2012中考数学试题及答案分类汇编:图形的变换
- 格式:doc
- 大小:541.00 KB
- 文档页数:15
辽宁各市2012年中考数学试题分类解析汇编专题4:图形的变换一、选择题1. (2012辽宁鞍山3分)如图,下面是由四个完全相同的正方体组成的几何体,这个几何体的主视图是【】A. B. C. D.【答案】C。
【考点】简单组合体的三视图。
【分析】根据主视图的定义,找到几何体从正面看所得到的图形即可:从正面可看到从左往右3列小正方形的个数依次为:1,1,1。
故选C。
2. (2012辽宁本溪3分)如图所示的几何体的俯视图是【】A、错误!未找到引用源。
B、错误!未找到引用源。
C、错误!未找到引用源。
D、错误!未找到引用源。
【答案】B。
【考点】简单组合体的三视图。
【分析】根据俯视图是从上面向下看得到的识图解答:从上向下看,从左向右共3列,左边一列3个正方形,向右依次是一个正方形,且上齐。
故选B。
3. (2012辽宁本溪3分)下列各网格中的图形是用其图形中的一部分平移得到的是【】A、错误!未找到引用源。
B、错误!未找到引用源。
C、错误!未找到引用源。
D、错误!未找到引用源。
【答案】C。
【考点】网格问题,利用平移设计图案。
【分析】根据平移及旋转的性质对四个选项进行逐一分析即可.A、是利用图形的旋转得到的,故本选项错误;B、是利用图形的旋转和平移得到的,故本选项错误;C、是利用图形的平移得到的,故本选项正确;D、是利用图形的旋转得到的,故本选项错误。
故选C。
4. (2012辽宁朝阳3分)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的俯视图是【】A.两个外离的圆B. 两个相交的圆C. 两个外切的圆D. 两个内切的圆【答案】C。
【考点】简单组合体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得该几何体的俯视图是两个外切的圆。
故选C。
5. (2012辽宁大连3分)下列几何体中,主视图是三角形的几何体是【】A. B. C. D.【答案】C。
【考点】简单几何体的三视图。
【分析】找到从正面看所得到的图形即可:从正面看,主视图是三角形的几何体是圆锥。
图形的变换2012年贵州中考数学题(有答案)贵州各市2012年中考数学试题分类解析汇编专题4:图形的变换一、选择题 1. (2012贵州贵阳3分)下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是【】 A.圆锥 B.圆柱 C.三棱柱 D.球【答案】D。
【考点】简单几何体的三视图。
190187 【分析】根据几何体的三种视图,进行选择即可: A、圆锥的主视图、左视图都是等腰三角形,俯视图是圆形,不符合题意,故此选项错误;B、圆柱的主视图、左视图可以都是矩形,俯视图是圆形,不符合题意,故此选项错误;C、三棱柱的主视图、左视图都是矩形,俯视图是三角形,不符合题意,故此选项错误;D、球的三视图都是相等的圆形,故此选项正确。
故选D。
2. (2012贵州毕节3分)王老师有一个装文具用的盒子,它的三视图如图所示,这个盒子类似于【】A.圆锥 B.圆柱 C.长方体 D.三棱柱【答案】D。
【考点】由三视图判断几何体。
【分析】根据三视图的知识可使用排除法来解答:如图,俯视图为三角形,故可排除B 、C.主视图以及侧视图都是矩形,可排除A,故选D。
3. (2012贵州六盘水3分)如图是教师每天在黑板上书写用的粉笔,它的主视图是【】 A. B. C. D.【答案】C。
【考点】简单几何体的三视图。
【分析】该几何体是圆台,主视图即从正面看到的图形是等腰梯形。
故选C。
4. (2012贵州黔东南4分)如图,矩形ABCD边AD沿拆痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于【】 A.1 B.2 C.3 D.4 【答案】B。
【考点】翻折变换(折叠问题),折叠的性质,矩形的性质,勾股定理。
【分析】由四边形ABCD是矩形与AB=6,△ABF 的面积是24,易求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,即可求得AD,BC的长,从而求得答案:∵四边形ABCD是矩形,∴∠B=90°,AD=BC。
2001-2012年江苏苏州中考数学试题分类解析汇编(12专题)专题4:图形的变换锦元数学工作室 编辑一、选择题1. (江苏省2009年3分)如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是【 】A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格 【答案】D 。
【考点】平移的性质。
【分析】根据图形,对比图①与图②中位置关系可知:平移是先向下平移3格,再向右平移2格。
故选D 。
2.(江苏省苏州市2005年3分)下图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是【 】A .︒90B .︒60C .︒45D .︒30 【答案】C 。
【考点】旋转的性质。
【分析】根据旋转的性质,观察图形,中心角是由8个度数相等的角组成,结合周角是360°求得每次旋转的度数:∵中心角是由8个度数相等的角组成,∴每次旋转的度数可以为360°÷8=45°。
故选C。
3. (江苏省苏州市2006年3分)下列图形中,旋转600后可以和原图形重合的是【】A.正六边形B.正五边形C.正方形D.正三角形【答案】A。
【考点】旋转对称图形。
【分析】求出各图的中心角,度数为60°的即为正确答案:A、正六边形旋转的最小角度是3606︒=60°;B、正五边形的旋转最小角是3605︒=72°;C、正方形的旋转最小角是3604︒=90°;D、正三角形的旋转最小角是3603︒=120°。
故选A。
4. (江苏省苏州市2006年3分)对左下方的几何体变换位置或视角,则可以得到的几何体是【】A. B. C. D. 【答案】B。
【考点】几何变换的类型。
【分析】我们在观察物体时,无论什么角的观察物体,物体的形状都不会发生改变,本题中,只有B的几何体和题目中的几何体一致。
图形的变换(图形的平移、旋转与轴对称)43.图形变换(图形的平移、旋转与轴对称) 一、选择题1、(2012年某某某某质量检查)如图,直线y =-33x +2与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转60°后得到△AO'B',则点B'的坐标是A .(4,23)B .(23,4)C .(3,3)D .(23+2,23)答案:B2、(2012年某某某某十五校联考)下列图形中,是中心对称图形的是 ( )A .B .C .D .答案:B3、(2012年某某某某十五校联考).如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b 的值为( ) A .2B .3C .4D .5ABOxyB'第9题图O'答案: A4、(2012年某某某某十五校联考)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是( )A .6B .5C .3D .2答案:B5、(2012年某某黄浦二模)下列图形中,既是轴对称图形,又是中心对称图形的是()A .等边三角形;B .等腰梯形;C .平行四边形;D .正十边形.答案:D6、(2012某某省某某二模)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( )A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行 答案:B7、(2012某某省某某三模)京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是( )A .1个B .2个C .3个D .4个图1 图2 向右翻滚90° 逆时针旋转90°A CB A 'B 'C '(第5题)图2图1答案:C8、(2012某某省某某四模)数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°。
浙江11市2012年中考数学试题分类解析汇编专题4:图形的变换一、选择题1.(2012浙江湖州3分)下列四个水平放置的几何体中,三视图如图所示的是【】A.B.C.D.【答案】D。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于从主视图、左视图、俯视图可以看出这个几何体的正面、左面、底面是长方形,所以这个几何体是长方体。
故选D。
2. (2012浙江嘉兴、舟山4分)下列图案中,属于轴对称图形的是【】A.B.C.D.【答案】A。
【考点】轴对称图形。
【分析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,B、C、D都不是轴对称图形,只有A是轴对称图形。
故选A。
3. (2012浙江丽水、金华3分)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是【】A.①B.②C.③D.④【答案】B。
【考点】中心对称图形。
【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,通过观察发现,当涂黑②时,所形成的图形关于点A中心对称。
故选B。
4. (2012浙江丽水、金华3分)如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是【】A.①B.②C.⑤D.⑥【答案】A。
【考点】生活中的轴对称现象。
【分析】如图,根据入射线与水平线的夹角等于反射线与水平线的夹角,可求最后落入①球洞。
故A。
5. (2012浙江丽水、金华3分)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是【】A.2010 B.2012 C.2014 D.2016【答案】D。
【考点】分类归纳(图形的变化类)。
2012届中考数学往年考点分类解析汇编:图形的变换江苏13市2011年中考数学试题分类解析汇编专题4:图形的变换一、选择题 1. (无锡3分) 已知圆柱的底面半径为2cm,高为5cm,则圆柱的侧面积是 A.20 cm2 8.20 cm2 C.10 cm2 D.5 cm2 【答案】B。
【考点】图形的展开。
【分析】把圆柱的侧面展开,利用圆的周长和长方形面积公式得出结果:圆的周长= ,圆柱的侧面积=圆的周长×高= 。
故选B。
2.(常州、镇江2分)已知某几何体的一个视图(如图),则此几何体是 A.正三棱柱 B.三棱锥 C.圆锥 D.圆柱【答案】C。
【考点】几何体的三视图。
【分析】从基本图形的三视图可知:俯视图为圆的几何体为球,圆锥,圆柱,所以A和B选项错误;圆柱的主视图和俯视图是长方形,所以D选项错误;圆锥的主视图和俯视图是三角形,正确。
故选C。
3.(南京2分)如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是【答案】B。
【考点】图形的展开与折叠。
【分析】根据三棱柱及其表面展开图的特点.三棱柱上、下两底面都是三角形得:A、折叠后有二个侧面重合,不能得到三棱柱;B、折叠后可得到三棱柱;C、折叠后有二个底面重合,不能得到三棱柱;D、多了一个底面,不能得到三棱柱。
故选B。
4.(南通3分)下列水平放置的几何体中,俯视图是矩形的为【答案】B。
【考点】几何体的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于A和D的俯视图是圆,B的俯视图是矩形,C的俯视图是三角形。
故选B。
5.(泰州3分)下图是一个几何体的三视图,则这个几何体是 A.圆锥 B.圆柱 C.长方体 D.球体【答案】A。
【考点】由三视图判断几何体。
【分析】从基本图形的三视图可知:圆锥的三视图是两个三角形,一个圆;圆柱的三视图是两个长方形,一个圆;长方体的三视图是三个长方形;球体的三视图是三个圆。
广西各市2012年中考数学试题分类解析汇编专题4:图形的变换一、选择题1. (2012广西北海3分)一个几何体的三视图完全相同,该几何体可以是【 】 A .圆锥B .圆柱C .长方体D .球【答案】D 。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
因此,A 、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;B 、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;C 、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;D 、球体的主视图、左视图、俯视图都是圆形;故本选项正确。
故选D 。
2. (2012广西北海3分)如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC绕点C 顺时针旋转60°,则顶点A 所经过的路径长为:【 】A .10πB .3C .3πD .π【答案】C 。
【考点】网格问题,勾股定理,弧长的计算。
【分析】由网格的性质和勾股定理,得=。
∴将△ABC 绕点C 顺时针旋转60°,顶点A 所经过的路径长为:=。
故选C 。
3. (2012广西贵港3分)如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方形的个数是【】A.2 B.3 C.4 D.5【答案】C。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,综合三视图可知,这个几何体的底层有3个小正方体,第二层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1=4个。
故选C。
4. (2012广西桂林3分)下列几何体的主视图、俯视图和左视图都是..长方形的是【】A.B.C.D.【答案】B。
【考点】简单几何体的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.找到几何体的三视图即可作出判断:A、主视图和左视图为矩形,俯视图为圆,故选项错误;B、主视图为矩形,俯视图和左视图都为矩形,故选项正确;C、主视图和左视图为等腰梯形,俯视图为圆环,故选项错误;D、主视图和左视图为三角形,俯视图为有对角线的矩形,故选项错误。
2001-2012年安徽省中考数学试题分类解析汇编(12专题)专题4:图形的变换一、选择题1. (2003安徽省4分)(华东版教材试验区试题)下面是空心圆柱体在指定方向上的视图,正确的是【】A:B:C:D:【答案】C。
【考点】简单几何体的三视图。
【分析】找到从正面看所得到的图形即可,注意所有的棱都应表现在主视图中:圆柱的主视图是矩形,里面有两条用虚线表示的看不到的棱,故选C。
2. (2004安徽省4分)(华东版教材实验区试题)如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是【】.(A)△OCD(B)△OAB(C)△OAF(D)△OEF【答案】C。
【考点】平移的性质。
【分析】根据平移的性质,结合图形,对图中的三角形进行分析,求得正确答案:△OCD、△OEF、△OAB方向发生了变化,不属于平移得到;△ODE、△OAF形状和大小没有变化,属于平移得到。
∴可以由△OBC平移得到的是△ODE,△OAF。
故选C。
3. (2005安徽省大纲4分)用两个完全相同的直角三角板,不能拼成下列图形的是【】A、平行四边形B、矩形C、等腰三角形D、梯形【答案】D。
【考点】直角三角形的性质。
【分析】当把完全相同的两块三角板拼成的图形有三种情况:①当把一相同直角边重合,且两个直角的顶角也重合时,所成的图形是等腰三角形;②当把一相同直角边重合,且两个直角的顶角不重合时,所成的图形是平行四边形;③当斜边重合,且两个三角形的非同角的顶点重合时,所成的图形是矩形。
但不能形成梯形。
故选D。
5. (2005安徽省课标4分)下列各物体中,是一样的为【】A. (1)与(2)B. (1)与(3)C. (1)与(4)D. (2)与(3)【答案】B。
【考点】几何体的视图。
【分析】根据几何体的块数,在同一平面的几何体的形状以及相应的三视图来进行判断:(4)比其它图形少一块;(2)互相垂直的6块几何体应在一个平面;易得(1)为物体的前面;(3)为物体的左侧面。
2001-2012年某某某某中考数学试题分类解析汇编(12专题)专题4:图形的变换一、选择题1. (2001某某某某2分)如图是将三角形绕直线L旋转一周,可以得到图中所示的立体图形的是【】A. B. C. D.【答案】B。
【考点】点、线、面、体的概念,旋转的性质。
【分析】本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理可知,绕直角三角形一条直角边旋转可得到圆锥,本题要求得到两个圆锥的组合体,那么一定是两个直角三角形的组合体:两条直角边相对,绕另一直角边旋转而成的。
故选B。
2. (某某省某某市2002年2分)圆锥的侧面展开图是【】A、三角形B、矩形C、圆D、扇形【答案】D。
【考点】几何体的展开图。
【分析】圆锥的侧面展开图是扇形。
故选D。
3.(某某省某某市2003年2分)如图,一X矩形报纸ABCD的长AB=acm,宽BC=bcm,E、F分别是AB、CD的中点,将这X报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a∶b等于【】.(A)2∶l (B)1∶2(C)3∶l (D)1∶3【答案】A。
【考点】折叠问题,比例线段,比例的性质。
【分析】∵a b a b 2::,∴22a =b 2。
∴。
∴a: :1。
故选A 。
4. (某某省某某市2005年2分)下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是 【 】A 、球B 、圆柱C 、三棱柱D 、圆锥 【答案】A 。
【考点】全等图形,简单几何体的三视图【分析】主视图、左视图、俯视图是分别从物体正面、正面和上面看,所得到的图形。
因此,A 、球的三视图是相等圆形,符合题意;B 、圆柱的三视图分别为长方形,长方形,圆,不符合题意;C 、三棱柱三视图分别为长方形,长方形,三角形,不符合题意;D 、圆锥的三视图分别为三角形,三角形,圆及圆心,不符合题意。
故选A 。
5. (某某省某某市2007年2分)下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是【 】 A.球体B.长方体C.圆锥体D.圆柱体【答案】D 。
一、填空题 1.(2012盐城)写出一个..你熟悉的中心对称的几何图形名称,它是 . 2.(2012淮安)如图1,已知A l (1,0)、A 2(1,1)、A 3(-1,1)、A 4(-1,-1)、 A 5(2,-1)、…。
则点A 2012,的坐标为________. 3.(2012常州)如图2,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米。
4.(2012扬州) 如图3用等腰直角三角板画45AOB =∠,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22,则三角板的斜边与射线OA 的夹角α为______.5. (2012徐州)如图4,已知Rt △ABC 中,∠C=︒90,AC=4cm ,BC=3cm ,现将△ABC 进行折叠,使顶点A 、B 重合,则折痕DE= cm 。
6.(2012泰州)如图5,直角梯形ABCD 中,AD BC ∥,AB BC ⊥,2AD =,3BC =,45BCD ∠= ,将腰CD 以点D 为中心逆时针旋转90 至ED ,连结AE CE ,,则ADE △的面积是 .7.(2012泰州)如图6,在22⨯的正方形格纸中,有一个以格点为顶点的ABC △,请你找出格纸中所有与ABC △成轴对称且也以格点为顶点的三角形,这样的三角形共有 个.8.(2012徐州)如图7,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于_________cm.9.(2012淮安)已知点P 的坐标为(1,1),若将点P 绕原点顺时针旋转45°,得到点P 1,则点P 1的坐标为_______。
10.(2012南通)将点A (0)绕着原点顺时针方向旋转45°角得到点B ,(图5)A BCDE 图1则点B 的坐标是 . 11.(2012淮安)如图8,点O (0,0),B(0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 1,……,依次下去.则点B 6的坐标是________________.12.(2012南京)如图9,菱形ABCD (图1)与菱形EFGH (图2)的形状、大小完全相同. (1)请从下列序号中选择正确选项的序号填写;①点E F G H ,,,;②点G F E H ,,,;③点E H G F ,,,;④点G H E F ,,,.如果图1经过一次平移后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次轴对称后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次旋转后得到图2,那么点A B C D ,,,对应点分别是 ; (2)①图1,图2关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法); ②写出两个图形成中心对称的一条..性质: .(可以结合所画图形叙述) 13.(2012南通)已知三角形三个顶点坐标,求三角形面积通常有以下三种方法:方法1:直接法.计算三角形一边的长,并求出该边上的高. 方法2:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差.方法3:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形. 现给出三点坐标:A (-1,4),B (2,2),C (4,-1),请你选择一种方法计算△ABC 的面积,你的答案是S △ABC = . 14.(2012扬州)如图10,△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ABP ´重合,如果AP=3,那么线段PP ´的长等于____________。
2012中考数学试题及答案分类汇编:图形的变换一、选择题1. (北京4分)下列图形中,即是中心对称又是轴对称图形的是A、等边三角形B、平行四边形C、梯形D、矩形【答案】D。
【考点】中心对称和轴对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
从而有A、是轴对称图形,不是中心对称图形.故本选项错误;B、是不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确。
故选D。
2.(天津3分)下列汽车标志中,可以看作是中心对称图形的是【答案】A。
【考点】中心对称图形。
【分析】根据在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形的定义,直接得出结果。
3.(天津3分)下图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是【答案】A。
【考点】几何体的三视图。
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中:细心观察原立体图形的位置,从正面看,是一个矩形,矩形左上角缺一个角;从左面看,是一个正方形;从上面看,也是一个正方形。
故选A。
4.(河北省2分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的A、面CDHEB、面BCEFC、面ABFGD、面ADHG【答案】A。
【考点】展开图折叠成几何体。
【分析】由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE。
故选A。
5.(山西省2分)将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是【答案】A。
【考点】剪纸问题。
【分析】严格按照图中的顺序先向上再向右对折,从左下方角剪去一个直角三角形,展开得到结论。
故选A。
6.(山西省2分)如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是A.13π2cmcm D.68π2cm C.66π2cm B.17π2【答案】B。
【考点】由三视图判断几何体,圆柱的计算【分析】根据三视图可知该几何体是两个圆柱体叠加在一起,体积是两个圆柱体的体积的和:底面直径分别是2cm和4cm,高分别是4cm和1cm,∴体积为:4π×22+π=17πcm2。
故选B。
7.(内蒙古巴彦淖尔、赤峰3分)在下面的四个几何体中,主视图、俯视图、左视图都相同的几何体的个数有A、1个B、2个C、3个D、4个【答案】A。
【考点】简单几何体的三视图。
【分析】主视图、俯视图、左视图是分别从物体正面、上面和左面看,所得到的图形,圆柱主视图、俯视图、左视图分别是长方形、圆、长方形,主视图、左视图与俯视图不相同;圆锥主视图、俯视图、左视图分别是三角形、有圆心的圆、三角形,主视图、左视图与俯视图不相同;球主视图、俯视图、左视图都是圆,主视图、俯视图、左视图都相同;长方体主视图、俯视图、左视图是大小不同的矩形,三视图不相同。
共1个同一个几何体的主视图与俯视图、左视图相同。
故选A。
8.(内蒙古包头3分)下列几何体各自的三视图中,只有两个视图相同的是①正方体②圆锥体③球体④圆柱体A.①③B.②③C.③④D.②④【答案】D。
【考点】简单几何体的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别分析四个几何体的三视图,从中找出只有两个视图相同的几何体,可得出结论:①正方形的主、左和俯视图都是正方形;②圆锥的主、左视图是三角形,俯视图是圆;③球体的主、左和俯视图都是圆形;④圆柱的主、左视图是长方形,俯视图是圆。
只有两个视图相同的几何体是圆锥和圆柱。
故选D。
9.(内蒙古呼和浩特3分)已知圆柱的底面半径为1,母线长为2,则圆柱的侧面积为A、2B、4C、2πD、4π【答案】D。
【考点】圆柱的展开。
【分析】圆柱沿一条母线剪开,所得到的侧面展开图是一个矩形,它的长是底面圆的周长,即2π,宽为母线长为2cm,所以它的面积为4πcm2。
故选D。
10.(内蒙古呼和浩特3分)将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是A、B、C、D、【答案】C。
【考点】几何体的展开图。
【分析】由原正方体知,带图案的三个面相交于一点,而通过折叠后A、B都不符合,且D折叠后图案的位置正好相反,所以能得到的图形是C。
故选C。
11.(内蒙古呼伦贝尔3分)如图,几何体的俯视图是【答案】C。
【考点】简单组合体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得里层有4个正方形,外层左边有1个正方形。
故选C。
12.(内蒙古乌兰察布3分)如图是由五个相同的小正方体搭成的几何体,它的主视图是【答案】B。
【考点】简单组合体的三视图。
【分析】找到从正面看所得到的图形即可:从正面看易得第一层左边有1个正方形,第二层有3个正方形。
故选B。
13.(内蒙古乌兰察布3分)己知O为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只锅牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示,若沿OM将圆锥侧面剪开并展开,所得侧面展开图是【答案】D。
【考点】圆锥的展开,扇形的轴对称性,线段的性质。
【分析】根据两点之间比下有余最短的性质,锅牛爬过的最短路线应是一条线段:根据扇形的轴对称性,选择D正确。
故选D。
14.(内蒙古乌兰察布3分)将正方体骰子(相对面上的点数分别为1 和6 、2 和5 、3 和4 )放置于水平桌面上,如图①.在图②中,将骰子向右翻滚90 ,然后在桌面上按逆时针方向旋转900,则完成一次变换.若骰子的初始位置为图①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是A . 6B . 5C . 3D . 2【答案】B。
【考点】分类归纳(图形变化类)。
【分析】寻找规律:可知,按上述规则连续完成3次变换后,骰子回到初始位置,因此连续完成10次变换后,骰子与完成1次变换的状态相同。
故选B。
二、填空题1.(北京4分)若下图是某几何体的表面展开图,则这个几何体是▲.【答案】圆柱。
【考点】平面图形的折叠和立体图形的表面展开。
【分析】由平面图形的折叠及立体图形的表面展开图的特点知道,一个长方形和两个圆折叠后,能围成的几何体是圆柱。
2.(河北省3分)如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得到图2,则阴影部分的周长为▲.【答案】2。
【考点】平移的性质,等边三角形的判定和性质。
【分析】如图,∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2。
3.(河北省3分)如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是▲.【答案】3。
【考点】分类归纳(图形的变化类)。
【分析】根据“移位”的特点,寻找规律,得出结论:∵小宇在编号为2的顶点上时,那么他应走2个边长,即从2→3→4为第1次“移位”,这时他到达编号为4的顶点;然后从4→5→1→2→3为第2次“移位”,然后从3→4→5→1为第3次“移位”;然后从1→2为第4次“移位”。
∴2→3→4→5→1→2四次移位为一个循环返回顶点2。
∴第10次“移位”后,他所处顶点的编号与第2次“移位”的编号3相同,即他所处顶点的编号是3。
4.(山西省3分)如图是用相同长度的小棒摆戍的一组有规律的图案,图案(1)需要4根小棒,图案(2)需要10根小棒……,按此规律摆下去,第n个图案需要小棒▲根(用含有n的代数式表示)。
【答案】6n-2。
【考点】分类归纳(图形的变化类)。
【分析】找出规律:如图可知,后一幅图总是比前一幅图多两个菱形,即多6根小棒,图案(1)需要小棒:6×1-2=4(根);图案(2)需要小棒:6×2-2=10(根);图案(3)需要小棒:6×3-2=16(根);图案(4)需要小棒:6×4-2=22(根);则第n个图案需要小棒:6n-2根。
5.(山西省3分)如图,△ABC 是等腰直角三角形,∠ACB=90°,AB=AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB’C’,若AB=2,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是 ▲ (结果保留π)。
【答案】14π+。
【考点】旋转的性质,等腰三角形的性质,勾股定理,扇形和三角形面积。
【分析】根据题意,阴影部分的面积为(S 扇形ABB′-S △ABC )+(S △AB′C′-S 扇形ACC′) 由勾股定理,得AC=2。
由等腰三角形的性质,得两扇形的圆心角为450。
∴阴影部分的面积为()224524521122221360223604πππ⋅⋅⋅⋅-⋅⋅+⋅⋅-=+6.(内蒙古包头3分)如图,边长为a 的正方形中有一个边长为b 的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是 ▲ .【答案】a 2﹣b 2=(a+b )(a ﹣b )。
【考点】平方差公式的几何意义。
【分析】根据题意分别求得图1与图2中阴影部分的面积,由两图形阴影面积相等,即可求得答案:图1中阴影部分的面积为:a 2﹣b 2;图2中阴影部分的面积为:(a+b )(a ﹣b )。
∵两图形阴影面积相等,∴可以得到的结论是:a 2﹣b 2=(a+b )(a ﹣b )。
7.(内蒙古包头3分)如图,把矩形纸片OABC 放入平面直角坐标系中,使OA ,OC 分别落在x 轴、y 轴上,连接AC ,将矩形纸片OABC 沿AC 折叠,使点B落在点D 的位置,若B (1,2),则点D 的横坐标是 ▲ . 【答案】-35。
aabb 图1 图2【考点】翻折变换(折叠问题),矩形的性质,平行的判定和性质,折叠对称的性质,相似三角形的判定和性质,坐标与图形性质。
【分析】过点D作DF⊥OA于F,∵四边形OABC是矩形,∴OC∥AB。
∴∠ECA=∠CAB。
根据折叠对称的性质得:∠CAB=∠CAD,∠CDA=∠B=90°,∴∠ECA=∠EAC,∴EC=EA。