy x y∂∂=-=--=∂∂ ----------- (Ⅱ) 由(Ⅰ)积分得 22(,)(33)v x y x y dy =-⎰233()x y y x ϕ=-+ ----------- (Ⅲ) 求(Ⅲ)对x 的偏导数代入(Ⅱ)得 6()6xy x xy ϕ'+= , 即 ()0x ϕ'=, 所以 ()x C ϕ=(常数),从而 23(,)3v x y x y y C =-+,所求解析函数为 3223()3(3)f z x xy i x y y C =-+-+. 再由条件(0)f i =,可得1C =.故 32233()3(31)f z x xy i x y y z i =-+-+=+.方法3(不定积分法):..()C R u v u u f z i i x xx y ∂∂∂∂'=+=-∂∂∂∂, 其中 1()2x z z =+, 1()2y z z i =- 因为 2233u x y x∂=-∂,6u xy y ∂=-∂, 由解析函数的导数公式: ..()C R u v u u f z i i x xx y ∂∂∂∂'=+=-∂∂∂∂ 得 ()u u f z i x y∂∂'=-∂∂ 222233(6)336x y i xy x y i xy =---=-+ 将1()2x z z =+, 1()2y z z i=- 代入上式 整理得 222()3363f z x y i xy z '=-+= , 所以 3()f z z C =+再由条件(0)f i =,可得C i =. 故 3()f z z i =+.说明:从例1中所给的三种方法中,大家不难体会到,三种方法各有特点:方法1利用了高数中的第二型曲线积分的计算方法;方法2利用了求解微分方程的方法(常数变异法);方法3是纯粹的复变函数的方法.在实际计算时可以根据具体的问题选择合适的方法计算.例2 设),(,()(y x iv y x u z f +=为iy x z +=的解析函数,且已知y x y x v y x u +=-),(),(,求函数()f z .解:方程y x y x v y x u +=-),(),(两边分别对y x ,求偏导数得:110111C R x y x x x y y y x y u u u v u u v u u u -+=-==⎧⎧⎧⎪⎪⎪⇒⇒⎨⎨⎨-==-+=⎪⎪⎪⎩⎩⎩方程, 由0x u =得: )(),(y g y x u = 代入1y u =得:1)(='y g , C y y g +=)((C 为任意常数)从而C y y x u +=),(,(,)(,)()v x y u x y x y x C =-+=-+,所求函数为:C i iz C x i C y iv u z f )1()()(++-=+-++=+= 练习:(1)已知调和函数y x u )1(2-=,i f -=)2(,求解析函数iv u z f +=)(.解:用不定积分法求解如下:2x u y =,22y u x =-,()2(22)2(1)x y f z u iu y i x i z '=-=--=--221()2(1)2(1)(1)2f z i z dz i z C i z C =--=-⨯-+=--+⎰ 由i f -=)2(得 2(21)i C i --+=-,0=C ,所以:2()(1)f z i z =--(2) 已知 22()yi f z u x y=++是解析函数,且(2)0f =,求()f z .解:22222()x y x y u v x y -''==+,2222()y x xy u v x y ''=-=+ 对此,用偏积分求u 比较方便:2222()()()y xdy u u dy g x g x x y =+=++⎰⎰22()x g x x y=-++ 将积分结果求对x 的偏导数得 22(,)()x u x y g x x y=-++ 2222212(),()x x u g x x y x y -'=++++()0,()g x g x c '== 所以 2222()x yi f z c x y x y =-++++ 1(2)02f c =-+= 得12c =,11()2f z z=- . 例3 证明(,)arctan y v x y x = (0x >)在右半平面内是调和函数, 并求以此为虚部的解析函数.证明 因为22v y x x y ∂-=∂+,22v x y x y∂=∂+, 则 222222()v xy x x y ∂=∂+, 222222()v xy y x y ∂-=∂+, 从而 22220v v x y ∂∂+=∂∂, 故(,)arctany v x y x = 是右半平面内的调和函数.下面用方法2(微分方程中的常数变异法)来求解析函数的实部(,)u x y .由C R -条件得22u v x x y x y ∂∂==∂∂+ -------------- (Ⅰ)2222u v y y y x x y x y ∂∂-=-=-=∂∂++ -------------- (Ⅱ) 由(Ⅰ)得 221(,)ln()()2u x y x y y ϕ=++ 代入(Ⅱ)得2222()y yy x y x y ϕ'+=++, 即()0y ϕ'=,从而 ()y C ϕ=(常数), 221(,)ln()2u x y x y C =++. 故 所求解析函数为221()ln()arctan 2y f z x y C i x=+++(0x >)ln arg ln z C i z z C =++=+ (Re 0z >). 例4 已知调和函数 (cos sin )xv e y y x y x y =+++,求一个解析函数 ()f z u iv =+使(0)0f =. 解(不定积分法) 因为(cos sin sin )1x ve y y x y y x∂=+++∂,(cos sin cos )1x ve y y y x y y∂=-++∂ 所以 ..()C R u v v v f z i i x x y x∂∂∂∂'=+=+∂∂∂∂(cos sin cos )1xe y y y x y =-+++ [(cos sin sin )1]xi e y y x y y +++1z z ze e i =+++,积分得 ()(1)zf z ze i z C =+++,由(0)0f =得0C =, 故 ()f z 1z zze e i =+++.例5 已知调和函数 22u x y xy =-+, 求一个解析函数()f z u iv =+使()1f i i =-+.解2ux y x∂=+∂,2u y x y ∂=-+∂ ..()2(2)2C R u v u uf z i i x y i y x z iz x x x y∂∂∂∂'⇒=+=-=++-=-∂∂∂∂,积分得 21()(2)2f z i z C =-+,由()1f i i =-+得2iC =, 故 2()122i i f z z ⎛⎫=-+ ⎪⎝⎭. 练习: 已知 22()(4)2()u v x y x xy y x y +=-++-+,试确定解析函数 ()f z u iv =+.解 :2222(4)()(24)2(4)()(42)2,x x y y x x y xu v x xy y x y x y u v x xy y x y x y u v u v ⎧+=+++-+-⎪+=+++-+-⎨⎪==-⎩226332x yv xyv x y =⎧⎪⇒⎨=--⎪⎩ 222()332632v vf z i x y i xy z y x∂∂'⇒=+=--+=-∂∂, 积分得 3()2f z z z C ⇒=-+.例6 若()f z u iv =+为解析函数,且满足892003u v +=, 试证:()f z 必为常数.解 对892003u v +=分别求对,x y 的导数得128900890()0x x x y y y xy u v u u u C u v f z C v v v C C R ⎧+===⎧=⎧⎪⎪+=⇒⇒⇒=⎨⎨⎨===⎪⎩⎪⎩-⎩方程(常数). 例7 求调和函数(,)x y xy φ= 的共轭调和函数. 提示 设解析函数()(,)(,),(,),(,)x y y x f z x y iv x y v x y x v x y y φφφ=+=-===2(,)()2x y v x y dy ydy g x φ===+⎰⎰,2(,)()()2x y x v x y g x x g x c φ'==-=-⇒=-+故 (,)x y xy φ= 的共轭调和函数221(,)()2v x y y x c =-+. 例8 证明:函数2222,y x xv y x u +=-=都是调和函数,但iv u z f +=)(不是解析函数.证明:y u x u y x 2,2-== ,2,2-==yy xx u u()()222222222,y xxyv y xy x v y x +-=+-=()()222322232,2yxy v yxy v yy xx +-=+=0=+∴yy xx u u 0=+yy xx v v 即u 是复平面上的调和函数,v 除原点外在复平面上调和。
第六讲解析函数与调和函数的关系§3.7 解析函数与调和函数的关系内容简介在§3.6我们证明了在D内的解析函数,其导数仍为解析函数,所以解析函数有任意阶导数。
本节利用这一重要结论研究解析函数与调和函数之间的关系。
.),()00:),(2222内的调和函数为则称即(方程续偏导数且满足内具有二阶连在若二元实变函数D y x y x Laplace D y x ϕϕϕϕϕ=∆=∂∂+∂∂定义 内的调和函数。
是,内解析在区域若D y x v v y x u u D y x iv y x u z f ),(),(),(),()( ==⇒+=定理证明:设f (z )=u (x ,y )+i v (x ,y )在区域D 内解析,则x v y u y v xu R C ∂∂-=∂∂∂∂=∂∂- 方程由yx v y u x y v x u ∂∂∂-=∂∂∂∂∂=∂∂222222从而有xy v y x v y x v y x u ∂∂∂=∂∂∂∴⇒22.),(),,(具有任意阶的连续导数理由解析函数高阶导数定,0 D 2222=∂∂+∂∂y u x u 内有故在0 2222=∂∂+∂∂y v x v 同理有0,0=∆=∆v u 2222y x ∂∂+∂∂≡∆其中即u 及v 在D 内满足拉普拉斯(Laplace )方程: 内的调和函数。
是,D y x v v y x u u ),(),(==∴.),(),(D ,),(的共轭调和函数为函数内构成解析函数的调和在称使得内的调和函数为设y x u y x v iv u D y x u +定义上面定理说明:.部的共轭调和函数内解析函数的虚部是实D .),(),(),(),()(,的共轭调和函数必为内在内解析在即y x u u y x v D D y x iv y x u z f =⇒+=由解析的概念得:.,,,:的共轭调和函数必为调和函数的两个方程内满足在u v v u v u v u R C D x y y x -==-.,, 一定解析内就不在则内的两个调和函数区域是任意选取的在若D iv u D v u +现在研究反过来的问题:.的共轭调和函数不是y x u y x v +=+=如 )11)()()(x y y x v u v u z y x i y x iv u z f -≠===+++=+=处处不解析平面上在( 由此,的共轭调和函数必须是方程,即还必须满足及内解析在要想使.,u v R C v u D iv u -+.),,(),,(iv u y x v R C y x u +-从而构成解析函数程可求得它的虚部方利用部已知一个解析函数的实)),((y x v 虚部)),((y x u 实部0,),(,2222=∂∂+∂∂yu x u D y x u D 则函数内的调和是区域一单连通区域设内有连续一阶偏导数在、即D xu y u ∂∂∂∂-,dy xu dx y u dy y v dx x v x u x y u y ∂∂+∂∂-=∂∂+∂∂∂∂∂∂=∂∂-∂∂ )()(且),(y x dv v ∃=)(),(),(),(00*+∂∂+∂∂-=⎰c dy x u dx y u y x v y x y x..内解析在方程满足D iv u R C xu y v y u x v +∴-∂∂=∂∂∂∂-=∂∂ .)(),,()(,),(内解析在使得式所确定的则内调和函数在单连通设D iv u z f y x v D y x u +=*定理公式不用强记!可如下推出:dy x v dx y v dy y v dx x v du R C ∂∂-∂∂=∂∂+∂∂=-方程由然后两端积分。