Resonating Valence Bond wave function from lattice models to realistic systems
- 格式:pdf
- 大小:245.24 KB
- 文档页数:14
二维光子晶体三角晶格滤波器
曹悦;荣宪伟
【期刊名称】《黑龙江科技信息》
【年(卷),期】2016(000)009
【摘要】提出一种特殊结构的滤波器(在完整的二维光子晶体中移除相应的介质柱构成三角微腔的特殊结构).运用时域有限差分法(FDTD)对该三角结构的滤波特性进行数值模拟,模拟的情况分为两部分,一部分是对不同的波长进行滤波实验模拟,另一部分是对不同的介质柱半径进行实验模拟.分别模拟介质柱的半径为
0.1R,0.3R,0.6R.在不同的输入波长和不同的介质柱半径下,滤波器的滤波情况差别很大.计算结果表明:三角微腔滤波器对波长在2.35μm的光波透射率最高,其他波长的光波被耦合吸收,并且滤波器的滤波效果随介质柱半径的不同而变化,介质柱半径在r=0.3R时,滤波效果为最佳.
【总页数】2页(P95-96)
【作者】曹悦;荣宪伟
【作者单位】哈尔滨师范大学,黑龙江哈尔滨150046;哈尔滨师范大学,黑龙江哈尔滨150046
【正文语种】中文
【相关文献】
1.二维光子晶体三角晶格滤波器 [J], 曹悦;荣宪伟
2.三角晶格二维光子晶体带隙结构数值研究 [J], 刘丽丽;徐健良;汤炳书
3.太赫兹波段三角晶格二维光子晶体的传输特性 [J], 梁兰菊
4.柱体截面不同三角晶格二维光子晶体完全带隙的研究 [J], 廖兴展;林少光;张桂春
5.二维光子晶体三角晶格光控开关的设计 [J], 张丽聪
因版权原因,仅展示原文概要,查看原文内容请购买。
光谱灵敏度函数-回复光谱灵敏度函数是一种用来描述人眼对不同波长的光的敏感程度的函数,也被称为视觉感受函数或者眼光谱敏度。
通过测量不同波长的光对人眼的视觉反应,我们可以得到一个光谱灵敏度函数曲线,该曲线显示了在整个可见光谱范围内,人眼对不同波长的光的感知强度的变化。
光谱灵敏度函数的概念最早由德国心理学家和物理学家海顿(Hecht)和维尔斯坦(Waldstein)于1930年提出。
他们通过实验测量了在黑暗环境下人眼对不同波长的单色光的感知强度,得出了一条关于光谱灵敏度的曲线。
这个光谱灵敏度函数曲线的形状与光的波长有关,通常情况下,人眼对中等波长的绿色光的感知最为敏感,而对较短波长的紫色光和较长波长的红色光的感知较弱。
这就是为什么我们通常认为绿色是最亮的颜色,而红色和紫色看起来相对较暗。
光谱灵敏度函数的数学表示通常采用一系列的中心波长(λ)和相应的灵敏度值(S(λ))来描述。
其中,中心波长表示光谱中最强的辐射波长,通常以纳米(nm)为单位,而灵敏度值表示人眼对该波长的相对感知强度。
光谱灵敏度函数在很多应用中都起着重要的作用。
例如,在彩色显示技术中,我们需要了解人眼对不同颜色的敏感度,以便正确地调整显示器的色彩输出。
在光谱分析领域,了解光谱灵敏度函数可以帮助我们准确地测量不同波长的光的强度。
除了人眼的光谱灵敏度函数外,还有一些其他物种的光谱灵敏度函数也被广泛研究。
例如,昆虫的光谱灵敏度函数通常与人眼有所不同,他们对紫外线波长的光有更高的感知强度。
这就是为什么某些花朵的颜色在人眼中看起来是黄色或白色,但对于昆虫来说,它们可能是具有强烈吸引力的紫色。
为了获得准确的光谱灵敏度函数曲线,研究人员使用一种特殊的工具称为分光辐射计来测量光的辐射强度。
然后,他们通过调整不同波长的单色滤光片,逐一测量人眼对不同波长的光的感知强度。
最终,通过这些数据点,他们可以绘制出光谱灵敏度函数曲线。
总的来说,光谱灵敏度函数是用于描述人眼对不同波长的光的感知强度的函数。
Bond-valence理论体系的提出和发展及Valence-matching principle的应用1、Bond-valence理论体系的提出和发展Bond-valence理论源于20世纪20年代离子晶体结构的Pauling电价规则,至今已发展成为现代结构化学一个重要内容,广泛应用于化学、物理学、晶体学、材料科学以至分子生物学领域。
1929年,美国化学家Pauling为描述无机化合物的结构引入了一种化学上直观的视角。
在这篇开创性论文中,他提出了五个描述复杂离子晶体结构的规则:I.配位多面体规则,其内容是:“在离子晶体中,在正离子周围形成一个负离子多面体,正负离子之间的距离取决于离子半径之和,正离子的配位数取决于离子半径比”。
第一规则实际上是对晶体结构的直观描述,如NaCl晶体是由[NaCl6]八面体以共棱方式连接而成。
II.电价规则指出:“在一个稳定的离子晶体结构中,每一个负离子电荷数等于或近似等于相邻正离子分配给这个负离子的静电键强度的总和,其偏差≤1/4价”。
静电键强度S=正离子数Z+/正离子配位数n ,则负离子电荷数Z=∑Si=∑(Zi+/ni)。
III.多面体共顶、共棱、共面规则,其内容是:“在一个配位结构中,共用棱,特别是共用面的存在会降低这个结构的稳定性。
其中高电价,低配位的正离子的这种效应更为明显”。
IV.不同配位多面体连接规则,其内容是:“若晶体结构中含有一种以上的正离子,则高电价、低配位的多面体之间有尽可能彼此互不连接的趋势”。
V.节约规则,其内容是:“在同一晶体中,组成不同的结构基元的数目趋向于最少”。
电价规则是Pauling五项规则的核心,其物理基础在于:如在结构中正电位较高的位置安放电价较高的负离子是,结构会趋于稳定,而某一正离子至该负离子的静电键的强度正是有关正离子在该处所引起的正电位的量度。
显然,这是一个既有其物理基础,又带有一定“经验”色彩的方法。
它突出了离子化学键的主要特征。
超声造影剂声学特性的优化设计与实验测定1宗瑜瑾,万明习,王素品,陈红西安交通大学生物医学信息工程教育部重点实验室,生命科学与技术学院,西安(710049)E-mail:mxwan@摘要:本文基于超声造影剂微泡在声场中的理论振动模型,建立了用于对超声造影剂的声学特性进行优化设计与分析的计算机辅助设计系统。
利用该系统,从理论上计算和估计不同的微泡半径、声压等参数对微泡的基波和二次谐波的影响,以得到获得最佳二次谐波特性的声学条件。
并在此基础上,对优化条件下超声造影剂的声学特性进行了体外声学实验测定。
实验结果表明,该优化设计系统的计算结果在一定范围内能够与实验结果较好地吻合,可从理论上对造影剂的制备和应用进行指导。
关键词:超声造影剂,声压,基波,二次谐波1.前言与其它成像模式中造影剂的作用类似,超声造影剂(Ultrasound contrast agent, UCA)是一类能够显著增强医学超声成像信号的诊断试剂。
由于超声造影剂与周围组织的声阻抗差高、共振散射强,可显著增强在组织背景下血液流动中UCA的散射信号,所以在微血管血流灌注成像方面具有很大的潜力[1-5]。
目前,超声造影剂已从当初的自由气泡发展成为蛋白质、表面活性剂、脂类或聚合物等包膜并包裹高分子量难溶气体的微泡。
包膜的存在增加了微泡的“寿命”,使微泡内的气体不容易溶解、扩散到周围的血液中,提高了微泡的稳定性。
但是包膜的存在又影响了微泡在声场中的振动,使得微泡在声场中的行为变得更加复杂[6-9]。
为了能够更好地了解超声造影剂在声场作用下的振动,找到其用于基波增强、谐波成像等不同成像模式时的最佳工作条件。
本文基于单个超声造影剂在声场中振动的理论模型,建立了超声造影剂声学特性的优化设计分析系统,用于微泡声学特性的计算机辅助设计和分析。
从理论上计算不同声学参数的条件下超声造影剂的半径振动曲线和散射回波,并利用体外声学测试系统测定了自制的JD-95型超声造影剂在不同优化条件下的声学特性。
高速平板边界层中定常条带的前缘感受性
刘洋;赵磊
【期刊名称】《空气动力学学报》
【年(卷),期】2024(42)4
【摘要】来流湍流度较高时,自由流涡波可在边界层内激发流向条带结构,并引起边界层的旁路(bypass)转捩。
本文采用调和线性化Navier-Stokes方程(harmonic linearized Navier-Stokes,HLNS)方法模拟平板边界层条带对自由流涡波的前缘感受性,并通过直接数值模拟验证了HLNS方法的可靠性。
针对马赫数4.8的高速平
板边界层,分析了零频涡波激发定常条带的前缘感受性过程及定常条带的演化规律。
研究结果表明,边界层外的自由流涡扰动对边界层条带的发展存在持续的激励作用;
对于固定展向波数的自由流涡波,法向波数为0时激发的条带幅值最大;自由流涡波的法向波数在小于临界角度时仅影响条带的幅值,而不影响条带扰动的形函数剖面。
随着当地雷诺数的增加,条带的幅值演化和形函数剖面呈现出很好的相似性;当地无
量纲展向波数β=0.18时,归一化幅值最大。
【总页数】14页(P14-26)
【作者】刘洋;赵磊
【作者单位】天津大学力学系;天津市现代工程力学重点实验室
【正文语种】中文
【中图分类】V211;V411;O357.4
【相关文献】
1.PIV测量非定常自由来流中的三角翼前缘涡
2.前缘曲率变化对平板边界层感受性问题的影响
3.无限薄平板边界层前缘感受性过程的数值研究∗
4.前缘曲率对三维边界层内被激发出非定常横流模态的影响研究
5.高超声速平板边界层/圆柱粗糙元非定常干扰
因版权原因,仅展示原文概要,查看原文内容请购买。
半导体量子点内弹性应变能的研究(英文)
杨红波;俞重远;刘玉敏;黄永箴
【期刊名称】《人工晶体学报》
【年(卷),期】2004(33)4
【摘要】本文用有限元分析软件ANSTS 6 .0计算了半导体量子点内的弹性应变和弹性应变能 ,通过对金塔形、台形和圆顶形量子点内总弹性应变能的计算和总能量的比较 ,得到了在热平衡条件下金字塔形量子点是最稳定的结构。
【总页数】4页(P531-534)
【关键词】有限元分析软件;半导体量子点;弹性应变;弹性应变能
【作者】杨红波;俞重远;刘玉敏;黄永箴
【作者单位】北京邮电大学理学院;中国科学院半导体研究所,集成光电子学国家重点联合实验室
【正文语种】中文
【中图分类】O472
【相关文献】
1.异质外延自组织量子点弹性应变场分布的研究 [J], 刘玉敏;俞重远;杨红波;黄永箴
2.剩余应变对半导体量子点边带能影响的数值分析 [J], 杨红波;俞重远
3.Ge/Si半导体量子点的应变分布与平衡形态 [J], 蔡承宇;周旺民
4.有限元法分析透镜形自组织生长量子点的弹性应变场分布(英文) [J], 刘玉敏;俞
重远;杨红波;黄永箴
5.1.55μm张应变InGaAsP/InGaAsP量子阱偏振不灵敏半导体光放大器的优化设计(英文) [J], 邱伟彬;何国敏;董杰;王圩
因版权原因,仅展示原文概要,查看原文内容请购买。
NMR中常用的英文缩写和中文名称汪茂田译注APTAttached Proton Test 质子连接实验ASISAromatic Solvent Induced Shift 芳香溶剂诱导位移BBDRBroad Band Double Resonance 宽带双共振BIRDBilinear Rotation Decoupling 双线性旋转去偶(脉冲)COLOCCorrelated Spectroscopy for Long Range Coupling 远程偶合相关谱COSY( Homonuclear chemical shift ) COrrelation SpectroscopY (同核化学位移)相关谱CPCross Polarization 交叉极化CP/MASCross Polarization / Magic Angle Spinning 交叉极化魔角自旋CSAChemical Shift Anisotropy 化学位移各向异性CSCMChemical Shift Correlation Map 化学位移相关图CWcontinuous wave 连续波DDDipole-Dipole 偶极-偶极DECSYDouble-quantum Echo Correlated Spectroscopy 双量子回波相关谱DEPTDistortionless Enhancement by Polarization Transfer 无畸变极化转移增强2DFTStwo Dimensional FT Spectroscopy 二维傅立叶变换谱DNMRDynamic NMR 动态NMRDNPDynamic Nuclear Polarization 动态核极化DQ(C)Double Quantum (Coherence) 双量子(相干)DQDDigital Quadrature Detection 数字正交检测DQFDouble Quantum Filter 双量子滤波DQF-COSYDouble Quantum Filtered COSY 双量子滤波COSYDRDSDouble Resonance Difference Spectroscopy 双共振差谱EXSYExchange Spectroscopy 交换谱FFTFast Fourier Transformation 快速傅立叶变换FIDFree Induction Decay 自由诱导衰减H,C-COSY1H,13C chemical-shift COrrelation SpectroscopY 1H,13C化学位移相关谱H,X-COSY1H,X-nucleus chemical-shift COrrelation SpectroscopY 1H,X-核化学位移相关谱HETCORHeteronuclear Correlation Spectroscopy 异核相关谱HMBCHeteronuclear Multiple-Bond Correlation 异核多键相关HMQCHeteronuclear Multiple Quantum Coherence异核多量子相干HOESYHeteronuclear Overhauser Effect Spectroscopy 异核Overhause效应谱HOHAHAHomonuclear Hartmann-Hahn spectroscopy 同核Hartmann-Hahn谱HRHigh Resolution 高分辨HSQCHeteronuclear Single Quantum Coherence 异核单量子相干INADEQUATEIncredible Natural Abundance Double Quantum Transfer Experiment 稀核双量子转移实验(简称双量子实验,或双量子谱)INDORInternuclear Double Resonance 核间双共振INEPTInsensitive Nuclei Enhanced by Polarization 非灵敏核极化转移增强INVERSEH,X correlation via 1H detection 检测1H的H,X核相关IRInversion-Recovery 反(翻)转回复JRESJ-resolved spectroscopy J-分解谱LISLanthanide (chemical shift reagent ) Induced Shift 镧系(化学位移试剂)诱导位移LSRLanthanide Shift Reagent 镧系位移试剂MASMagic-Angle Spinning 魔角自旋MQ(C)Multiple-Quantum ( Coherence ) 多量子(相干)MQFMultiple-Quantum Filter 多量子滤波MQMASMultiple-Quantum Magic-Angle Spinning 多量子魔角自旋MQSMulti Quantum Spectroscopy 多量子谱NMRNuclear Magnetic Resonance 核磁共振NOENuclear Overhauser Effect 核Overhauser效应(NOE)NOESYNuclear Overhauser Effect Spectroscopy 二维NOE谱NQRNuclear Quadrupole Resonance 核四极共振PFGPulsed Gradient Field 脉冲梯度场PGSEPulsed Gradient Spin Echo 脉冲梯度自旋回波PRFTPartially Relaxed Fourier Transform 部分弛豫傅立叶变换PSDPhase-sensitive Detection 相敏检测PWPulse Width 脉宽RCTRelayed Coherence Transfer 接力相干转移RECSYMultistep Relayed Coherence Spectroscopy 多步接力相干谱REDORRotational Echo Double Resonance 旋转回波双共振RELAYRelayed Correlation Spectroscopy 接力相关谱RFRadio Frequency 射频ROESYRotating Frame Overhauser Effect Spectroscopy 旋转坐标系NOE谱ROTOROESY-TOCSY Relay ROESY-TOCSY 接力谱SCScalar Coupling 标量偶合SDDSSpin Decoupling Difference Spectroscopy 自旋去偶差谱SESpin Echo 自旋回波SECSYSpin-Echo Correlated Spectroscopy自旋回波相关谱SEDORSpin Echo Double Resonance 自旋回波双共振SEFTSpin-Echo Fourier Transform Spectroscopy (with J modulation) (J-调制)自旋回波傅立叶变换谱SELINCORSelective Inverse Correlation 选择性反相关SELINQUATESelective INADEQUATE 选择性双量子(实验)SFORDSingle Frequency Off-Resonance Decoupling 单频偏共振去偶SNR or S/NSignal-to-noise Ratio 信/ 燥比SQFSingle-Quantum Filter 单量子滤波SRSaturation-Recovery 饱和恢复TCFTime Correlation Function 时间相关涵数TOCSYTotal Correlation Spectroscopy 全(总)相关谱TOROTOCSY-ROESY Relay TOCSY-ROESY接力TQFTriple-Quantum Filter 三量子滤波WALTZ-16A broadband decoupling sequence 宽带去偶序列WATERGATEWater suppression pulse sequence 水峰压制脉冲序列WEFTWater Eliminated Fourier Transform 水峰消除傅立叶变换ZQ(C)Zero-Quantum (Coherence) 零量子相干ZQFZero-Quantum Filter 零量子滤波T1Longitudinal (spin-lattice) relaxation time for MZ 纵向(自旋-晶格)弛豫时间T2Transverse (spin-spin) relaxation time for Mxy 横向(自旋-自旋)弛豫时间tmmixing time 混合时间τ crotational correlation time 旋转相关时间。
a r X i v :c o n d -m a t /0411745v 1 [c o n d -m a t .s t r -e l ] 30 N o v 2004Resonating Valence Bond wave function:from lattice models to realistic systems Michele Casula a ,∗Seiji Yunoki a Claudio Attaccalite a Sandro Sorella a a International School for Advanced Studies (SISSA)Via Beirut 2,434014Trieste ,Italy and INFM Democritos National Simulation Center,Trieste,Italy1IntroductionThe variational approach,by providing an ansatz for the ground state(GS)wave function of a many body Hamiltonian,is one of the possible ways to analyze both qualitatively and quantitatively a physical system.Moreover,starting from the ana-lytical properties of the variational wave function one is able in principle to under-stand and explain the mechanism underling a physical phenomenon.For instance, the many body wave function of a quantum chemical system can reveal the elec-tronic structure of the compound and show what is the nature of its chemical bonds. On the other hand,a very good variational ansatz for a model Hamiltonian helps in predicting the ground state properties and the qualitative picture of the system. In particular,Pauling[1]in1949introduced for thefirst time the concept of the resonating valence bond(RVB)ansatz in order to describe the chemical structure of molecules such as benzene and nitrous oxide;the idea behind that concept is the superposition of all possible singlet pairs configurations which link the various nuclear sites of a compound.He gave a numerical estimate of the resonating en-ergy in accordance with thermochemical data,showing the stability of the ansatz with respect to a simple Hartree Fock valence bond approach.Few decades later, Anderson[2]in1973developed a mathematical description of the RVB wave func-tion,in discussing the ground state properties of a lattice frustrated model,i.e.the triangular two dimensional Heisenberg antiferromagnet for spin S=1/2.Hisfirst representation included an explicit sum over all the singlet pairs,which turned out to be cumbersome in making quantitative calculations,the number of configura-tions growing exponentially with the system size.Much later,in1987,with the aim tofind an explanation to high temperature(HTc)superconductivity by means of the variational approach,he found a much more powerful representation of the RVB state[3],based on the Gutzwiller projection P of a BCS stateP|Ψ =PΠk(u k+v k c†k,↑c†−k,↓)|0 ,(1) which in real space and for afixed number N of electrons takes the formP|Ψ =PΣr,r′ φ(r−r′)c†r,↑c†r′,↓ N/2|0 ,(2) where the pairing functionφis the Fourier transform of v k/u k.The Cooper pairs described by the BCS wave function are taken apart from each other by the re-pulsive Gutzwiller projection,which avoids doubly occupied sites;in this way the chargefluctuations present in the superconducting ansatz are frozen and the system can become an insulator even when,according to band theory,it should be metallic. The wave function(2)allows a natural and simple description of a superconducting state close to a Mott insulator,opening the possibility for a theoretical explanation of high temperature superconductivity,a phenomenon discovered in1986[4],but not fully understood until now.Indeed,soon after this important experimental dis-covery,Anderson[3]suggested that the Copper-Oxygen planes of cuprates could be effectively described by an RVB state,and extensive developments along this lines have subsequently taken place[5].From the RVB ansatz it is clear that the HTc superconductivity(SC)is essentially driven by the Coulomb and magnetic in-teractions,with a marginal role played by phonons,in spite of their crucial role in the standard BCS theory.As far as the magnetic properties are concerned,the RVB state is quite intriguing,because it represents an insulating phase of an electron model with an odd number of electrons per unit cell,with vanishing magnetic mo-ment and without anyfinite order parameter,namely a completely different picture from the conventional meanfield theory,where it is important to break the sym-metry in order to avoid the one electron per unit cell condition,incompatible with insulating behavior.This rather unconventional RVB state is therefore called spin liquid.The structure of the paper is organized as follows:in section2we present some numerical Monte Carlo studies of lattice models,where it is shown that,once the Jastrow factor is included,the RVB wave function is able to represent an excep-tionally good ansatz for the description of the zero temperature properties of the systems studied,in very good agreement with the available experimental data.In section3,we apply the same variational wave function to quantum chemical sys-tems,in particular to benzene,where we exploit the Pauling’s idea to study in a more systematic way the role of the resonating valence bonds in this molecule, by performing realistic ab initio simulations.In the last section we make ourfinal conclusions and highlight the perspectives of this study.2Lattice modelsIn order to mimic in a simple way the essential features of a real strongly corre-lated material,a lot of lattice models have been conceived so far.One of the most important is the t−J model,which takes into account not only the charge degrees of freedom but also the magnetic superexchange interactions:H=J <i,j> S i·S j−1ing Green function Monte Carlo(GFMC)simulations within thefixed node(FN) approximation up to242sites at various doping,and by calculating the order pa-rameter P d=2lim r→∞ity is the SC order parameter P d,but since its value is of the same order as the quasiparticle weight,it can be too small to be detected with a reasonable numerical precision.Therefore,with the aim offinding a good probe for superconductivity,E. Plekhanov et al.[7]defined a new suitable quantity Z c,which measure the pairing strength between two electrons added to the GS wave function,Z c=|F(shortest distance)|/state with afinite spin gap.The distinction between the metallic and the insulating state can be made both by using the Berry phase[9]and by analyzing the behavior of the spin and charge structure factor as q→0;in all cases,the RVB state with an appropriate Jastrow factor reproduces very well the known phases.Not only the conducting properties of a strongly correlated model can be repro-duced by the RVB ansatz,but also the magnetic behavior.For instance,in the case of the t−t′1D Hubbard model,the variational wave function drives the transition from the metallic to a dimerized insulator once U/t increases.For the2D spin1/2 AFM Heisenberg model on a triangular latticeH=J <i,j>S i·S j+J′ <<i,j>>S i·S j,(7) with J being the intra chain coupling and J′the inter chain one,the RVB wave function displays a stable spin liquid behavior,due to the strong frustration of the system in the regime with J′/J=0.33.Moreover for J=0.374meV,the model is able to represent a real system,the Cs2CuCl4compound studied by Coldea et al.[10,11]who performed neutron scattering experiments in order to determine the low lying magnetic excitations.It turns out that the experimental data show an unconventional behavior of the magnetic structure of the compound,with spin-1/2fractionalized excitations and incommensurability.The numerical study carried out in Ref.[12]highlights that the incommensurability comes from the frustration of the system and it is well described by the RVB ansatz.The most impressive correspondence between the experimental data and the numerical simulations is in the spin-1excitation spectrum(see Fig.2),obtained by GFMC calculations with an RVB state used as a guiding function.As also shown in the same Fig.2,it is evident that size effects are small and the comprairson between the numerical simulation and the experiment is particularly meaningful in this case.This is possible within a Quantum Monte Carlo(QMC)scheme that allows to work with large enough systems sizes.3Realistic systemsAs we have seen in the preceding section,the RVB wave function can represent very well the GS of some strongly correlated systems,which are described by a suitable lattice model,as in the case of Cs2CuCl4.Furthermore,following the seminal idea of Pauling,the applicability of the RVB ansatz is not limited to the strongly correlated regime close to the Mott transition or to spin frustrated models, but can be extended to describe the electronic structure and the properties of real-istic systems.Indeed the quantum chemistry community has quite widely used the concept of pairing in order to develop a variational wave function able to capture0.00.51.00.01.0k x /2πE n e r g y (m e V )parison of the lowest triplet excitations,evaluated by neutron scattering experi-ments on Cs 2CuCl 4compound[11],with the QMC results,obtained using the lattice fixed node approximation and the projected BCS state to approximate the signs of the ground state wave function[12].There is no fitting parameter in the above comparison.the most significant part of the electronic correlation.Although only in 1987Ander-son discovered the link between the explicit resonating valence bond representation and the projected-BCS wave function,already in the 50’s Hurley et al.[13]intro-duced the product of pairing functions as ansatz in quantum chemistry.Their wave function was called antisymmetrized geminal power (AGP)that has been shown to be the particle conserving version of the BCS ansatz [14].It includes the sin-gle determinantal wave function,i.e.the uncorrelated state,as a special case and introduces correlation effects in a straightforward way,through the expansion of the pairing function (in this context called geminal):therefore it was studied as a possible alternative to the other multideterminantal approaches,but his success to describe correlation was very much limited,because -we believe -the Jastrow term was not included.For an unpolarized system containing N electrons (the first N/2coordinates are referred to the up spin electrons)the AGP wave function is a N 2pairing matrix determinant,which reads:ΨAGP (r 1,...,r N )=det ΦAGP (r i ,r j +N/2)for 1≤i,j ≤N/2,(8)and the geminal function is expanded over an atomic basis:ΦAGP(r↑,r↓)= l,m,a,bλl,m a,bφa,l(r↑)φb,m(r↓),(9) where indices l,m span different orbitals centered on atoms a,b,and i,j are coor-dinates of spin up and down electrons respectively.It is possible to generalize the AGP many body wave function in order to deal also with a polarized system.The geminal function may be viewed as an extension of the simple HF wave function and in fact it coincides with HF only when the number M of non zero eigenvalues of theλmatrix is equal to N/2.It should be noticed that Eq.9is exactly the pairing function in Eq.2,apart from the inhomogeneity of the former which reflects the absence of the translational invariance of a generic molecular compound.One of the main advantages of dealing with an AGP wave function is its computational cost.Indeed one can prove that expanding the geminal by adding more terms in the sum of Eq.9is equivalent to introduce more Slater determinants in the many body wave function,i.e.to have a multireference total wave function,similar to those obtained in configuration interaction(CI)or coupled cluster(CC)theories.But the computational cost of the AGP ansatz still remains the same,since one needs to compute always just a single determinant.This property is expected to be impor-tant for large scale simulations,since the number of determinants necessary for a satisfactory accuracy increases fast with the system size,limiting very much the applicability of CI and CC methods.The simplest example which shows the essence of the AGP ansatz is the H2molecule. It is well known from textbooks that molecular orbital(MO)theory at the HF level fails in predicting the binding energy and the bond length of H2,just because it overestimates the ionic terms contribution in the total wave function if the anti-bonding molecular orbitals are not included.In spite of this,the correct geminal expansion readsΦAGP(r,r′)=λφA1s(r)φA1s(r′)+φA1s(r)φB1s(r′)+A↔B,(10) whereλcan be tuned to regulate the weight of the different resonating contributions and fulfill the size consistency when the two nuclei are infinitely apart from each other(λ→0).Notice also that the chemical bond is represented in the geminal by a non vanishing value ofλbetween the orbitals centered on the two different sites between which the bond is formed.Let us consider now a gas of hydrogen dimers:in this case the geminal will contain not only the terms in Eq.10,valid for just two sites,but also the contributions from all the nuclei in the system.It is clear that the AGP wave function will allow strong chargefluctuations around each H pair,and therefore molecular sites with zero and four electrons are permitted,leading to poor variational energies.For thisreason,the AGP alone is not sufficient,and it is necessary to introduce a Gutzwiller-Jastrow factor in order to dump the expensive chargefluctuations.Moreover only the AGP-Jastrow(AGP-J)wave function is the real counterpart of the RVB ansatz of strongly correlated lattice models,since the projection is essential to get the correct distribution of the pairing in the compound.The AGP-J wave function has shown to be effective both in atomic[15]and in molecular systems[16].Both the geminal and the Jastrow play a crucial role in determining the remarkable accuracy of the many body state:the former permits the correct treatment of the nondynamic correlation effects,the latter allows the local conservation of charge in a complex molecular system and also to fulfill the cusp conditions which make the geminal expansion rapidly converging to the lowest possible variational energies.The study of the AGP-J variational ansatz with the inclusion of two and three body Jastrow factors is possible by means of QMC techniques,which can deal explicitly with correlated wave functions.The optimization procedure,necessary to reach the lowest variational energy within the given variational freedom,is feasible also in a stochastic Monte Carlo framework,after the recent developments in thisfield ([17,18]).Benzene is the largest compound we have studied so far;in order to represent its 1A1g GS we have used a very simple one particle basis set:for the AGP,a2s1p double zeta(DZ)Slater set centered on the carbon atoms and a1s single zeta(SZ) on the hydrogen.For the3-body Jastrow,a1s1p DZ Gaussian set centered only on the carbon sites has been chosen.We started from a non resonating2-body Jastrow wave function,which dimerizes the ring and breaks the full rotational symmetry, leading to the Kekul´e configuration.As we expected,the inclusion of the resonance between the two possible Kekul´e states lowers the variational Monte Carlo(VMC) energy by more than2eV.The wave function is further improved by adding another type of resonance,that includes also the Dewar contributions connecting third near-est neighbor carbons.As reported in Tab.1,the gain with respect to the simplest Kekul´e wave function amounts to4.2eV,but the main improvement arises from the further inclusion of the three body Jastrow factor,which allows to recover the 89%of the total atomization energy at the VMC level.The main effect of the three body term is to keep the total charge around the carbon sites to approximately six electrons,thus penalizing the double occupation of the p z orbitals.A more clear behavior is found by carrying out diffusion Monte Carlo(DMC)sim-ulations:the interplay between the resonance among different structures and the Gutzwiller-like correlation refines more and more the nodal surface topology,thus lowering the DMC energy by significant amounts.Therefore it is crucial to insert into the variational wave function all these ingredients in order to have an adequate description of the molecule.For instance,in Fig.3we report the density surface difference between the non-resonating3-body Jastrow wave function,which breaks the C6rotational invariance,and the resonating Kekul´e structure,which preserves the correct A1g symmetry:the change in the electronic structure is significant.Thebest result for the binding energy is obtained with the Kekul´e Dewar resonating 3body wave function,which recovers the 98,6%of the total atomization energy with an absolute error of 0.84(8)eV .As Pauling [1]first pointed out,benzene is a genuine RVB system,indeed it is well described by the AGP-J wave function.-0.05-0.025 0 0.0250.056ρ(r) resonating Kekule - ρ(r) non resonating4-0.05-0.0250.0250.051/a 2y Fig.3.Electron density (atomic units)projected on the plane of C 6H 6.The surface plot shows the difference between the resonating valence bond wave function,with the correct A 1g symmetry of the molecule,and a non-resonating one,which has the symmetry of the Hartree–Fock wave function.Table 1Binding energies in eV obtained by variational (∆V MC )and diffusion (∆DMC )Monte Carlo calculations with different trial wave functions for benzene.In order to calculate the binding energies yielded by the two–body Jastrow,we used the atomic energies reported in Ref.[15].The percentages (∆V MC (%)and ∆DMC (%))of the total binding energies are also reported.Data are taken from Ref.[16].4ConclusionsIn this paper we have described a very powerful variational ansatz that has been introduced to understand the properties of strongly correlated materials just after the discovery of HTc superconductivity.We have shown that the RVB wave func-tion paradigm is not only useful for describing the GS and low lying excitations of lattice models,such as Heisenberg or t−J model,but is also suited for approach-ing realistic systems,by considering explicitly the long range Coulomb repulsion and the full quantum mechanical interaction among electrons within the Born-Oppenheimer approximation.Moreover,by using the same type of wave function both for lattice model and realistic system,it is possible to have some insight in the electron correlation behind the latter and to check the reliability of the model in predicting the properties of a real compund.For instance the benzene molecule can be idealized by a six site ring Heisenberg model with one electron per site,in order to mimic the out of plane bonds of the real molecule,coming from the p z electrons and leading to an antiferromagnetic superexchange interaction between nearest neighbor carbon sites.We have studied in this case the spin–spin correla-tionsC(i)= S z0S z i ,(11) where the index i labels consecutively the carbon sites starting from the reference 0,and the dimer–dimer correlationsD(i)=D0(i)/C(1)2−1,D0(i)= (S z0S z1)(S z i S z i+1) .(12)Both correlation functions have to decay in an infinite ring,when there is neither magnetic(C(i)→0),nor dimer(D(i)→0)long range order as in the true spin liquid ground state of the1D Heisenberg infinite ring.Indeed,as shown in the inset of Fig.(4),the dimer–dimer correlations of benzene are remarkably well reproduced by the ones of the six site Heisenberg ring,whereas the spin–spin correlation of the molecule appears to decay faster than the corre-sponding one of the model.Though it is not possible to make conclusions on long range properties of afinite molecular system,our results suggest that the benzene molecule can be considered closer to a spin liquid,rather than to a dimerized state, because,as well known,the Heisenberg model ground state is a spin liquid and displays spontaneous dimerization only when a sizable next-nearest frustrating su-perexchange interaction is turned on.[19]As any meaningful variational ansatz,the RVB approach naturally brings a new way of understanding the many-body problem,as for instance the Hartree-Fock-0.2-0.10.1 0.20.3 0 1 2 3s p i n s p i n distance on the ring Fig.4.Spin–spin correlation function for benzene (full squares)and for the Heisenberg model (empty circles).In the inset,also the dimer–dimer correlation function is reported with the same notation.For the benzene molecule,these correlation are obtained by a coarse grain analysis in which the “site”is defined to be a cylinder of radius 1.3a 0centered on the carbon nuclei,with a cut off core (i.e.we considered only the points with |z |>0.8a 0).All the results are pure expectation values obtained from forward walking calculations.theory helped to interpret the periodic table of elements,or to establish on theo-retical grounds the band theory of insulators.With the RVB paradigm,many un-usual phenomena now appear to be possibly explained in a simple and consistent framework:the role of correlation in Mott insulators,or the explanation of HTc superconductivity,and finally the fractionalization of spin excitations,which was supposed to take place only in quasi-one dimensional systems,and instead it has been recently detected in higher dimensions.[10]All these phenomena cannot be understood not even qualitatively within a mean field Hartree–Fock theory,as the important ingredient missing in the latter approach is just the correlation,that can lead to essentialy new effects.In our opinion the RVB wave function is a natural extension of the Hartree-Fock one,to which it reduces whenever the correlation term is switched off.In some sense the determinantal part is useful to represent the electronic density and all the one body properties of an electronic system.On the other hand the Jastrow term is necessary to take correctly into account the density–density correlation,N (r )=<n 0n r >.The long range behavior of N (r )discriminates a metal,dis-playing Friedel oscillations at 4k F where k F is the Fermi momentum,from an insulator,which shows an exponentially localized correlation N (r )≃exp(−r/ξ),where ξis the corresponding characteristic length.The Jastrow correlation can be-come non trivial when the determinantal part acquires a non conventional meaning. For instance,the determinantal part in the RVB wave function could describe a su-perconductor or a metal,but the presence of the Jastrow factor is able to turn the system into an insulator,by correlating the electrons in a non trivial way.On the other hand,superconductivity can naturally become stable in a system with only repulsive interactions,despite the BCS theory would require an effective attraction mediated by the phonons.For all the above reasons we believe that it is the right time to make an effort to study complex electronic systems by means of this new paradigm,especially for discovering new challenging effects in which the role of correlation is dominant. References[1]L.Pauling,The nature of the chemical bond,Cornell University Press,Ithaca,NewYork,Third edition.[2]P.W.Anderson,Mater.Res.Bull.(8)(1973)153.[3]P.W.Anderson,Science(235)(1987)1196.[4]J.G.Bednorz,K.A.Muller,Z.Phys.(B64)(1986)189.[5]P.W.Anderson,P.A.Lee,M.Randeria,T.M.Rice,N.Trivedi,F.C.Zhang,cond-mat/0311467.[6]S.Sorella,G.B.Martins,F.Becca,C.Gazza,L.Capriotti,A.Parola,E.Dagotto,Phys.Rev.Lett.(88)(2002)117002.[7] E.Plekhanov,F.Becca,S.Sorella,cond-mat/0404206.[8]M.Capello,F.Becca,M.Fabrizio,S.Sorella,E.Tosatti,cond-mat/0403430.[9]R.Resta,S.Sorella,Phys.Rev.Lett.(74)(1995)4738.[10]R.Coldea,D.A.Tennant,A.M.Tsvelik,Z.Tylczynski,Phys.Rev.Lett(86)(2001)1335.[11]R.Coldea,D.A.Tennant,Z.Tylczynski,Phys.Rev.B(68)(2001)134424.[12]S.Yunoki,S.Sorella,Phys.Rev.Lett(92)(2004)157003.[13]A.C.Hurley,J.E.Lennard-Jones,J.A.Pople,Proc.R.Soc.London(Ser.A220)(1953)446.[14]J.R.Schrieffer,The Theory of Superconductivity,Addison–Wesley,5th printing,1994.[15]M.Casula,S.Sorella,J.Chem.Phys.(119)(2003)6500.[16]M.Casula,C.Attaccalite,S.Sorella,cond-mat/0409644.[17]S.Sorella,Phys.Rev.B(64)(2001)024512.[18]F.Schaultz,C.Filippi,J.Chem.Phys.(120)(2004)10931.[19]S.White,I.Affleck,Phys.Rev.B(54)(1996)9862.。