结构力学-第9章 矩阵位移法课堂练习
- 格式:doc
- 大小:370.00 KB
- 文档页数:6
第9章矩阵位移法习题解答习题9.1是非判断题(1)矩阵位移法既可计算超静定结构,又可以计算静定结构。
()(2)矩阵位移法基本未知量的数目与位移法基本未知量的数目总是相等的。
()(3)单元刚度矩阵都具有对称性和奇异性。
()(4)在矩阵位移法中,整体分析的实质是建立各结点的平衡方程。
()(5)结构刚度矩阵与单元的编号方式有关。
()(6)原荷载与对应的等效结点荷载使结构产生相同的内力和变形。
()【解】(1)正确。
(2)错误。
位移法中某些不独立的杆端位移不计入基本未知量。
(3)错误。
不计结点线位移的连续梁单元的单刚不具奇异性。
(4)正确。
(5)错误。
结点位移分量统一编码会影响结构刚度矩阵,但单元或结点编码则不会。
(6)错误。
二者只产生相同的结点位移。
习题9.2填空题(1)矩阵位移法分析包含三个基本环节,其一是结构的,其二是分析,其三是分析。
(2)已知某单元的定位向量为[3 5 6 7 8 9]七则单元刚度系数炫应叠加到结构刚度矩阵的元素中去。
(3)将非结点荷载转换为等效结点荷载,等效的原则是。
(4)矩阵位移法中,在求解结点位移之前,主要工作是形成矩阵和_________________ 列阵。
(5)用矩阵位移法求得某结构结点2的位移为4=[. V2 ft]T=[0.8 0.3 0.5]T,单元①的始、末端结点码为3、2,单元定位向量为尸>=[0 0 0 3 4 5]T ,设单元与x轴之间的夹角为a =买,则2 尹> =O(6 )用矩阵位移法求得平面刚架某单元在单元坐标系中的杆端力为F e =[7.5 -48 -70.9 -7.5 48 -121.09]T ,则该单元的轴力心=kN。
【解】(1)离散化,单元,整体;(2)灯8;(3)结点位移相等;(4)结构刚度,综合结点荷载;(5)[0 0 0 0.3 -0.8 0.5]。
(6)-7.5o离、空的值以及K ⑴中元素妍、愚、姒的值。
【解】各刚度系数的物理意义如习题解9.3图所示。
第九章 矩阵位移法 【练习题】9-1 是非题:1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。
2、单元刚度矩阵均具有对称性和奇异性。
3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。
4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。
5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。
6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。
7、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。
8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。
9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。
10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。
11、矩阵位移法既能计算超静定结构,也能计算静定结构。
9-2 选择题:1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.21341234123412342、平面杆件结构一般情况下的单元刚度矩阵[]k 66⨯,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。
3、单元i j 在图示两种坐标系中的刚度矩阵相比:A .完全相同;B .第2、3、5、6行(列)等值异号;C .第2、5行(列)等值异号;D .第3、6行(列)等值异号。
jxi4、矩阵位移法中,结构的原始刚度方程是表示下列两组量值之间的相互关系: A .杆端力与结点位移; B .杆端力与结点力; C .结点力与结点位移; D .结点位移与杆端力 。
第9章 矩阵位移法9.1 复习笔记一、矩阵位移法的基本思路矩阵位移法又称为杆件结构的有限元法。
分析的两个基本步骤:(1)单元分析;(2)整体分析。
单元分析:建立杆端力与杆端位移间的刚度方程,形成单元刚度矩阵。
整体分析:将单元合成整体,按照刚度集成规则形成整体刚度矩阵,建立位移基本方程。
二、单元刚度矩阵(局部坐标系)进行单元分析,推导单元刚度方程和单元刚度矩阵。
单元刚度方程是指由单元杆端位移求单元杆端力的一组方程,可以用“”表示,由位移求力称为“正问题”。
相应的由力求位移称为“反问题”。
正问题的解是唯一的确定的,但是反问题则可能无解,如果有解也非唯一解。
当外部荷载为不平衡力系时,反问题无解;当外荷载为平衡力系时,反问题有解但是因为杆件除本身变形外还可有任意刚体位移,此时反问题的解不唯一。
本书暂不考虑反问题的求解。
1.一般单元图9-1所示为平面刚架中的一个等截面直杆单元.单元的两个端点采用局部编码1和2,由端点1到端点2的方向规定为杆轴的正方向,在图中用箭头标明。
F →∆e图9-1图中采用坐标系,其中轴与杆轴重合。
这坐标系称为单元坐标系或者局部坐标系。
字母、的上面都画了一横,作为局部坐标系的标志。
推导单元刚度方程时,有以下几点需要注意:重新规定正负号规则、讨论杆件单元的一般情况、采用矩阵表示形式。
在局部坐标系中,图9-2所示的位移、力分量方向为正方向。
图9-2杆件性质:长度l ,截面面积A ,截面惯性矩I ,弹性模量E ;杆端位移u 、v 、θ。
根据杆端位移可以推导出下面两组刚度方程:(9-1)x y x x y(9-2)将上述六个刚度方程列成矩阵形式:(9-3)其中就是局部坐标系下单元刚度矩阵,即为(9-4)2.单元刚度矩阵的性质 (1)单元刚度系数的意义e e ek F∆=eK代表单元杆端第j 个位移分量等于1时所引起的第i 个杆端力分量。
(2)是对称矩阵,即。
(3)一般单元的是奇异矩阵,即,因此不存在逆矩阵。
第9章 矩阵位移法习 题9-1:请给图示结构编号(同时用先处理法和后处理法)及建立坐标。
题9-1图 9-2:求图示连续梁的整体刚度矩阵。
题9-2图9-3:求图示刚架的整体刚度矩阵。
(c )(e )题9-3图9-4:求图示组合结构的整体刚度矩阵。
题9-4图9-5:求图示桁架结构的整体刚度矩阵,所有杆件的EA 均相同。
题9-5图9-6:求图示排架结构的整体刚度矩阵。
题9-6图 9-7:求图示结构的等效结点荷载,请利用结构的对称性。
1kN/m题9-7图9-8:求图示结构的等效结点荷载,请利用结构的对称性。
题9-8图9-9:求图示结构的等效结点荷载。
题9-9图9-10:求出图示结构的荷载列阵。
题9-10图9-11:求出图示结构的荷载列阵,请分别用先处理法和后处理法进行编号。
qq题9-11图9-12:求图示结构的荷载列阵,考虑轴向变形。
题9-12图9-13:求图示结构的荷载列阵。
题9-13图9-14:图示连续梁中间支座发生了下向的移动a ,请求出其整体刚度方程。
题9-14图10kN/mq9-15:请求出图示连续梁的整体刚度方程。
题9-15图9-16:求图示连续梁的整体刚度矩阵。
题9-16图9-17:图示结构温度发生了变化,请求出整体刚度方程。
杆件的EI 、EA 相同。
题9-17图9-18:图示结构温度发生了变化,请求出整体刚度方程。
题9-18图9-19:图示结构发生了支座移动,请画出结构的内力图。
00题9-19图9-20:已知图示梁B 点的B v 、B ϕ和C 点的C ϕ,请求出单元杆端力的列阵。
题9-20图9-21:求题9-3图示刚架的整体刚度矩阵,忽略轴向变形。
9-22:求题9-10图示结构的整体刚度矩阵,用后处理法编号。
9-23:求出梁的整体刚度方程,弹簧的刚度系数为k 。
题9-23图9-24:求出图示结构的整体刚度方程,忽略轴向变形,弹簧刚度系数为k 。
题9-24图L。
结构力学自测题(第八单元)矩阵位移法姓名 学号一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 )1、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵作 坐 标 变 换。
()2、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K ij = K ji ,这 可 由位 移 互 等 定 理 得 到 证 明 。
() 3、图 示 梁 结 构 刚 度 矩 阵 的 元 素 K EI l 11324=/ 。
()EI llEI 212xy M , θ附:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------l EI l EI l EI l EI lEI l EI l EI l EI l EAl EA l EI lEI l EI l EI l EI l EI l EI l EI lEA l EA 4602606120612000002604606120612000002223232223234、在 任 意 荷 载 作 用 下 ,刚 架 中 任 一 单 元 由 于 杆 端 位移 所 引 起 的 杆 端 力 计 算 公 式 为 :{}[][]{}FT K eee=δ 。
()二、选 择 题 ( 将 选 中 答 案 的 字 母 填 入 括 弧 内 )1、已 知 图 示 刚 架 各杆 EI = 常 数,当 只 考 虑 弯 曲 变 形 ,且各 杆 单 元 类 型 相 同 时 ,采 用 先 处 理 法 进 行 结 点 位 移 编 号 ,其 正 确 编 号 是 :(0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0) (1,2,0) (0,0,0) (0,0,3)(1,0,2)(0,0,0) (0,0,0) (1,0,3) (0,0,0)(0,1,2)(0,0,0) (0,3,4)A.B.C.D.2134 123 4 12 34 1 2 3 4 xyM , θ ( ) 2、平 面 杆 件 结 构 一 般 情 况 下 的 单 元 刚 度 矩 阵 []k 66⨯,就 其 性 质 而 言 ,是 :()A .非 对 称 、奇 异 矩 阵 ;B .对 称 、奇 异 矩 阵 ;C .对 称 、非 奇 异 矩 阵 ;D .非 对 称 、非 奇 异 矩 阵 。
南华大学《结构力学II》习题集(适合于大土木工程各专业方向)组编:刘华良班级:姓名:学号:建筑工程与资源环境学院道路桥梁工程教研室衡阳2005年前言本习题集取材于第九章位移法9-l 确定下列各结构的位移法未知数目,并绘出基本结构。
9-2~9-3 用位移法计算下列结构内力.并绘出其弯矩图、剪力图和轴力图。
题9-2图题9-3图9-4~9-11 用位移法绘制下列结构弯矩图。
题9-4图题9-5图题9-6图题9-7图题9-8图题9-9图题9-10图题9-11图9-12~9-15 用位移法绘制下列具有斜杆的刚架的弯矩图。
题9-12图题9-13图题9-14图题9-15图9-16~9-17 列出下列结构的位移法典型方程式,并求出所有系数和自由项。
题9-16图题9-17图9-18~9-23 用位移法绘制下列具有无限刚性杆结构的M图。
题9-18图题9-19图题9-20图题9-21图题9-22图题9-23图9-24~9-26 用位移法绘制下列刚架M图。
题9-24图题9-25图题9-26图9-27 用位移法绘制图9-27所示结构弯矩图,并求桁架杆的轴向力。
题9-27图9-28 用位移法求图9-28所示桁架各杆轴向力。
题9-28图9-29 图9-29所示为一个三角形刚架,考虑杆件的轴向变形,试写出位移法的典型方程,并求出所有系数和自由项。
题9-29图9-30~9-31 用位移法计算图示有剪力静定杆组成的刚架的M图。
题9-30图题9-31图9-32~9-41 利用对称性,用位移法求作下列结构的M图。
题9-32图题9-33图题9-34图题9-35图题9-36图题9-37图题9-38图题9-39图题9-40图题9-41图9-42~9-48 试直接按平衡条件建立位移法方程计算题9-2、9-5、9-8、9-11、9-12、9-24、9-35,并绘出M图。
题9-42图题9-43图题9-44图题9-46图题9-47图题9-48图9-49~9-52 试用位移法求作下列结构由于支座位移产生的M图。
位移法习题答案位移法的基本步骤包括:1. 选择位移函数:根据结构的边界条件和对称性,选择合适的位移函数。
2. 建立位移矩阵:将位移函数表示为位移矩阵的形式。
3. 应用位移边界条件:根据结构的固定边界条件,确定位移矩阵中的未知数。
4. 计算内力:利用位移矩阵和结构的几何关系,计算出结构的内力。
5. 验证位移法结果:通过比较位移法的结果与其他方法(如力法)的结果,验证位移法的准确性。
例题:考虑一个简支梁,长度为L,受集中力P作用于中点。
使用位移法求解梁的弯矩和剪力分布。
解答:首先,我们假设梁的位移函数为:\[ w(x) = \frac{Px(L-x)}{2EI} \]其中,\( w(x) \) 是梁在x位置的位移,\( E \) 是材料的弹性模量,\( I \) 是截面惯性矩。
接下来,根据位移函数,我们可以计算梁的弯矩和剪力:\[ M(x) = -EI \frac{d^2w}{dx^2} \]\[ V(x) = -EI \frac{dw}{dx} \]应用位移边界条件,我们可以确定位移函数中的未知数。
对于简支梁,位移在支点处为零,即:\[ w(0) = w(L) = 0 \]将位移函数代入上述条件,我们可以验证假设的位移函数满足边界条件。
最后,代入位移函数到弯矩和剪力的表达式中,我们可以得到:\[ M(x) = -\frac{P}{2} \left( \frac{L^2}{4} - x^2 \right) \]\[ V(x) = -\frac{P}{2} \left( L - 2x \right) \]通过上述计算,我们得到了梁在任意位置的弯矩和剪力分布。
结论:位移法是一种有效的结构分析方法,它通过位移函数来求解结构的内力和位移。
通过本题的解答,我们可以看到位移法在求解简支梁问题中的应用。
请注意,上述内容是一个示例答案,具体的习题答案会根据具体的题目而有所不同。
在实际应用中,需要根据具体的结构和受力情况来选择合适的位移函数和计算方法。
第9章矩阵位移法典型题
1. 用矩阵位移法计算图持续梁,并画M图,EI=常数。
图
解:
(1)成立坐标系,对单元和结点编号如图,单元刚度矩阵
单元定位向量λ①=(01)T,λ②=(12)T,λ③=(20)T
(2)将各单元刚度矩阵中的元素按单元定位向量在K中对号入座,得整体刚度矩阵
(3)持续梁的等效结点荷栽
(4)将整体刚度矩阵K和等效结点荷载P代人大体方程
(5)求杆端力并绘制弯矩图(图)。
2. 图结构,荷载只在(1),(3)杆上作用,已知(1),(3)杆在局部坐标系(杆件箭头方向)中的单元刚度矩阵均为(长度单位为m,角度单位为rad,力单位为kN)
杆件(2)的轴向刚度为EA=×l06kN,试形成结构的整体刚度矩阵。
图
解:
(1)结构的结点位移编号及局部坐标方向(杆件箭头方向)见图。
(2)单元(1),(3)的局部与整体坐标方向一致,故其在整体坐标系中的单元刚度矩阵与局部坐标系中的相同。
(3)桁架单元(2)的刚度矩阵
桁架单元只有轴向的杆端力和杆瑞位移,
(3)定位向量
单元(1):
单元(2):
单元(3):
(4)整体刚度矩阵
=
3. 求图结构整体刚度矩阵。
各标EI相同,不考轴向变形。
图
解:
(1)单元结点编号(图)
(2)单元的定位向量
(0051)T(0054)T
(5354)T(5200)T (3)单元刚度矩阵
(4)整体刚度矩阵。
位移法习题与答案位移法是结构力学中常用的一种分析方法,通过计算结构在外力作用下的位移,来求解结构的应力、应变和变形等问题。
在学习位移法时,习题与答案的练习是非常重要的,可以帮助我们加深对位移法的理解和掌握。
下面将给大家介绍一些位移法习题及其答案。
习题一:求解简支梁的弯矩分布已知一根长度为L的简支梁,受到均布载荷q作用,求解弯矩分布。
解答:首先,我们需要根据受力分析确定梁的反力。
对于简支梁,两个支座处的反力相等,且为qL/2。
接下来,我们可以利用位移法求解弯矩分布。
假设梁的弯矩分布为M(x),则根据位移法的基本原理,可以得到以下方程:d2M(x)/dx2 = -q对该方程进行两次积分,得到:M(x) = -q*x^2/2 + C1*x + C2由于梁两端是简支条件,即位移和转角为零,可以得到边界条件:M(0) = 0M(L) = 0代入上述方程,解得C1 = qL/2,C2 = -qL^2/2。
因此,弯矩分布为:M(x) = -q*x^2/2 + qL/2*x - qL^2/2习题二:求解悬臂梁的挠度已知一根长度为L的悬臂梁,受到集中力F作用在悬臂端点,求解梁的挠度。
解答:首先,我们需要根据受力分析确定梁的反力。
对于悬臂梁,端点处的反力只有一个,即为F。
接下来,我们可以利用位移法求解梁的挠度。
假设梁的挠度为δ(x),则根据位移法的基本原理,可以得到以下方程:d2δ(x)/dx2 = -F/(EI)对该方程进行两次积分,得到:δ(x) = -F*x^2/(2EI) + C1*x + C2由于梁端点处的位移为零,可以得到边界条件:δ(0) = 0dδ(x)/dx|_(x=L) = 0代入上述方程,解得C1 = 0,C2 = 0。
因此,梁的挠度为:δ(x) = -F*x^2/(2EI)习题三:求解悬臂梁的最大挠度已知一根长度为L的悬臂梁,受到均布载荷q作用,求解梁的最大挠度。
解答:首先,我们需要根据受力分析确定梁的反力。
结构力学练习题——矩阵位移法
一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 ) 1、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。
)(对 2、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有
K ij = K ji ,这 可 由 位 移 互 等 定 理 得 到 证
明 。
()错 3、图 示 梁 结 构 刚 度 矩 阵 的 元 素 K EI l 113
24=/ 。
(
)错
l
l
附:
⎥⎥⎥⎥⎥
⎥
⎥⎥⎥⎥⎥⎥⎥⎦⎤
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎣
⎡--------l EI l EI l EI l EI l
EI l EI l EI l EI l EA l EA l EI l
EI l EI l EI l EI l EI l EI l EI l
EA l EA 4602606120612000002604606120612000002
22323222323
二、选 择 题 ( 将 选 中 答 案 的 字 母 填 入 括 弧 内 )
1、已 知 图 示 刚 架 各杆 EI = 常 数,当 只 考 虑 弯 曲 变 形 ,且 各 杆 单 元 类 型 相 同
时 ,采 用 先 处 理 法 进 行 结 点 位 移 编 号 ,其 正 确 编 号 是 :A
(0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0) (1,2,0) (0,0,0) (0,0,3)
(1,0,2)
(0,0,0) (0,0,0) (1,0,3) (0,0,0)
(0,1,2)
(0,0,0) (0,3,4)
A.
B.
C.
D.
2
1
3
4 1
2
3 4 1
2 3
4 1 2 3 4
( )
2、平 面 杆 件 结 构 一 般 情 况 下 的 单 元 刚 度 矩 阵
[]k 66
⨯,就 其 性 质 而 言 ,是 :
(
)B
A .非 对 称 、奇 异 矩 阵 ;
B .对 称 、奇 异 矩 阵 ;
C .对 称 、非 奇 异 矩 阵 ;
D .非 对 称 、非 奇 异 矩 阵 。
3、单 元 i j 在 图 示 两 种 坐 标 系 中 的 刚 度 矩 阵 相 比 :B
A . 完 全 相 同 ;
B . 第 2、3、5、6 行 (列 ) 等 值 异 号 ;
C . 第 2、5 行 (列 )等 值 异 号 ;
D . 第 3、6 行 (列 ) 等 值 异 号 。
(
)
y
x
i
4、矩 阵 位 移 法 中 ,结 构 的 原 始 刚 度 方 程 是 表 示 下 列 两 组 量 值 之 间 的 相 互
关 系 :
(
)C
A .杆 端 力 与 结 点 位 移 ;
B .杆 端 力 与 结 点 力 ;
C .结 点 力 与 结 点 位 移 ;
D .结 点 位 移 与 杆 端 力 。
5、单 元 刚 度 矩 阵 中 元 素 k ij 的 物 理 意 义 是 :B
A .当 且 仅 当 δi =1 时 引 起 的 与 δj 相 应 的 杆 端 力 ;
B .当 且 仅 当 δj =1时 引 起 的 与 δi 相 应 的 杆 端 力 ;
C .当 δj =1时 引 起 的 δi 相 应 的 杆 端 力 ;
D .当 δi =1时 引 起 的 与 δj 相 应 的 杆 端 力。
()
7、用 矩 阵 位 移 法 解 图 示 结 构 时 ,已 求 得 1 端 由 杆 端 位 移 引 起 的 杆 端 力 为
{}[]T F 461--=,则 结 点 1 处 的 竖 向 反 力 Y 1 等 于 :D
A .6-;
B .-10;
C .10 ;
D .14 。
(
)
M 20kN/m
三、填 充 题 ( 将 答 案 写 在 空 格 内)
1、图 示 桁 架 结 构 刚 度 矩 阵 有 1个 元 素 ,其 数 值 等 于2EA/L。
3m
3m A
B
C D
EA
EA
EA
2、图 示 刚 架 用 两 种 方 式 进 行 结 点 编 号 ,结 构 刚 度 矩 阵 最 大 带 宽 较 小 的 是
图
B 。
35
641
2
71
234567
(a)
(b)
3、图 示 梁 结 构 刚 度 矩 阵 的 主 元 素 K K 1122== , 12I 4I 。
l
l
五、图 a 所 示 结 构 (整 体 坐 标 见 图 b ),图 中 圆 括 号 内 数 码 为 结 点 定 位 向 量 (力
和 位 移 均 按 水 平 、竖 直 、转 动 方 向 顺 序 排 列 )。
求 结 构 刚 度 矩 阵 []K 。
(不 考 虑 轴 向 变
形 )
6m
(a)
(b)
六、求 图 示 结 构 的 自 由 结 点 荷
载 列 阵 {}P 。
l
l
七、图 a 所 示 结 构 ,整 体 坐 标 见 图 b ,图 中 圆 括 号 内 数 码 为 结 点 定 位 向 量 (
力 和 位 移 均 按 水 平 、竖 直 、转 动 方 向 顺 序 排 列 )。
求 等 效 结 点 荷 载 列 阵 {}P E 。
( 不 考 虑 轴 向 变 形 )
3m 36
八、已 知 图 示 连 续 梁 结 点 位 移 列 阵 {}θ如 下 所 示 ,试 用 矩 阵 位 移 法 求 出 杆
件 23 的 杆 端 弯 矩 并 画 出 连 续 梁 的 弯 矩 图 。
设 q = 20kN/m ,23 杆 的
i =⨯⋅10106.kN cm 。
{}θ=--⎧⎨⎪⎪⎩⎪⎪⎫⎬⎪⎪⎭⎪⎪⨯-365
714572286104
....rad
6m
3m
3m
九、已 知 图 示 桁 架 的 结 点 位 移 列 阵 为
{}[]∆=--017265
04007 0 2.5677 0.0415 1.0415 1.3673 1.6092 1.6408 0 1.2084 T
..
,EA =1kN 。
试 求 杆 14 的
轴 力 。
1m
1m
矩阵位移法答案
一、 1 O 2 X 3 X
二、 1 A 2 B 3 B 4 C 5 B
6 C
7 D
三、
1、 1 、 2EA/L
2、 b
3、 i EI l
K i K i === , , 1122124 (7分 )
五、
[]K i =--⎡⎣⎢⎢⎢⎤
⎦
⎥⎥⎥ 1 0 1 8 2 0 2 413/ (10分 )
六、
{}[]
T
/ql +m -/ql -P 12202= (7分 )
七、
{}[] 2 3
422142
E T
1P =-- (7分 )
八、
M M 233242885140⎧⎨⎩⎫⎬⎭=-⎧⎨⎩⎫⎬⎭.. 42.88
51.40
90
(kN m).M
( 7分)
九、
N 1400587=-.kN (7分 )。