小学奥数教程:环形跑道问题_全国通用(含答案)
- 格式:doc
- 大小:1.06 MB
- 文档页数:20
环形跑道问题练习题一.夯实基础:1.一个圆形操场跑道的周长是 500 米,两个学生同时同地背向而行.黄莺每分钟走 66 米,麻雀每分钟走 59 米.经过几分钟才能相遇?2.一条环形跑道长 400 米,甲骑自行车每分钟骑 450 米,乙跑步每分钟 250 米,两人同时从同地同向出发,经过多少分钟两人相遇?3.两名运动员在湖的周围环形道上练习长跑.甲每分钟跑 250 米,乙每分钟跑 200 米,两人同时同地同向出发,经过 45 分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?4.一条环形跑道长 400 米,小青小琴两人在起点同时同向出发,8分钟后两人第一次相遇,已知小青每分钟跑 260 米,请问小琴速度是多少?5.周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走 55 米,周老师每分钟走65 米。
已知林荫道周长是480 米,他们从同一地点同时背向而行。
在他们第10 次相遇后,王老师再走米就回到出发点。
二.拓展提高:6.在 400 米的环行跑道上,A,B 两点相距 100 米。
甲、乙两人分别从 A,B 两点同时出发,按逆时针方向跑步。
甲甲每秒跑 5 米,乙每秒跑 4 米,每人每跑 100 米,都要停10 秒钟。
那么甲追上乙需要时间是多少秒?7.琳琳在 450 米长的环形跑道上跑一圈,已知她前一半时间每秒跑 5 米,后一半时间每秒跑4 米,那么她的后一半路程跑了多少秒?8.下图中有两个圆只有一个公共点 A,大圆直径 48 厘米,小圆直径 30 厘米。
两只甲虫同时从 A 点出发,按箭头所指的方向以相同速度分别沿两个圆爬行。
问:当小圆上甲虫爬了几圈时,两只甲虫首次相距最远?9.甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用 24 秒同时回到原地。
求甲原来的速度。
A1432B三. 超常挑战10. 如图所示,甲沿长为400 米大圆的跑道顺时针跑步,乙则沿两个小圆八字形跑步(图中给出跑动路线的次序:1- 2 - 3- 4 -1-)。
1、 掌握如下两个关系:(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点直径两端 同向:路程差nS nS + 相对(反向):路程和nS模块一、常规的环形跑道问题【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟).【答案】4分钟【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走 米就回到出发点。
【考点】行程问题之环形跑道 【难度】2星 【题型】填空【关键词】希望杯,4年级,1试【解析】 几分钟相遇一次:480÷(55+65)=4(分钟)知识精讲 教学目标环形跑道问题10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。
环形跑道问题练习题(附答案和详解)1.在400M的环形跑道上,A、B两点相距100M,。
甲、乙两人分别从A、B两点同时出发,按照逆时针方向跑步,甲每秒跑5M,乙每秒跑4M,每人每跑100M,都要停10秒钟。
那么,甲追上乙需要的时间是多少秒?2.小明在360M的环形跑道上跑一圈,已知他前半时间每秒跑5M,后半时间每秒跑4M,为他后半路程用了多少时间?3.林琳在450吗长的环形跑道上跑一圈,已知她前一半时间每秒跑5M,后一半时间每秒跑4M,那么她的后一半路程跑了多少秒4.小君在360M长的环形跑道上跑一圈。
已知他前一半时间每秒跑5M,后一半时间每秒跑4 M。
那么小君后一半路程用了多少秒?5.小明在420M长的环形跑道上跑了一圈,已知他前一半时间每秒跑8M,后一半时间每秒跑6M.求他后一半路程用了多少时间?6.二人沿一周长400M的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。
问第十五次击掌时,甲走多长时间乙走多少路程?7、乙两车同时从同一点出发,沿周长6千M的圆形跑道以相反的方向行驶.甲车每小时行驶65千M,乙车每小时行驶55千M.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上乙车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离点有多少M?(每一次甲车追上乙车也看作一次相遇)答案:1、答案:假设没有休息那么100/(5—4)=100秒钟在100/5=20秒 100/20-1=4(次)100+4*10=140秒2、答案:x÷4=(360-x)÷5×=160(360÷2-160)÷5+160÷4=44分3、答案:设总时间为X,则前一半的时间为X/2,后一半时间同样为X/2X/2*5+X/2*4=360X=80总共跑了80秒前40秒每秒跑5M,40秒后跑了200M后40秒每秒跑4M,40秒后跑了160M后一半的路程为360/2=180M后一半的路程用的时间为(200-180)/5+40=44秒4、答案:设时间X秒 5X=360-4X 9X=360 X=40 后一半时间的路程=40*4=160M 后一半路程=360/2=180M 后一半路程用每秒跑5M路程=180-160=20M 后一半路程用每秒跑5M时间=20/ 5=4秒后一半路程时间=4+40=44秒答:后一半路程用了44秒5、答案:设总用时X秒。
1、 掌握如下两个关系: (1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点 直径两端 同向:路程差nS nS +0.5S 相对(反向):路程和nS nS-0.5S模块一、常规的环形跑道问题【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟). 【答案】4分钟【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走 米就回到出发点。
【考点】行程问题之环形跑道 【难度】2星 【题型】填空【关键词】希望杯,4年级,1试【解析】 几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)知识精讲 教学目标环形跑道问题王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。
环形跑道问题练习题(附答案和详解)1.在400米的环形跑道上,A、B两点相距100米,。
甲、乙两人分别从A、B两点同时出发,按照逆时针方向跑步,甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟。
那么,甲追上乙需要的时间是多少秒?2.小明在360米的环形跑道上跑一圈,已知他前半时间每秒跑5米,后半时间每秒跑4米,为他后半路程用了多少时间?3.林琳在450吗长的环形跑道上跑一圈,已知她前一半时间每秒跑5米,后一半时间每秒跑4米,那么她的后一半路程跑了多少秒4.小君在360米长的环形跑道上跑一圈。
已知他前一半时间每秒跑5米,后一半时间每秒跑4米。
那么小君后一半路程用了多少秒?5.小明在420米长的环形跑道上跑了一圈,已知他前一半时间每秒跑8米,后一半时间每秒跑6米.求他后一半路程用了多少时间?6.二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。
问第十五次击掌时,甲走多长时间乙走多少路程?7、乙两车同时从同一点出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上乙车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离点有多少米?(每一次甲车追上乙车也看作一次相遇)答案:1、答案:假设没有休息那么100/(5—4)=100秒钟在100/5=20秒 100/20-1=4(次)100+4*10=140秒2、答案:x÷4=(360-x)÷5×=160(360÷2-160)÷5+160÷4=44分3、答案:设总时间为X,则前一半的时间为X/2,后一半时间同样为X/2X/2*5+X/2*4=360X=80总共跑了80秒前40秒每秒跑5米,40秒后跑了200米后40秒每秒跑4米,40秒后跑了160米后一半的路程为360/2=180米后一半的路程用的时间为(200-180)/5+40=44秒4、答案:设时间X秒 5X=360-4X 9X=360 X=40 后一半时间的路程=40*4=160米后一半路程=360/2=180米后一半路程用每秒跑5米路程=180-160=20米后一半路程用每秒跑5米时间=20/5=4秒后一半路程时间=4+40=44秒答:后一半路程用了44秒5、答案:设总用时X秒。
小学奥数行程问题环形跑道问题解析小学奥数行程问题环形跑道问题解析海阔凭你跃,天高任你飞。
愿你信心满满,尽展聪明才智;妙笔生花,谱下锦绣第几篇。
学习的敌人是自己的知足,要使自己学一点东西,必需从不自满开始。
以下是小编为大家整理的《小学奥数行程问题环形跑道问题解析【三篇】》供您查阅。
【第一篇:变相环形跑道】【第二篇:正方形问题】甲、乙两人从周长为1600米的正方形水池ABCD相对的两个顶点A,C同时出发绕水池的边沿A---B---C---D----A的方向行走。
甲的'速度是每分钟50米,乙的速度是每分钟46米则甲、乙第一次在同一边上行走,是发生在出发后的第多少分钟?第一次在同一边上行走了多少分钟?解析:要使两人在同一边行走,甲乙相距必须小于一条边,并且甲要迈过顶点。
甲追乙1600÷4=400米,至少需要400÷(50-46)=100分钟,此时甲行了50×100=5000米,5000÷400=12条边……200米。
因此还要行200÷50=4分钟,即出发后100+4=104分钟两人第一次在同一边上行走。
此时甲乙相距400×2-104×(50-46)=384米,乙行完这条边还有16米,因此第一次在同一边上走了16÷46=8/23分钟。
【第三篇:环形跑道多人行程】设A,B,C三人沿同一方向,以一定的速度绕校园一周的时间分别是6、7、11分。
由开始点A出发后,B比A晚1分钟出发,C比B 晚5分钟出发,那么A,B,C第一次同时通过开始出发的地点是在A 出发后几分钟?解析:从条件可以知道,C出发时,A刚好行了5+1=6分钟,即一圈,也就是说,A和C再次同时经过出发点时,是6×11=66的倍数分钟后。
由于B还需要7-5=2分钟才能通过,说明要满足66的倍数除以7余2分钟。
当66×3=198分钟时,198÷7=28……2分钟,满足条件。
【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。
以下是为⼤家整理的《六年级奥数试题及答案环形跑道问题》供您查阅。
【⼀:环形跑道】 难度:⾼难度甲、⼄⼆⼈在环形跑道上跑步,甲的速度是每秒跑4⽶,⼄的速度是每秒跑4.8⽶,甲跑__________圈后,⼄可超过甲⼀圈.讲解:【⼆:环形跑道问题】⼀个圆的周长为1.26⽶,两只蚂蚁从⼀条直径的两端同时出发沿圆周相向爬⾏.这两只蚂蚁每秒分别爬⾏5.5厘⽶和3.5厘⽶.它们每爬⾏1秒,3秒,5秒…(连续的奇数),就调头爬⾏.那么,它们相遇时已爬⾏的时间是多少秒?考点:环形跑道问题.分析:道题难在蚂蚁爬⾏的⽅向不断地发⽣变化,那么如果这两只蚂蚁都不调头爬⾏,相遇时它们已经爬⾏了多长时间呢?⾮常简单,由于半圆周长为:1.26÷2=0.63⽶=63厘⽶,所以可列式为:1.26÷2÷(5.5+3.5)=7(秒);我们发现蚂蚁爬⾏⽅向的变化是有规律可循的,它们每爬⾏1秒、3秒、5秒、…(连续的奇数)就调头爬⾏.每只蚂蚁先向前爬1秒,然后调头爬3秒,再调头爬5秒,这时相当于在向前爬1秒的基础上⼜向前爬⾏了2秒;同理,接着向后爬7秒,再向前爬9秒,再向后爬11秒,再向前爬13秒,这就相当于⼀共向前爬⾏了1+2+2+2=7(秒),正好相遇.解答解:它们相遇时应是⾏了半个圆周,半个圆周长为:1.26÷2=0.63(⽶)=63(厘⽶);如不调头,它们相遇时间为:63÷(3.5+5.5)=7(秒);根据它们调头再返回的规律可知:由于1-3+5-7+9-11+13=7(秒),所以13+11+9+7+5+3+1=49(秒)相遇.答:它们相遇时已爬⾏的时间是49秒.点评:完成本题关健是发现蚂蚁爬⾏⽅向的变化是有规律可循.【三:环形跑道相遇】。
环形跑道问题练习题(附答案和详解)1.在400M的环形跑道上,A、B两点相距100M,。
甲、乙两人分别从A、B两点同时出发,按照逆时针方向跑步,甲每秒跑5M,乙每秒跑4M,每人每跑100M,都要停10秒钟。
那么,甲追上乙需要的时间是多少秒?2.小明在360M的环形跑道上跑一圈,已知他前半时间每秒跑5M,后半时间每秒跑4M,为他后半路程用了多少时间?3.林琳在450吗长的环形跑道上跑一圈,已知她前一半时间每秒跑5M,后一半时间每秒跑4M,那么她的后一半路程跑了多少秒4.小君在360M长的环形跑道上跑一圈。
已知他前一半时间每秒跑5M,后一半时间每秒跑4 M。
那么小君后一半路程用了多少秒?5.小明在420M长的环形跑道上跑了一圈,已知他前一半时间每秒跑8M,后一半时间每秒跑6M.求他后一半路程用了多少时间?6.二人沿一周长400M的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。
问第十五次击掌时,甲走多长时间乙走多少路程?7、乙两车同时从同一点出发,沿周长6千M的圆形跑道以相反的方向行驶.甲车每小时行驶65千M,乙车每小时行驶55千M.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上乙车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离点有多少M?(每一次甲车追上乙车也看作一次相遇)答案:1、答案:假设没有休息那么100/(5—4)=100秒钟在100/5=20秒 100/20-1=4(次)100+4*10=140秒2、答案:x÷4=(360-x)÷5×=160(360÷2-160)÷5+160÷4=44分3、答案:设总时间为X,则前一半的时间为X/2,后一半时间同样为X/2X/2*5+X/2*4=360X=80总共跑了80秒前40秒每秒跑5M,40秒后跑了200M后40秒每秒跑4M,40秒后跑了160M后一半的路程为360/2=180M后一半的路程用的时间为(200-180)/5+40=44秒4、答案:设时间X秒 5X=360-4X 9X=360 X=40 后一半时间的路程=40*4=160M 后一半路程=360/2=180M 后一半路程用每秒跑5M路程=180-160=20M 后一半路程用每秒跑5M时间=20/ 5=4秒后一半路程时间=4+40=44秒答:后一半路程用了44秒5、答案:设总用时X秒。
1、 掌握如下两个关系:(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点直径两端 同向:路程差nS nS +0.5S 相对(反向):路程和nS nS-0.5S模块一、常规的环形跑道问题【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟).【答案】4分钟【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走 米就回到出发点。
【考点】行程问题之环形跑道 【难度】2星 【题型】填空【关键词】希望杯,4年级,1试【解析】 几分钟相遇一次:480÷(55+65)=4(分钟)知识精讲 教学目标环形跑道问题10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。
1、 掌握如下两个关系: (1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点 直径两端 同向:路程差nS nS +0.5S 相对(反向):路程和nS nS-0.5S模块一、常规的环形跑道问题【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟). 【答案】4分钟【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走 米就回到出发点。
【考点】行程问题之环形跑道 【难度】2星 【题型】填空【关键词】希望杯,4年级,1试【解析】 几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)知识精讲 教学目标环形跑道问题王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。
【答案】200米【例 2】 上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?【考点】行程问题之环形跑道 【难度】2星 【题型】解答【关键词】春蕾杯,小学数学邀请赛,决赛【解析】 第一次追上时,小亚多跑了一圈,所以需要300(64)150÷-=秒,小亚跑了6150900⨯=(米)。
小胖跑了4150600⨯=(米);第一次追上时,小胖跑了2圈,小亚跑了3圈,所以第二次追上时,小胖跑4圈,小亚跑6圈。
【答案】小胖跑4圈,小亚跑6圈【巩固】 小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.⑴小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?⑵小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 ⑴两人相遇,也就是合起来跑了一个周长的行程.小张的速度是5001200300÷-=(米/分).⑵在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是:500(300200)5÷-=(分).30055003⨯÷=(圈).【答案】⑴300米/分 ⑵3圈【巩固】 一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 4004502502÷-=()(分钟).【答案】2分钟【巩固】 小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第三次超过正南需要多少分钟?【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 小新第一次超过正南是比正南多跑了一圈,根据S v t =差差,可知小新第一次超过正南需要:80025021020÷-=()(分钟),第三次超过正南是比正南多跑了三圈,需要800325021060⨯÷-=()(分钟).【答案】60分钟【巩固】 幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 这是一道封闭路线上的追及问题,冬冬与晶晶两人同时同地起跑,方向一致.因此,当冬冬第一次追上晶晶时,他比晶晶多跑的路程恰是环形跑道的一个周长(200米),又知道了冬冬和晶晶的速度,于是,根据追及问题的基本关系就可求出追及时间以及他们各自所走的路程.①冬冬第一次追上晶晶所需要的时间:20064100÷-=()(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6100600⨯=(米)③晶晶第一次被追上时所跑的路程:4100400⨯=(米)④冬冬第二次追上晶晶时所跑的圈数:60022006⨯÷=()(圈)⑤晶晶第2次被追上时所跑的圈数:40022004⨯÷=()(圈)【答案】4圈【巩固】 小明和小刚清晨来到学校操场练习跑步,学校操场是400米的环形跑道,小刚对小明说:“咱们比比看谁跑的快”,于是两人同时同向起跑,结果10分钟后小明第一次从背后追上小刚,同学们一定知道谁跑得快了,小明的速度是每分钟跑140米,那么如果小明第3次从背后追上小刚时,小刚一共跑了米.【考点】行程问题之环形跑道【难度】2星【题型】填空【关键词】学而思杯,4年级【解析】140104001000⨯=米。
⨯-=米,100033000【答案】3000米【巩固】如图1,有一条长方形跑道,甲从A点出发,乙从C点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米。
当甲第一次追上乙时,甲跑了圈。
【考点】行程问题之环形跑道【难度】2星【题型】填空【关键词】希望杯,4年级,1试【解析】(10+6)÷(5-4.5)=32秒,甲跑了5×32÷32=5圈【答案】5圈【例 3】两名运动员在湖的周围环形道上练习长跑.甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?【考点】行程问题之环形跑道【难度】2星【题型】解答【解析】在封闭的环形道上同向运动属追及问题,反向运动属相遇问题.同地出发,其实追及路程或相隔距离就是环形道一周的长.这道题的解题关键就是先求出环形道一周的长度.环形道一周的长度可根据两人同向出发,45分钟后甲追上乙,由追及问题,两人速度差为:25020050-=(米/分),所以路程差为:50452250⨯=(米),即环形道一圈的长度为2250米.所以反向出发的相遇时间为:22502502005()(分钟).÷+=【答案】5分钟【巩固】两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
如果同向而行,几秒后两人再次相遇【考点】行程问题之环形跑道【难度】2星【题型】解答【解析】(4+3)×45=315米——环形跑道的长(相遇问题求解)315÷(4-3)=315秒——(追及问题求解)【答案】315秒【巩固】一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇【考点】行程问题之环形跑道【难度】2星【题型】解答【解析】小青每分钟比小兰多跑50米一圈是400米400/50=8所以跑8分钟【答案】8分钟【巩固】甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?【考点】行程问题之环形跑道【难度】2星【题型】解答【解析】176【答案】176【例 4】在300米的环形跑道上,田奇和王强同学同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?【考点】行程问题之环形跑道【难度】2星【题型】解答【解析】同向而跑,这实质是快追慢.起跑后,由于两人速度的差异,造成两人路程上的差异,随着时间的增长,两人间的距离不断拉大,到两人相距环形跑道的半圈时,相距最大.接着,两人的距离又逐渐缩小,直到快的追上慢的,此时快的比慢的多跑了一圈.背向而跑即所谓的相遇问题,数量关系为:路程和÷速度和=相遇时间.同向而行2分30秒相遇,2分30秒=150秒,两个人的速度和为:300150=2÷(米/秒),背向而跑则半分钟即30秒相遇,所以两个人的速度差为:30030=10÷(米/秒).两人的速度分别为:10224-÷=()(米/秒),1046-=(米/秒)【答案】6米/秒【巩固】在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?【考点】行程问题之环形跑道【难度】2星【题型】解答【解析】甲乙的速度和为:4004010÷=(米/秒),甲乙的速度差为:4002002÷=(米/秒),甲的速度为:10226+÷=()(米/秒),乙的速度为:10224-÷=()(米/秒).【答案】4米/秒【例 5】周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走米就回到出发点。
【考点】行程问题之环形跑道【难度】2星【题型】解答【解析】两人每共走1圈相遇1次,用时480÷(55+60)=4(分),到第10次相遇共用40分钟,王老师共走了。
55×40=2200(米),要走到出发点还需走,480×5-2200=200(米)【答案】200米【巩固】在周长为200米的圆形跑道—条直径的两端,甲、乙两人分别以6米/秒,5米/秒的骑车速度同时同向出发,沿跑道行驶。
问:16分钟内,甲追上乙多少次?【考点】行程问题之环形跑道【难度】2星【题型】解答【关键词】华杯赛,初赛【解析】甲、乙二人第一次相遇时,一共走过的路程是2002=100(米).所需要的时间是10011(秒)以后,两人每隔2002(秒)相遇一次因为100601611120011⨯-+=53.3,16分钟内二人相遇53次.【答案】53次【巩固】在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔4分钟相遇一次;如果两人从同处同向同时跑,每隔20分钟相遇一次,已知环形跑道的长度是1600米,那么两人的速度分别是多少?【考点】行程问题之环形跑道【难度】2星【题型】解答【解析】两人反向沿环形跑道跑步时,每隔4分钟相遇一次,即两人4分钟共跑完一圈;当两人同向跑步时,每20分钟相遇一次,即其中的一人比另一人多跑一圈需要20分钟.两人速度和为:16004400÷=(米/分),两人速度差为:16002080÷=(米/分),所以两人速度分别为:400802240+÷=()(米/分),400240160-=(米/分)【答案】160米/分【例 6】甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时甲在乙后面,出发后6分甲第一次超过乙,22分时甲第二次超过乙。