复变函数3.4解析函数与调和函数的关系
- 格式:ppt
- 大小:1.59 MB
- 文档页数:23
复变函数复习重点(一)复数的概念1.复数的概念:z = x • iy , x, y 是实数,x = Rez,y = lmz.r-_i.注:一般两个复数不比较大小,但其模(为实数)有大小2.复数的表示1)模:z =y/x2+y2;2)幅角:在z = 0时,矢量与x轴正向的夹角,记为Arg z (多值函数);主值arg z是位于(-二,二]中的幅角。
3)arg z与arctan y之间的关系如下:xy当x 0, argz=arctan工;x[ yy - 0,arg z = arctan 二当x : 0, xy y :: 0,arg z = arctan 「愿L x4)三角表示:z = z COST i sinv ,其中二-arg z ;注:中间一定是“ +"号5)指数表示:z = z e旧,其中日=arg z。
(二)复数的运算仁加减法:若z1= x1iy1, z2= x2 iy2,贝寸乙 _ z2 = % _ x2i 比 _ y22.乘除法:1 )若z^x1 iy1 ,z2=x2iy2,则ZZ2 二XX2 —y』2 i X2% X』2 ;乙x iy1 % iy1 X2 —iy2 xg yy •- 丫2为-- = --------- = ----------------------- = -------------- T i --------------Z2 x? iy2 X2 iy2 x? - iy? x;y;x;y f2)若乙=乙e°,z2= z2e°, _则3.乘幂与方根ei "'2 ;土評匀)Z2Z21)若z =|z (cos日+isin 日)=|z e旧,则z"=上"(cosnT +i sin 用)=上"d吩。
2)若z =|z (cos日+isin 日)=|ze吩,贝U阪=z n.'cos日+2" +i si肆+2" )(k =0,1,2[|I n—1)(有n个相异的值)l n n丿(三)复变函数1•复变函数:w = f z,在几何上可以看作把z平面上的一个点集D变到w平面上的一个点集G的映射.2•复初等函数1)指数函数:e z=e x cosy - isin y ,在z平面处处可导,处处解析;且e z= e z。
复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。
解析函数与调和函数的定义与性质函数在数学中扮演着重要的角色,不同类型的函数具有不同的性质和定义。
解析函数与调和函数就是其中两种重要的函数类型。
本文将对解析函数和调和函数的定义与性质进行详细解析。
一、解析函数的定义与性质解析函数是复变函数中的一种特殊类型,其定义如下:设f(z)=u(x,y)+iv(x,y)是定义在D上的复变函数,其中u(x,y)和v(x,y)是实变函数,如果f(z)在D内是可导的,且f'(z)在D内处处存在,则称f(z)在D内是解析的。
解析函数具有以下几个重要性质:1. 解析函数的实部和虚部均是调和函数。
即u(x,y)和v(x,y)都满足拉普拉斯方程,即∇^2u=∂^2u/∂x^2+∂^2u/∂y^2=0,以及∇^2v=∂^2v/∂x^2+∂^2v/∂y^2=0。
2. 解析函数的复共轭也是解析函数。
即若f(z)=u(x,y)+iv(x,y)是解析函数,则其复共轭f*(z)=u(x,y)-iv(x,y)也是解析函数。
3. 解析函数满足柯西-黎曼方程。
即若f(z)=u(x,y)+iv(x,y)是解析函数,则其满足柯西-黎曼方程∂u/∂x=∂v/∂y和∂u/∂y=-∂v/∂x。
二、调和函数的定义与性质调和函数是实变函数中的一种特殊类型,其定义如下:设u(x,y)是定义在二维欧氏空间R^2上的二次连续可微函数,如果u(x,y)满足拉普拉斯方程∇^2u=∂^2u/∂x^2+∂^2u/∂y^2=0,则称u(x,y)为调和函数。
调和函数具有以下几个重要性质:1. 调和函数的高阶导数也是调和函数。
即如果u(x,y)是调和函数,则其高阶偏导数∂^nu/∂x^n和∂^nu/∂y^n也是调和函数。
2. 调和函数的积分在闭合曲线上的值为0。
即对于调和函数u(x,y)和任意的闭合曲线C有∮C[∂u/∂s(ds/dt)dt]=0,其中∮C表示对曲线C 上点P到点P绕行一周的积分,s为曲线C上的弧长参数,t为弧长参数t与x轴正向的夹角。
第六讲解析函数与调和函数的关系§3.7 解析函数与调和函数的关系内容简介在§3.6我们证明了在D内的解析函数,其导数仍为解析函数,所以解析函数有任意阶导数。
本节利用这一重要结论研究解析函数与调和函数之间的关系。
.),()00:),(2222内的调和函数为则称即(方程续偏导数且满足内具有二阶连在若二元实变函数D y x y x Laplace D y x ϕϕϕϕϕ=∆=∂∂+∂∂定义 内的调和函数。
是,内解析在区域若D y x v v y x u u D y x iv y x u z f ),(),(),(),()( ==⇒+=定理证明:设f (z )=u (x ,y )+i v (x ,y )在区域D 内解析,则x v y u y v xu R C ∂∂-=∂∂∂∂=∂∂- 方程由yx v y u x y v x u ∂∂∂-=∂∂∂∂∂=∂∂222222从而有xy v y x v y x v y x u ∂∂∂=∂∂∂∴⇒22.),(),,(具有任意阶的连续导数理由解析函数高阶导数定,0 D 2222=∂∂+∂∂y u x u 内有故在0 2222=∂∂+∂∂y v x v 同理有0,0=∆=∆v u 2222y x ∂∂+∂∂≡∆其中即u 及v 在D 内满足拉普拉斯(Laplace )方程: 内的调和函数。
是,D y x v v y x u u ),(),(==∴.),(),(D ,),(的共轭调和函数为函数内构成解析函数的调和在称使得内的调和函数为设y x u y x v iv u D y x u +定义上面定理说明:.部的共轭调和函数内解析函数的虚部是实D .),(),(),(),()(,的共轭调和函数必为内在内解析在即y x u u y x v D D y x iv y x u z f =⇒+=由解析的概念得:.,,,:的共轭调和函数必为调和函数的两个方程内满足在u v v u v u v u R C D x y y x -==-.,, 一定解析内就不在则内的两个调和函数区域是任意选取的在若D iv u D v u +现在研究反过来的问题:.的共轭调和函数不是y x u y x v +=+=如 )11)()()(x y y x v u v u z y x i y x iv u z f -≠===+++=+=处处不解析平面上在( 由此,的共轭调和函数必须是方程,即还必须满足及内解析在要想使.,u v R C v u D iv u -+.),,(),,(iv u y x v R C y x u +-从而构成解析函数程可求得它的虚部方利用部已知一个解析函数的实)),((y x v 虚部)),((y x u 实部0,),(,2222=∂∂+∂∂yu x u D y x u D 则函数内的调和是区域一单连通区域设内有连续一阶偏导数在、即D xu y u ∂∂∂∂-,dy xu dx y u dy y v dx x v x u x y u y ∂∂+∂∂-=∂∂+∂∂∂∂∂∂=∂∂-∂∂ )()(且),(y x dv v ∃=)(),(),(),(00*+∂∂+∂∂-=⎰c dy x u dx y u y x v y x y x..内解析在方程满足D iv u R C xu y v y u x v +∴-∂∂=∂∂∂∂-=∂∂ .)(),,()(,),(内解析在使得式所确定的则内调和函数在单连通设D iv u z f y x v D y x u +=*定理公式不用强记!可如下推出:dy x v dx y v dy y v dx x v du R C ∂∂-∂∂=∂∂+∂∂=-方程由然后两端积分。
复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-.注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示1)模:22zx y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z ez z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。