学而思四年级第七讲(环形跑道)
- 格式:pdf
- 大小:161.09 KB
- 文档页数:4
第七讲环形跑道问题【尖子班学案1】成才小学有一条200米长的环形跑道,包包昊昊同时从起跑线起跑包包每秒钟跑6米,昊昊每秒钟跑4米,问包包第一次追上昊昊时两人各跑了多少米?第一次追上昊昊时两人各跑了多少圈?分析:1、包包和昊昊同时从起跑线起跑2、包包追上昊昊多跑一周200米,需用时200÷(6-4)=100(秒)因此,追上昊昊时包包跑了6×100=600米,600÷200=3(圈),昊昊跑了4×100=400米,400÷200=2(圈).【尖子班学案2】分析:已知1、湖的周长300米,黑猫速度5米/秒,白猫速度7米/秒2、俩猫同时同地背向而行(相遇问题)3、距离和=300米,速度和=5+7=12(米)因此,俩猫第一次相遇的时间=300÷12=25(秒)2分钟=120秒,120秒内相遇次数为:120÷25=4(次) (20)【尖子班学案3】分析:已知1、跑道周长=400米,周长上A(右)、B(左)两点100米2、涛涛在A 点,昊昊在B 点,俩人同时相背而行,可知相遇时俩人的距离和为 400-100=300米3、相遇后涛涛继续前行,而昊昊转身回返(即与涛涛同向),当 涛涛回到原地A 点时,昊昊也同时到原地B 点。
由此可知,昊昊来、回走的距 离相同,那么涛涛从A 点出发到与昊昊相遇和相遇后回到A 点所走的距离也相同。
4、涛涛两次共走了一周(400米),则每次走半周200米,而昊昊每次走300-200=100米。
因此,涛涛走的速度是昊昊的2倍5、涛涛再次追上昊昊时,比昊昊多走300米,那么涛涛走了300×2=600米 因此一共走了400+600=1000(米)【尖子班学案4】分析:1、已知a 、b 、c 三人同时从A 点出发,a 、b 同向逆时而行,c 顺时而行。
a 的速度为80米/分b 的速度为65米/分,他们的速度为80-65=15(米/分)2、20分钟后c 与a 在C 点相遇,而b 刚走到B 点,此时a 、b 俩人B ADCa bc的距离差=BC=15×20=300(米)3、又过2分钟,c与b在D点相遇,在2分钟时间b、c俩人相遇的距离和为BC的长度=300米,则可知c与b相遇的速度和=300÷2=150(米/分)。
1、 掌握如下两个关系:(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点直径两端 同向:路程差nS nS + 相对(反向):路程和nS模块一、常规的环形跑道问题【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟).【答案】4分钟【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走 米就回到出发点。
【考点】行程问题之环形跑道 【难度】2星 【题型】填空【关键词】希望杯,4年级,1试【解析】 几分钟相遇一次:480÷(55+65)=4(分钟)知识精讲 教学目标环形跑道问题10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。
环形跑道(上)佳佳和海海在周长为400 米的环形跑道上进行万米长跑。
佳佳的速度是40 米 /分,海海的速度是 60 米 /分。
⑴佳佳和海海同时从同一地点出发反向跑步,两人几分钟后第一次相遇?再过几分钟后两人第二次相遇?⑵佳佳和海海同时从同一地点出发,同一方向跑步,海海跑几分钟能第一次追上佳佳?再过几分钟能第二次追上佳佳?一、基础环形跑道(★★★ )巍巍、铮铮两人骑自行车从环形公路上同一地点同时出发,背向而行。
这条公路长2400 米,巍巍骑一圈需要 10 分钟。
如果第一次相遇时巍巍骑了1440 米。
请问:⑴巍巍的速度是多少米/分?⑵出发到第一次相遇用时多少分钟?⑶铮铮骑一圈需要多少分钟?⑷再过多久他们第二次相遇?(★★★ )在周长为 220 米的圆形跑道的一条直径的两端,海海、佳佳二人骑自行车分别以 6 米 / 秒和 5 米/ 秒的速度同时相向出发 (即一个顺时针一个逆时针 ),沿跑道行驶,则 210 秒内海海佳佳相遇几次?(★★★ )佳佳和海海在操场上比赛跑步,海海每分钟跑26 米,佳佳每分钟跑21 米,一圈跑道长50米,他们同时从起跑点出发,那么海海第四次超过佳佳需要多少分钟?(★★★★ )在 400 米的环形跑道上,佳佳、海海两人分别从A、B 两地同时出发,同向而行。
4 分钟后,海海第一次追上佳佳,又经过10 分钟海海第二次追上佳佳。
已知海海的速度是每分钟180米,那么佳佳的速度是多少?A、 B 两地相距多少米?(★★★★ )海海、佳佳在湖的周围环形道上练习长跑,海海每分钟跑250 米,佳佳每分钟跑200 米,两人同时同地同向出发,经过 45 分钟海海追上佳佳;如果两人同时同地反向出发,经过多少分钟两人相遇?二、多次相遇【你还记得吗?】(中环杯试题改编)如图 (详见视频 ),A、 B 是一条道路的两端点,甲在 A 点,乙在 B 点,两人同时出发,相向而行。
他们在离 A 点 100 米的 C 点第一次相遇。
第七讲环形跑道问题一.知识点总结基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定运动过程中的位置和方向。
相遇问题(相向):相遇时间=路程和÷速度和追及问题(同向):追及时间=路程差÷速度差注:不只是追及问题中我们用路程差÷速度差=追及时间,实际在很多两人同时行进一段时间,不同的速度必然会造成路程不同,我们都可以用这个公式:路程差÷速度差=所行时间。
环形跑道问题,从同一地点出发,如果是相向而行,则每相遇一次合走一圈(每隔第一次相遇时间就相遇一次);第几次相遇就合走几圈;如果是同向而行,则每多跑一圈就追上一次(每隔第一次追及时间就追上一次).第几次追上就多跑几圈。
这个等量关系往往成为我们解决问题的关键。
二.做题方法:(1)审题:看题目有几个人或物参与;看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后”就是从开始计时看地点是指是同地还是两地甚至更多。
看方向是同向、背向还是相向看事件指的是结果是相遇还是追及相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助,一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断。
追击问题中一个重要环节就是确定追上地点,从而找到路程差。
比如“用10秒钟快比慢多跑100米”我们立刻知道快慢的速度差。
这个是追击问题经常用到的,同过路程差求速度差(2)简单题利用公式(3)复杂题,尤其是多人多次相遇,一定要画路径图,即怎么走的线路画出来。
相遇问题就找路程和,追击问题就找路程差三.例题解析1. 直接利用公式型竞赛班例题1(尖子班例题1):在300米的环形跑道上,如果同向而跑快者2分30秒追上慢者,如果背向而跑两者半分钟相遇,求两人的速度。
高新杰解析:注意如果题目没有第几次追上或相遇,都默认为是第一次追上或相遇。
“第几次追上就多跑几圈”,快者第一次追上慢者,就是比慢者多跑一圈,即用2分30秒比慢者多跑300米,那么快比慢1秒钟多跑(速度差):300÷150=2米“第几次相遇就合跑几圈”,第一次相遇就合跑一圈,即用半分钟合跑300米,1秒钟两人合跑(速度和):300÷30=10米慢者:(10-2)÷2=4米/秒快者:4+2=6米/秒“和差算法”:小的数=(和-差)÷2 大的数=(和+差)÷2竞赛班学案1:在环形跑道上,两人背靠背跑,每隔4分钟相遇一次:同向跑每隔20分钟相遇一次,已知环形跑道周长1600米,求两人的速度?解析:两人速度差1600÷20=80米/分两人速度和1600÷4=400米/分慢者:(400-80)÷2=160米/分快者:160+80=240米/分竞赛班例题3:幸福村小学有一条长200米的环形跑道,铮铮和包包同时从起跑线起跑,铮铮每秒钟跑6米,包包每秒钟跑4米,问铮铮第一次追上包包时两人各跑多少米,第2次追上包包时两人各跑多少圈?解析:(1)铮铮第一次追上包包,总共比包包多跑一圈,而1秒钟铮铮比包包多跑6-4=2米,那么得有多少秒能多跑一圈200你呢?200÷(6-4)=100秒注:熟了之后直接用公式路程差÷速度差=所行时间铮铮:6×100=600米包包:4×100=400米或600-200=400米(2)笨方法:铮铮第二次追上包包,总共比包包多跑二圈,而1秒钟铮铮比包包多跑6-4=2米,那么得有多少秒能多跑二圈400你呢?400÷(6-4)=200秒。
本讲将之前所接触过的环形跑道、火车过桥以及流水行船这几类行程问题与相遇追及结合起来。
一、环形跑道中的相遇追及在周长为600米的圆形场地的一条直径的两端,艾迪从A 点,薇儿从B 点同时骑车出发,相向而行,两人第二次恰于A 点相遇,求两人第一次相遇的地点。
【详解】两人先从AB 同时出发相向而行,第一次相遇在AB 之间某一点,第二次相遇则在A 点,我们跳出来看,相遇两次,两人所用时间是相同的,而艾迪共行了1圈,薇儿共行了0.5圈,由此可知道艾迪的速度是薇儿速度的2倍。
所以在第一次相遇时,艾迪所行路程是薇儿的2倍,即行了:600232200÷÷⨯=米,因而第一次相遇地点距离A 点200米。
二、火车过桥(其实主要是过人)中的相遇与追及小白沿着铁轨旁的小路散步,迎面而来一列长98米的火车,若小白速度为1米/秒,火车从车头到车尾经过他身边共用了7秒,求火车速度。
【详解】火车过人的相遇追及中,路程和、路程差均是车长,此处是一个相遇问题,那么路程和就是98米,又知道经过身边用7秒,那么我们马上可以求出速度和: 98714m s ÷= 从而求出火车的速度:14113m s -=练习2 练习1相遇与追及综合三、流水行船中的相遇与追迹在流水行船中,水速不会改变相遇与追及的时间,改变的是地点。
某河上下两港相距80千米,每天定时有甲乙两艘船速相等的客轮从两港相向而行,甲船顺水每小时行12千米,乙船逆水每小时行8千米,这天甲船在出发时,从船上掉下一物,此物顺水漂流而下,当甲乙两船相遇时,此物距相遇地点有多远?【详解】题目所说两船速度相等,顺逆水的速度均有,于是可以先求出船速:()128210km h +÷=,顺便可以求出水速:12102km h -=出发的同时掉下一物顺水而下,甲乙相遇用时,也就是该物漂流用时,因而可求出甲乙相遇用时:()801284h ÷+= 物体漂流距离:248km h ⨯= 甲相遇时共行:12448km h ⨯= 两者之差:48840km h -=练习3。
行程问题之环形跑道精讲行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位。
行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。
每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程 = 速度×时间2. 相遇问题:路程和 = 速度和×时间3. 追击问题:路程差 = 速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环形跑道:同相向而行的等量关系:乙程-甲程=跑道长,背向而行的等量关系:乙程+甲程=跑道长。
例有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。
第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。
1、在一个圆形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到B点,又过8分钟两人再次相遇,甲、乙环形一周各需多少分钟?解:将全部路程看作单位1第一次相遇后,再一次相遇,行驶的路程是1那么相遇时间=4+8=12分钟甲乙的速度和=1/12也就是每分钟甲乙行驶全程的1/126分钟行驶全程的1/12×6=1/2也就是说AB的距离是1/2那么6+4=10分钟甲到达B,所以甲的速度(1/2)/10=1/20甲环形一周需要1/(1/20)=20分钟乙的速度=1/12-1/20=1/30乙行驶全程需要1/(1/30)=30分钟2、图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在 AB上一点N处相遇.求解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个"相遇",解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.设汽车行驶CD所需时间是1.根据"走同样距离,时间与速度成反比",可得出分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18.从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与 P→C→B所用时间相等.PC上所需时间-PD上所需时间=DA所需时间-CB所需时间=18-12=6.而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据"和差"计算得PC上所需时间是(24+6)÷2=15,PD上所需时间是24-15=9.现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有BN上所需时间-AN上所需时间=P→D→A所需时间-CB所需时间=(9+18)-12= 15.BN上所需时间+AN上所需时间=AB上所需时间=16.立即可求BN上所需时间是15.5,AN所需时间是0.5.从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些.3、一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置?解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米0.30÷(5-3)=15(秒).因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要90÷(5-3)=45(秒).B与C到达同一位置,出发后的秒数是15,,105,150,195,……再看看A与B什么时候到达同一位置.第一次是出发后30÷(10-5)=6(秒),以后再要到达同一位置是A追上B一圈.需要90÷(10-5)=18(秒),A与B到达同一位置,出发后的秒数是6,24,42,,78,96,…对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.请思考, 3只爬虫第二次到达同一位置是出发后多少秒?4、绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇?解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.出发后2小时10分小张已走了此时两人相距24-(8+11)=5(千米).由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是5÷(4+6)=0.5(小时).2小时10分再加上半小时是2小时40分.答:他们相遇时是出发后2小时40分.5、甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10(千米).小王已走了 6+2=8(千米).因此,他们的速度分别是小张10÷2=5(千米/小时),小王8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.7、如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是80×3=240(米).240-60=180(米).180×2=360(米).答:这个圆的周长是360米.小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是18 0米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?解:(1 )75秒-1.25分.两人相遇,也就是合起来跑了一个周长的行程.小张的速度是500÷1.25-180=220(米/分).8、乙两车同时从同一点出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上乙车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离点有多少米?(每一次甲车追上乙车也看作一次相遇)解析:第一次是一个相遇过程,相遇时间为:6÷(65+55)=0.05 小时,相遇地点距离A点:55×0.05=2.75千米.然后乙车调头,成为追及过程,追及时间为:6÷(65-55)=0.6 小时,乙车在此过程中走的路程为:55×0.6=33 千米,即5圈又3千米,那么这时距离A点3-2.75=0.25 千米.此时甲车调头,又成为相遇过程,同样方法可计算出相遇地点距离A点0.25+2.75=3千米,然后乙车掉头,成为追及过程,根据上面的计算,乙车又要走5圈又3千米,所以此时两车又重新回到了A点,并且行驶的方向与最开始相同.所以,每4次相遇为一个周期,而11÷4=2…3,所以第11次相遇的地点与第3次相遇的地点是相同的,与A点的距离是3000米.。
行程问题之环形跑道精讲行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位。
行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。
每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程 = 速度×时间2. 相遇问题:路程和 = 速度和×时间3. 追击问题:路程差 = 速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环形跑道:同相向而行的等量关系:乙程-甲程=跑道长,背向而行的等量关系:乙程+甲程=跑道长。
例有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。
第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。
1、在一个圆形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到B点,又过8分钟两人再次相遇,甲、乙环形一周各需多少分钟?解:将全部路程看作单位1第一次相遇后,再一次相遇,行驶的路程是1那么相遇时间=4+8=12分钟甲乙的速度和=1/12也就是每分钟甲乙行驶全程的1/126分钟行驶全程的1/12×6=1/2也就是说AB的距离是1/2那么6+4=10分钟甲到达B,所以甲的速度(1/2)/10=1/20甲环形一周需要1/(1/20)=20分钟乙的速度=1/12-1/20=1/30乙行驶全程需要1/(1/30)=30分钟2、图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在 AB上一点N处相遇.求解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个"相遇",解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.设汽车行驶CD所需时间是1.根据"走同样距离,时间与速度成反比",可得出分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18.从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与 P→C→B所用时间相等.PC上所需时间-PD上所需时间=DA所需时间-CB所需时间=18-12=6.而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据"和差"计算得PC上所需时间是(24+6)÷2=15,PD上所需时间是24-15=9.现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有BN上所需时间-AN上所需时间=P→D→A所需时间-CB所需时间=(9+18)-12= 15.BN上所需时间+AN上所需时间=AB上所需时间=16.立即可求BN上所需时间是15.5,AN所需时间是0.5.从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些.3、一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置?解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米0.30÷(5-3)=15(秒).因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要90÷(5-3)=45(秒).B与C到达同一位置,出发后的秒数是15,,105,150,195,……再看看A与B什么时候到达同一位置.第一次是出发后30÷(10-5)=6(秒),以后再要到达同一位置是A追上B一圈.需要90÷(10-5)=18(秒),A与B到达同一位置,出发后的秒数是6,24,42,,78,96,…对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.请思考, 3只爬虫第二次到达同一位置是出发后多少秒?4、绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇?解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.出发后2小时10分小张已走了此时两人相距24-(8+11)=5(千米).由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是5÷(4+6)=0.5(小时).2小时10分再加上半小时是2小时40分.答:他们相遇时是出发后2小时40分.5、甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10(千米).小王已走了 6+2=8(千米).因此,他们的速度分别是小张10÷2=5(千米/小时),小王8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.7、如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是80×3=240(米).240-60=180(米).180×2=360(米).答:这个圆的周长是360米.小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是18 0米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?解:(1 )75秒-1.25分.两人相遇,也就是合起来跑了一个周长的行程.小张的速度是500÷1.25-180=220(米/分).8、乙两车同时从同一点出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上乙车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离点有多少米?(每一次甲车追上乙车也看作一次相遇)解析:第一次是一个相遇过程,相遇时间为:6÷(65+55)=0.05 小时,相遇地点距离A点:55×0.05=2.75千米.然后乙车调头,成为追及过程,追及时间为:6÷(65-55)=0.6 小时,乙车在此过程中走的路程为:55×0.6=33 千米,即5圈又3千米,那么这时距离A点3-2.75=0.25 千米.此时甲车调头,又成为相遇过程,同样方法可计算出相遇地点距离A点0.25+2.75=3千米,然后乙车掉头,成为追及过程,根据上面的计算,乙车又要走5圈又3千米,所以此时两车又重新回到了A点,并且行驶的方向与最开始相同.所以,每4次相遇为一个周期,而11÷4=2…3,所以第11次相遇的地点与第3次相遇的地点是相同的,与A点的距离是3000米.。
第七讲环形跑道问题暑期我们已学过基本的相遇、追及问题,并在火车问题那一讲也进一步掌握了相遇和追及的基本公式。
今天,在此基础之上,我们继续学习这些基本公式在环形跑道问题上的应用。
一、知识点总结1、相遇问题:题型特点:甲、乙两人同时从同地反向出发。
解题规律:两人相遇时一起走一圈(跑道周长)。
之后每见面一次,就一起走1圈;见面n次,两人一起走n个周长。
2、追及问题:题型特点:甲、乙两人同时从同地同向出发。
解题规律:开始出发时由于速度不同两人之间的距离会越来越远,之后快的会追上慢的,此时快的人比慢的人多走1圈(路程差为跑道周长)。
之后每追上一次,就多走1圈;追上n次,快的就比慢的多走n个周长。
3、本讲需要处理的问题:a、环形跑道中速度、时间、路程之间的关系处理。
(例1、2、3)b、多次追及问题的处理。
(例4、5)c、不同地点出发的追及问题。
(例6)二、例题分析速度、时间、路程之间的关系例1、分析:跑道周长为300米。
根据环形跑道中相遇和追及的基本解题规律我们可以知道:“每2分30秒追上”可求出两人的速度差;“每半分钟相遇”可求出两人的速度和。
最后可根据速度的和差问题求出各自速度。
解答:速度差:300÷150=2(米/秒)速度和:300÷30=10(米/秒)甲速:(10+2)÷2=6(米/秒)乙速:(10-2)÷2=4(米/秒)提高练习:(1)在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔4分钟相遇一次;如果两人从同地同向同时跑,每隔20分钟追上一次,已知环形跑道的周长是1600米,那么两人的速度分别是多少?提示:同例1.答案:240、160(2)在300米的环形跑道上,甲、乙两人同时同地起跑,如果同向而跑75秒可追上;如果背向而跑半分钟相遇,求两人的速度各是多少?提示:同例1.答案:7、3(3)两名运动员在湖周围的环形跑道上练习长跑,涛涛每分钟跑250米,昊昊每分钟跑200 米,两人同时同地同向出发,经过45分钟涛涛追上昊昊;如果两人同时同地反向出发,经过多少分钟两人相遇?提示:想求出跑道周长即可。
【课前小练习】(★)
一只船在长江上的相距360千米的A、B两港间航行,顺流1、
而下用了12小时,已知长江的水速为5千米/小时.求这艘
船的速度?
【课前小练习】(★★)
轮船用同一速度往返于A、B两码头之间,它顺流而下行了8 2、
个小时,逆流而上行了10小时,如果水流速度是每小时3千
米,两码头之间的距离是多少千米?
【例2】(★★☆)船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时.由于暴雨后水速增加,该船顺水
而行只需9小时,那么逆水而行需要几小时?
预计乙船出发后几小。
环形跑道问题教学目标1、掌握如下两个关系:(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题知识精讲本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同向:路程差相对(反向):路程和同一出发点nSnS直径两端nS+0.5SnS-0.5S模块一、常规的环形跑道问题【例1】一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【考点】行程问题之环形跑道【难度】2星【题型】解答【解析】黄莺和麻雀每分钟共行6659125(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254(分钟).【答案】4分钟【巩固】周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走米就回到出发点。
【考点】行程问题之环形跑道【难度】2星【题型】填空【关键词】希望杯,4年级,1试【解析】几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。
第七讲 环形跑道问题一、行程问题三要素环形跑道问题属于行程问题的一类。
对于行程问题,同学们一定要马上反应出路程(S)、速度(V)、时间(t)三个要素之间的关系——S=V·tV=S÷t t=S÷V ……公式变形即,在行程问题中,只有知道S、V、t中的其中两个要素,一定能求出第三个!二、行程问题基本型1、相遇问题关键词:同时、反向公式: S和 = V和 ·t遇2、追及问题关键词:同时、同向公式: S差 = V差 ·t追注:我们判断是相遇还是追及主要就是看方向,但要注意的是不管是相遇还是追及,其过程一定是二人同时进行的,所以抓住“同时”也很重要。
当题目中不是同时发生的,要学会如何转化为“同时”。
三、环形跑道问题环形跑道问题不过是把“行程”的过程搬到了环形跑道上进行,它仍然符合行程问题的公式。
但要注意S与跑道有关系。
做题时,我们要注意1、确定方向:(1)反向即为相遇问题,就有S和 = V和 ·t遇(2)同向即为追及问题,就有S差 = V差 ·t追2、确定起始点(1)同地:周期现象反向(相遇), 第1次相遇,共合跑1圈第2次相遇,共合跑2圈……第n次相遇,共合跑n圈同向(追及), 第1次追上,共多跑1圈第2次追上,共多跑2圈……第n次追上,共多跑n圈(2)异地:第1次特殊,从第2次开始即为周期现象四、例题解析课前回顾 小张和小王各以一定速度,在周长为500米的环形跑道上跑步,小王的速度是200米/分,(1)小张和小王同时从同一地点出发反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一地点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?解析:(1)同时同地反向,是相遇问题。
S和 = V和 ·t遇500米 1分钟第一次相遇,即合跑一圈,即合跑500米,S和、t遇都知道,那么就可求速度和,得500÷1=500(米/分)小张的速度: 500-200=300(米/分)(2)同时同地同向,是追及问题。
S差 = V差 ·t追500米 300-200第一次追上,即小张比小王多跑一圈,即S差是500米,速度差也可算出来,那么可求追及时间:500÷(300-200)=5(分)小张共跑了多少米:300×5=1500(米)小张跑了多少圈:1500÷500=3(圈)例1 在300米的环形跑道上,田奇和王强同学同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?解析: 同时同地同向——追及问题,S差 = V差 ·t追300米 2分30秒同时同地反向——相遇问题。
S和 = V和 ·t遇300米 半分钟根据分析,根据追及过程可求出速度差,根据相遇过程可求出速度和,接着再用和差问题即可求出两人的速度了。
只是注意单位要统一,时间单位我们统一为秒。
速度差:300÷150=2(米/秒)速度和:300÷30=10(米/秒)快的速度:(10+2)÷2=6(米/秒)慢的速度:(10-2)÷2=4(米/秒) 或 6-2=4(米/秒)例2 巍巍、铮铮两人骑自行车从环形公路上同一地点同时出发,背向而行。
这条公路长2400米,巍巍骑一圈需要10分钟,如果第一次相遇时巍巍骑了1440米。
请问:(1)巍巍的速度是多少米/分?(2)从出发到第一次相遇用时多少分钟?(3)铮铮骑一圈需要多少分钟?(4)再过多久他们第二次相遇?解析:我们做行程问题要敏感,任何一个行程过程,只要知道三要素的两个,一定要反应出马上能求出第三个。
(1)“公路长2400米,巍巍骑一圈需要10分钟”,可知巍巍的速度:2400÷10=240(米/分)(2)“第一次相遇时巍巍骑了1440米”,那么可知巍巍用时1440÷240=6(分),这个也是他BA们第一次相遇时共同的用时。
(3)根据第一次相遇 S 和 = V 和 ·t 遇2400米 6分钟可求出速度和:2400÷6=400(米/分)铮铮的速度:400-240=160(米/分)铮铮骑一圈用时:2400÷160=15(分)(4)第一次相遇即合骑一圈,用了6分钟,第二次相遇即再合骑一圈,还是要用6分钟。
(尖子)学案2 黑白两只小猫在周长为300米的湖边赛跑,黑猫速度为每秒5米,白猫的速度为每秒7米,若两只小猫同时从同一地点出发,背向而行(1)多少秒后两只小猫第一次相遇?(2)如果它们继续不停跑下去,2分钟内一共相遇多少次?解析: 同时同地背向——相遇问题 S 和 = V 和 ·t 遇(1)第一次相遇 300米 5+7可求出相遇时间:300÷(5+7)=25(秒)(2)同地出发,每次相遇就是一种周期现象2×60=120(秒)120÷25=4(次)……20(秒)说明2分钟内共相遇4次。
(还多跑了20秒,但这20秒还没有相遇)练 在周长为220米的圆形跑道的一条直径的两端,涛涛、昊昊二人骑自行车分别以6米/秒和5米/秒的速度同时、相向出发(即一个顺时针,一个逆时针),沿跑道行驶,则210秒内涛涛昊昊相遇几次? 解析:同时相向,肯定是相遇问题,但是起始地不是同地,所以要注意第一次很特殊。
S 和 = V 和 ·t 遇第一次相遇 110米 6+5 相遇时间:110÷(5+6)=10(秒)以后的每次相遇 220 6+5 相遇时间:220÷(5+6)=20(秒) 第一次相遇后又相遇:(210-10)÷20=10(次)共相遇: 10+1=11(次)例3 昊昊和涛涛在操场上比赛跑步,昊昊每分钟跑250米,涛涛每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么昊昊第一次超过涛涛需要多少分钟?昊昊第二次超过涛涛需要多少分钟?昊昊第三次超过涛涛需要多少分钟?有什么规律呢?解析: 同时、同地、同向——追及问题S 差 = V 差 ·t 追第一次超过 800米 250-210 追及时间:800÷(250-210)=20(分) 第二次超过 2×800米 250-210 追及时间:2×800÷(250-210)=40(分) 第三次超过 3×800米 250-210 追及时间:3×800÷(250-210)=60(分) 规律:每超过一次就是多跑一圈,每次的单次追及时间都是一样的,都是20分钟。
例4 甲乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时甲在乙后面,出发后6分钟甲第一次超过乙,22分钟后甲第二次超过乙,假设两人速度保持不变,出发时,甲在乙后面多少米?解析:同时同向 ——追及问题S 差 = V 差 ·t 追第一次 6分 暂时只知道时间,无法求其他要素,那就先看其他过程第二次 400米 22-6 可以求出速度差注意第一次超过后,单看第二次的过程。
从第一次超过到第二次超过,甲比乙多走了1圈,用时22-6=16(分钟)速度差:400÷16=25(米/分)针对第一次的过程,可知原来甲与乙相差路程:25×6=150(米)例5 巍巍、铮铮两人在400米的环形跑道上跑步,巍巍以300米/分钟的速度从起点跑出,1分钟后,铮铮从起点同向跑出,又过了5分钟,巍巍追上铮铮。
请问:铮铮每分钟跑多少米?如果他们的速度保持不变,巍巍需要再过多少分钟才能第二次追上铮铮?解析: 注意两人不是同时开始,那么我们一定要转化到“同时”的时候。
巍巍先跑1分钟,他已经跑了300米,这时他和铮铮“同时”跑,5分钟后巍巍追上铮铮!那么我们知道是巍巍跑得快,他们第一次的路程差是400-300=100(米)根据 S 差 = V 差 ·t 追100米 5分速度差:100÷5=20(米/分)铮铮的速度:300-20=280(米/分)从第一次追上到第二次追上,巍巍比铮铮还要多跑一圈。
S 差 = V 差 ·t 追400米 20追及时间:400÷20=20(分)例6 如图,A、B 是圆的直径的两端,小张在A 点,小王在B 点同时 出发反向行走,他们在C 点第一次相遇,C 离A 点80米;在D 点第二次相遇,D 点离B 点60米,求这个圆的周长? 解析: 首先判断,这是相遇问题S 和 = V 和 ·t 遇第一次相遇 合走半圈 假设用1份时间 第二次相遇 又合走一圈 用2份时间合计 共合走一圈半 共用3份时间第一次相遇时,小张从A 走到C,走了80米(即他在1份时间里走80米),那么到第二次相遇时,从A 到D(共用了3份时间),他一共走了80×3=240(米)。
半圈:240-60=180(米),圆的周长:180×2=360(米)注:通过这个题,我们要掌握“倍比”的思想。
即 S = V ·t速度不变时,(1)时间增倍,那么所走的路程一定也增倍。
(2)路程增倍,所花的时间一定也增倍。
铮铮巍巍A B。