巧用定积分求极限(数学分析)
- 格式:doc
- 大小:681.50 KB
- 文档页数:27
《数学分析》中极限问题的浅析极限理论是数学分析这门学科的基础,极限方法是数学分析的基本方法,通过极限思想、借助极限工具使数学分析内容更加严谨,可以说,极限贯穿整个数学分析的始末,学好极限十分重要。
完整的极限理论的建立,依赖于实数的基本性质,即实数系的所谓连续性,我们已经熟悉的单调有界原理,就是连续性的一个等价命题。
极限问题类型很多,变化复杂,解决极限问题在数学分析中更显得尤为重要。
这里举一些比较典型的实例,希望从中归纳出解决极限问题的方法。
下面举例说明求解极限问题的若干方法,其主要是根据极限的定义、运算法则和性质、定理,以及数学上的其他知识和技巧。
一 求数列极限(一) 利用迫敛性定理求极限首先说明迫敛性定理[1]求极限,这是一种简单而常用的方法。
例1、证明 (1) (a > 0)(2) 证明: (1)当a = 1时,等式显然成立。
当a >1时,令则:a = (1 + h n )n = 1 + nh n + 故0 < h n <h n = 0即: (1 + h n ) = 1 当 0 < a < 1时:lim ∞→n 1=n a lim ∞→n 1=n n n n h a +=1 (h n > 0)n nn n nh h h n n >++- 22)1(na由迫敛性定理lim∞→n lim ∞→n =n a lim∞→n lim ∞→n =n a lim ∞→n =na 11 1 lim ∞→n n a1= 1(2) 设n = (1 + h n )n = 1 + nh n +>由迫敛性定理得 h n = 0从而:例:求极限即:e n由迫敛性定理可得:从而:由连续函数定义知:极限定义是判定极限是某个数的充要条件,因此有时要用到它的否定形式[2],现叙述如下:(二)单调有界原理求极限单调有界原理是判定极限存在的重要法则,虽然它不能判定极限是什么nn h n +=1其中h n > 0 则2≥n nn n h h n n ++- 22)1(22)1(nh n n -即: 0 < h n <)2(12≥-n n lim∞→n lim ∞→n =n n lim ∞→n (1 + h n ) = 1lim+→0λ⎪⎪⎭⎫+++ ⎝⎛λλλn e e e n 21时:解:当0>λλλλλnnn ne e e e ≤++< 1n n e n e e λλλλ≤ ⎝⎛⎪⎪⎭⎫++≤ 1令 +→0λlim +→0n n n e e e e =⎪⎪⎭⎫+++ ⎝⎛λλλλ21lim+→0n λn ee n n =⎪⎪⎭⎫⎝⎛++λλ 1⋅λ{},,,对任意自然数,若存在设数列01000N N N a n >∃>ε{}为极限。
浅谈数学分析中求极限的常用方法Preliminary analysis on the common method of limit problem inmathematical analysis摘要求极限问题是数学分析学习的基础,也是其极为重要的内容之一。
极限问题分为函数极限和数列极限两类,其他很多重要的数学概念的学习都建立在极限基础上,比如导数,积分,级数等等。
因此要学好数学分析,就要学好极限。
解决极限问题看似简单,但却很抽象,往往很难求出。
我们不能仅仅局限于用极限的概念求极限,我们应该掌握多种方法,并且运用各种方法结合,快速而准确的求出极限。
因为极限贯穿于数学分析学习的始终,许多数学概念是从极限出发而得出的。
所以反过来,我们也可以通过有关于极限的数学概念而求出极限。
但是这并不是非常容易的事情,因为极限问题过于抽象,所以我们应该单独的学习各种方法针对性的求极限,最后再进行整合,把多种方法相结合来求极限。
由此可以看出求极限问题是十分繁琐的,针对这种情况,本文中介绍了多种基本的求极限方法和注意事项,并且通过例题的运算过程清晰明了的展现了极限问题的解决过程,使极限问题变得相对简单易懂,为数学分析的学习打下基础。
关键词:数列极限;函数极限;方法Preliminary analysis on the common method of limit problem inmathematical analysisAbstractLimit problem is the base of mathematical analysis. It can be divided into function limit and sequence limit, both of them are very important. Mary other important mathematical ideas are based on limit, such as derivative integral and progression. If one wants to learn mathematical analysis well, he must learn limit well. It is usually very hard to solve limit problem, it seems to be simple, but rather abstract in fact we can not be restricted to solve limit problem by using the concept of limit. We should master multiple methods and use them together to solve the limit problem quickly and accurately. Limit exists in the whole process of mathematical analysis many mathematical concepts start from limit. On the contrary, we can use these concepts to solve limit problem. All these are no easy things. Because of the abstract of limit problem, we should learn multiple of methods in a target way and eventually combine them to solve limit problem. We can see that solving limit problem is very complicated. Aiming at this circumstances, this article introduce multiple basic ways to solve the problem and master needing attention, The calculation of example shows the solving process of limit problem. It make limit problem easier to understand and provide a foothold for the study of mathematical analysis.目录摘要 (I)Abstract (III)引言 (1)1 极限相关的概念 (2)1.1 数列极限 (2)1.2 函数极限 (2)1.3 函数极限和数列极限的关系 (3)2 求极限的常用方法 (4)2.1 极限的四则运算法则 (4)2.2 两个重要极限 (5)2.3 用函数的连续性求极限 (7)2.4 等价无穷小代换 (8)2.5 洛必达法则 (9)2.6 根据定积分的定义求极限 (11)2.7 利用泰勒公式求极限 (12)2.8 利用极限存在准则求极限 (13)2.9 拉格朗日中值定理求极限 (15)3 求极限的小技巧 (15)3.1 有界函数与一个无穷小量的积仍为无穷小量 (16)3.2 换元法 (16)3.3 数列极限转化成函数极限 (17)结论 (18)参考文献 (19)引言求数列极限和函数极限是数学分析中的基础,求极限问题贯穿在数学分析学习的始终。
探讨数学分析中求极限的方法摘要:极限的概念是高等数学中一个最基本、最重要的概念 ,极限理论是研究连续、导数、积分、级数等的基本工具 ,因此正确理解和运用极限的概念、掌握极限的求法 ,对学好高等数学是十分重要的。
极限思想贯穿整个高等数学的课程之中,而给定函数的极限的求法则成为极限思想的基础,因此有必要总结极限的求法。
本文详细介绍了一些典型的极限计算方法 ,给出解题思路及相应技巧 ,并辅以典型的例题 ,最后还强调了求极限时的注意事项。
关键词:极限;类型;方法。
一、 利用函数连续性求极限由于初等函数在定义区间内处处连续,所以求初等函数在定义区内任意点处的极限值,就是求其函数在该点处的函数值。
由函数)(x f y =在x 0 点连续定义知,)()(lim 00x f x f x x =→。
例1 求)52(lim 22-+→x x x . 解 ∵52)(2-+=x x x f 是初等函数,在其定义域(全体实数)内连续∴所以用代入法求出该点的函数值就可。
即原式=2⨯2+2⨯2-5=3 例2 求632lim 220++-→x x x x . 解 由于632)(22++-=x x x x f 在x=0处连续 所以2163632lim 220==++-→x x x x 例3 求1352lim 22+-+→x x x x分析 由于552225lim lim lim 2)52(lim 2222222=-+⨯=-+=-+→→→→x x x x x x x x 71231lim lim 3)13(lim 222=+⨯=+=+→→→x x x x x所以采用直接代入法解 原式=751235222)13(lim )52(lim 2222=+⨯-+⨯=+-+→→x x x x x二、利用无穷小的性质求极限我们知道无穷小的性质有:性质1:有限个有界函数与无穷小的乘积为无穷。
性质2:在自变量同一变化的过程中无穷大量的倒数为无穷小。
分析例说求极限的几种方法导读:四那么运算法那么指:如果两个函数都有极限,那么这两个函数的和、差、积、商组成的函数的极限分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为零法那么本身很简单,但有些函数求极限往往不能直接利用法那么需要先对函数做某些恒等变形或化简,常用的变形或化简方法主要有分式的分子或分母分解因式、分式的约分或通分、分子或分母的有理化、三角函数的恒等变形等。
利用单调有界准那么求极限,首先讨论数列的单调性和有界性,再解方程可求出极限。
总之,极限的求法很多,但如果在解题过程能根据算式的特点注意使用适当的解题方法,那么可以化难为易,使问题得到圆满解决,并可提高解题效率。
:数列,函数,极限,求法极限思想贯穿于整个微积分的课程之中,掌握好求极限的方法是分必要的。
由于极限的求法众多,且灵活性强,因此有必要对极限的求法加以归纳总结,本文就师范数学微积分的内容总结了如F 12种方法:【一】利用极限四那么运算法那么求极限四那么运算法那么指:如果两个函数都有极限,那么这两个函数的和、差、积、商组成的函数的极限分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为零)。
法那么本身很简单,但有些函数求极限往往不能直接利用法那么,需要先对函数做某些恒等变形或化简,常用的变形或化简方法主要有分式的分子或分母分解因式、分式的约分或通分、分子或分母的有理化、三角函数的恒等变形等。
解:原式== 例2.解:原式=【二】利用两个重要极限求极限两个重要极限为:,或它们的扩展形式为:,或,利用两个重要极限求极限,往往需要作适当的变换,将所求极限的函数变形为重要极限或重要极限的扩展形式,再利用重要极限的结论和极限的四那么运算法那么求极限。
例3.解:原式=。
例4.解:原式=。
例5.解:原式=【三】利用函数的连续性求极限由函数f(x)在x0点连续定义知,,由于初等函数在定义区间内处处连续,所以求初等函数在定义区间内任意点处的极限值,只要求其函数在该点处的函数值,因此可直接代入计算。
定积分的和式极限
数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值a不断地逼近而被人为规定为“永远靠近而不停止”。
另外,极限是一种“变化状态”的描述。
极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。
所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。
用音速思想解决问题的通常步骤可以归纳为:
对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。
音速思想就是微积分的基本思想,就是数学分析中的一系列关键概念,例如函数的连续性、导数(为0获得极大值)以及的定分数等等都就是借助音速去定义的。
如果必须反问:“数学分析就是一门什么学科?”那么可以概括地说:“数学分析就是用音速思想去研究函数的一门学科,并且计算结果误差大至难于想象,因此可以忽略不计。
㊀㊀㊀㊀数学学习与研究㊀2021 36浅谈数学分析中极限的求法浅谈数学分析中极限的求法Һ马金玲㊀(吉林师范大学,吉林㊀长春㊀130000)㊀㊀ʌ摘要ɔ极限理论是帮助学生将对数学的有限认识拓展到无限认识㊁近似认识拓展到精确认识的一种方法,在高等数学的学习中起到基础性的作用.在极限理论中存在两个基本问题,分别是极限存在性的证明和极限值的计算,二者密切相关,如果能求出某极限的值,则其存在性就会被证实,因此,如何求解极限尤为重要.但由于数列或函数形式的多样性和复杂性,在求解其极限值时不可能找到统一的方法,只能根据具体情况具体分析和处理.本文主要介绍一些极限的基本类型,提供一些求解极限的常用方法和技巧,并探究在某些方法中的转化思想.ʌ关键词ɔ极限;单调有界;重要极限;洛必达法则;归纳总结在数学分析的学习中,我们发现数列和函数极限的形式很复杂,因此,求解极限的方法也多种多样,当然,对于不同的方法有其各自的优势及适用范围.本文通过对典型例题的探究求解,归纳总结出一些常用的求解方法,以探究数学中的技巧性,提升学生对数学知识体系的梳理能力.另外,本文旨在通过应用无穷小量㊁重要极限㊁洛必达法则等方法,在求解极限的过程中体会数学思维的转化,感受数学知识的紧密联系,构建条理清晰㊁逻辑严谨的数学知识框架.一㊁极限的定义数列极限的ε N定义㊀设{an}为数列,a为定数.若对任给的正数ε,总存在正整数N,使得当n>N时有|an-a|<ε,则称数列{an}收敛于a,定数a称为数列{an}的极限,并记作limnңɕan=a或anңa(nңɕ).函数极限的ε δ定义㊀设函数f在点x0的某个空心邻域Uʎ(x0;δᶄ)内有定义,A为定数.若对任给的ε>0,存在正数δ(<δᶄ),使得当0<|x-x0|<δ时有|f(x)-A|<ε,则称函数f当x趋于x0时以A为极限,记作limxңx0f(x)=A或f(x)ңA(xңx0).二㊁极限的求解1.单调有界定理定理1㊀在实数域中,若数列{an}单调且有界,则数列{an}一定存在极限.注㊀(1)在应用单调有界定理求解极限时,首先要满足数列{an}是单调数列,即满足anɤan+1(或anȡan+1),其次要保证数列{an}有界.(2)证{an}的单调性:①考察an+1-an的符号;②当an>0时,考察an+1anȡ1或an+1anɤ1æèçöø÷;③若得到一个一元可导函数的递推公式an+1=f(an),则可求导,然后根据fᶄ(x)的符号来确定其单调性.证{an}的有界性常利用数学归纳法或已知不等式推证.例1㊀设a1=4,an=1an-1+an-12,n=2,3, ,求limnңɕan.解㊀由于an+1-an=a2n+2-2a2n2an=2-a2n2an.接下来证2-a2nɤ0,即证anȡ2,n=1,2, 由于an2=121an-1+an-12æèçöø÷ȡ1an-1㊃an-12=12,故{an}单调递减,且其下界为2.根据定理1可判断数列{an},故设limnңɕan=a(a>0).又对上式两边取极限,得a-a=2-a22a,解得a=2,即limnңɕan=2.归纳小结㊀在应用单调有界定理求解数列极限时,首先要证明的是数列存在极限,也就要证明数列满足单调性和有界性.证明单调性的过程考查了学生对初等数学中数列知识的掌握,其证明方法的选用要根据具体问题而定;而在证明有界性时常应用数学归纳法.在证明极限存在时应分两步走,且将高等数学的问题转化为初等数学的知识,让难题迎刃而解,最后依据极限的唯一性求出极限值.值得注意的是,单调有界定理只适用于满足条件的数列求解极限问题.2.迫敛性(1)设有三个数列{an},{bn},{cn},满足:∃N,∀n>N,有anɤbnɤcn,且limnңɕan=limnңɕcn=l,则limnңɕbn=l.(2)设有三个函数f(x),g(x),h(x)在Uʎ(a;δ)内有定义,若它们满足f(x)ɤg(x)ɤh(x),xɪUʎ(a;δ),且limxңaf(x)=limxңah(x)=A,则limxңag(x)=A.例2㊀求limnңɕ1n2+1+1n2+2+ +1n2+næèçöø÷.解㊀在这n个数1n2+1,1n2+2, ,1n2+n中,1n2+1最大,1n2+n最小,因而nn2+nɤ1n2+1+1n2+2+ +1n2+nɤnn2+1,而且limnңɕnn2+n=limnңɕ11+1n=1,limnңɕnn2+1=limnңɕ11+1n2=1,所以,由迫敛性得. All Rights Reserved.㊀㊀㊀㊀㊀数学学习与研究㊀2021 36limnңɕ1n2+1+1n2+2+ +1n2+næèçöø÷=1.归纳小结㊀在应用迫敛性求解数列或函数极限时,可将对极限的直接求解转化为先对极限变量进行放缩,再找出易求得极限的上下界,从而间接求得原极限.值得注意的是,在遇到极限变量可以进行放缩的求解极限问题时可以优先考虑迫敛性.3.两个重要极限(1)limxң0sinxx=1;(2)limxңɕ1+1x()x=e.注㊀在应用重要极限求解极限时,首先要进行初等变形.这里的初等变形是指用初等数学的方法将数列或函数转化成上述两个重要极限的形式.例3㊀求limxң0tanx-sinx2x3.解㊀将原式中的函数凑成如下形式,tanx-sinx2x3=12㊃1cosx㊃sinxx㊃1-cosxx2=12㊃1cosx㊃sinxx㊃2sin2x2x2=12㊃12cosx㊃sinxx㊃sinx2x2æèçççöø÷÷÷2,又limxң012cosx=12,limxң0sinxx=1,limxң0sinx2x2æèçççöø÷÷÷2=1,于是有limxң0tanx-sinx2x3=14.定理2(归结原则)㊀设函数f在Uʎ(x0;δᶄ)上有定义,那么limxңx0f(x)存在等价于:对任何Uʎ(x0;δᶄ)中的数列{xn},满足limnңɕxn=x0,且limnңɕf(xn)都存在且相等.注㊀归结原则在数列(离散变量)极限与函数(连续变量)极限之间建立起了桥梁,使二者在一定条件下可以相互转化,这对处理极限问题起到了重要的作用.例4㊀求limnңɕ1+1n+1n2æèçöø÷n.解㊀令f(x)=1+1x+1x2æèçöø÷x,则limxң+ɕf(x)=limxң+ɕ1+x+1x2æèçöø÷x2x+1㊃x+1x=limxң+ɕ1+x+1x2æèçöø÷x2x+1éëêùûúx+1x=e,由归结原则,得limnңɕ1+1n+1n2æèçöø÷n=e.归纳小结㊀在应用两个重要极限求解极限问题时,首先要应用初等数学的方法将数列或函数化成两个重要极限的形式之一,再进行求解.应用该方法的关键就在于将原极限形式 凑成 上述两个重要极限.值得注意的是,在遇到三角函数形式和 1ɕ 形式的极限问题时要优先考虑应用两个重要极限.另外,在求解 1ɕ 形式的数列极限时,要结合归结原则将数列问题转化成函数问题,再进行求解.4.洛必达法则洛必达法则是求不定式极限的重要方法,它将两函数之比的极限求解问题转化为两函数导数之比的极限求解问题.其几何意义是:两曲线上的点的纵坐标之比的极限可转化为两曲线上的点的切线斜率之比的极限.不定式极限包含两种基本形式:00与ɕɕ.(1)00型不定式极限定理3㊀若函数f(x)与g(x)满足条件:(ⅰ)limxңx0f(x)=limxңx0g(x)=0;(ⅱ)在点x0的某空心邻域Uʎx0()上,f(x)与g(x)都可导,且gᶄ(x)ʂ0;(ⅲ)limxңx0fᶄ(x)gᶄ(x)=A(AɪR,或为ʃɕ,ɕ),则limxңx0f(x)g(x)=limxңx0fᶄ(x)gᶄ(x)=A.例5㊀求limxңπ2+cosxtan2x.解㊀因为f(x)=2+cosx与g(x)=tan2x在点x0=π的邻域上满足(ⅰ)与(ⅱ),又limxңπfᶄ(x)gᶄ(x)=limxңπ-sinx2tanxsec2x=-limxңπcos3x2=12.故由洛必达法则求得limxңπf(x)g(x)=limxңπfᶄ(x)gᶄ(x)=12.(2)ɕɕ型不定式极限定理4㊀若函数f(x)与g(x)满足条件:(ⅰ)在Uʎ+(x0)上二者皆可导,且gᶄ(x)ʂ0;(ⅱ)limxңx+0f(x)=limxңx+0g(x)=ɕ;(ⅲ)limxңx+0fᶄ(x)gᶄ(x)=A(AɪR,或为ʃɕ,ɕ),则limxңx+0f(x)g(x)=limxңx+0fᶄ(x)gᶄ(x)=A.例6㊀求limxң+ɕexx3+1.解㊀可判定该极限是ɕɕ型不定式极限,故直接应用洛必达法则,有limxң+ɕexx3+1=limxң+ɕex3x2=limxң+ɕex6x=limxң+ɕex6=+ɕ.归纳小结㊀应用洛必达法则求解极限问题,其实质在于将求解两个函数之比的极限转化为两函数导数之比的极限,使得复杂函数的求极限问题转化为简单函数的求极限问题.但在应用洛必达法则时有些需要注意的问题:(1)不是所有比式极限都可以应用洛必达法则求解,一方面必须注意它是不是不定式极限,另一方面要看是否满. All Rights Reserved.㊀㊀㊀㊀数学学习与研究㊀2021 36足洛必达法则的应用条件;(2)在求解极限的过程中,有时可能需要对fᶄ(x)与gᶄ(x)再应用洛必达法则,甚至有时需要对f(x)与g(x)的高阶导数反复使用洛必达法则.5.定积分利用定积分求极限,通常有两种类型:一种是应用定积分的定义求解数列极限,另一种是应用变限积分和洛必达法则求解极限.(1)用定积分定义求解数列极限例7㊀求limnңɕn1(n+1)2+1(n+2)2+ +1(n+n)2éëêùûú.解㊀做如下变形:令J=limnңɕ11+1n()2+11+2n()2+ +11+nn()2éëêêêùûúúú㊃1n=limnңɕðni=111+in()2㊃1n.不难看出,其中的和式是函数f(x)=1(1+x)2在区间[0,1]上的一个积分和.(这里取等分分割,Δxi=1n,ξi=inɪi-1n,in[],i=1,2, ,n).所以有㊀limnңɕn1n+1()2+1n+2()2+ +1(n+n)2éëêùûú=ʏ101(1+x)2dx=ʏ101(1+x)2d(1+x)=12.例8㊀求limnңɕ1n4(1+23+ +n3).解㊀做如下变形:㊀limnңɕ1n4(1+23+ +n3)=limnңɕ1n()3+2n()3+ +nn()3[]㊃1n=limnңɕðni=1in()3㊃1n.不难看出,其中的和式是函数f(x)=x3在区间[0,1]上的一个积分和.(这里取等分分割,Δxi=1n,ξi=inɪi-1n,in[],i=1,2, ,n),所以有limnңɕ1n41+23+ +n3()=ʏ10x3dx=14.归纳小结㊀在应用定积分的定义求极限的过程中,我们将所求的数列极限转化归结为某可积函数f(x)在某区间[a,b]上的某特殊的积分和,则该数列极限就等于ʏbaf(x)dx.通过对一些例题的探究,我们发现这些和式极限中的每一项都可以转化成in的形式,并且能提出形如1n的公因式,这样就可以把极限和转化为定积分来计算了.这一规律有助于求解某些和式极限问题.(2)应用变限积分求解极限定理5(原函数存在定理)㊀若f在[a,b]上连续,则函数Ф在[a,b]上处处可导,且Фᶄ(X)=ddxʏxaf(t)dt=f(x),xɪ[a,b].例9㊀求limxң01xʏx0(1+sin2t)1tdt.解㊀这是一个00型的不定式极限,先应用洛必达法则,可以得到㊀limxң01xʏx0(1+sin2t)1tdt=limxң0ʏx0(1+sin2t)1tdt()ᶄxᶄ=limxң0(1+sin2x)1x,(1ɕ)恒等变换后有(1+sin2x)1x=e1xln(1+sin2x),于是有㊀limxң01xʏx0(1+sin2t)1tdt=limxң0(1+sin2x)1x=elim1xln(1+sin2x)=e2.归纳小结㊀应用变限积分求解极限的过程中,主要是将原函数存在定理与洛必达法则相结合,进而求得原极限.三㊁结㊀语本文主要介绍了求解极限的多种方法.在极限理论中,求解极限问题占据着重要地位,由于极限的类型复杂繁多,我们根据对典型例题的探究,归纳总结了求解极限不同方法的适用条件及其中所蕴含的转化思想.因此,在面对极限求解问题时,我们首先要判断所求极限的类型,再选取合适的方法进行求解.当然,在选择方法时,要注意其适用条件,这一过程是非常重要的,否则会得出错误的结论.另外,在求解极限的过程中,数学思维的多样转化也让我们体会到了数学知识之间的紧密联系,从而建立了逻辑清晰的数学知识体系.ʌ参考文献ɔ[1]华东师范大学数学系.数学分析:第4版[M].北京:高等教育出版社,2011.[2]张天德,孙书荣.数学分析辅导及习题精解[M].延吉:延边大学出版社,2011.[3]旷雨阳,刘维江.数学分析精要解读[M].合肥:中国科学技术大学出版社,2016.[4]刘玉琏,傅沛仁.数学分析讲义:第3版[M].北京:高等教育出版社,1997.[5]桑旦多吉.高等数学中函数极限的求法分析[J].学园,2015(11):82-83.[6]姜玉秋.巧用等价无穷小替换求解复杂极限的研究[J].吉林师范大学学报(自然科学版),2005(04):93-94.[7]温录亮.论求解极限的若干方法[J].佛山科学技术学院学报(自然科学版),2011(02):31-36.[8]周学勤.探讨洛必达法则求极限[J].濮阳职业技术学院学报,2010(04):143-144.[9]范钦杰,付军.数学分析问题解析[M].长春:吉林人民出版社,2004.. All Rights Reserved.。
1∞型求极限计算要求极限的1∞型是指当自变量趋于无穷时,函数中有1的幂次的极限问题。
这类极限计算在数学分析中常见,涉及到广义复数、极限的性质以及无穷性质的运算等等。
先举一个简单的例子来帮助理解1∞型极限的计算。
例1:计算lim[x→∞] (1 + 1/x)^x。
解法:首先可以将这个1∞型极限转化为e型极限,即取自然对数。
ln(lim[x→∞] (1 + 1/x)^x) = lim[x→∞] ln((1 + 1/x)^x)。
接下来我们可以利用极限的性质和对数的性质进行简化。
ln(lim[x→∞] (1 + 1/x)^x) = lim[x→∞] x * ln(1 + 1/x)。
接下来,利用定积分的定义对ln(1 + 1/x)进行求解。
设t=1/x,当x趋于无穷时,t趋于0。
则原式可以转化为:lim[t→0] (1/t) * ln(1 + t^(-1))。
再利用ln(1 + t^(-1))的泰勒展开式:ln(1 + t^(-1)) = t^(-1) - (1/2)t^(-2) + (1/3)t^(-3) - ...。
代回原式,得到:lim[t→0] (1/t) * (t^(-1) - (1/2)t^(-2) + (1/3)t^(-3) - ...)。
去掉极限符号,简化表达式:=1-(1/2)(1/t)+(1/3)(1/t)^2-...再回代得:=1-(1/2)(1/x)+(1/3)(1/x)^2-...=1-1/(2x)+1/(3x^2)-...当x趋于无穷时,高次幂的项趋于0,只保留x的项。
=1所以原式的极限为1综上所述,1∞型极限的计算需要利用数学分析的知识和极限的性质,可以通过取对数、泰勒展开等方法进行计算。
接下来我们继续探讨一些其他的1∞型极限求解方法。
例2:计算lim[x→∞] (1 + 1/x)^(kx),其中k为常数。
解法:利用类似的方法,先取对数。
ln(lim[x→∞] (1 + 1/x)^(kx)) = lim[x→∞] kx * ln(1 + 1/x)。
定积分在求极限中的应用欧阳学文1、知识准备1.1绪论微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养.求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求非常严格,也只能解决两种形式的极限问题.洛必达法则是用于解决“”型的极限和“”型极限的.泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念.1.2定积分的概念下面首先让我们回顾一下定积分以及极限的定义:定积分:设函数在闭区间上有定义,在闭区间内任意插入n1个分点将分成n个区间,记,,作乘积(称为积分元),把这些乘积相加得到和式(称为积分形式)设,若极限存在唯一且该极限值与区是的分法及分点的取法无关,则称这个唯一的极限值为函数在上的定积分,记作,即.否则称在上不可积.注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号.注2:若存在,区间进行特殊分割,分点进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理解.注3:定积分是否存在或者值是多少只与被积函数式和积分区间有关与积分变量用什么字母表示无关,即仔细观察定积分的定义,我们一定会发现定积分的极限有以下两个特征.第一,定积分是无穷项和式的极限,容易知道一般项在项数趋近于无穷大时极限值必然趋近于零,否则和式极限不存在.第二,定积分与某一连续函数有紧密的关系,它的一般项受到这一连续函数的约束,它是连续函数在某个区间上进行了无穷的分割,各小区间上任意的函数值与区间长度的乘积的累加.对于极限,大学主要学习了数列的极限和函数的极限.数列的极限是用于解决离散的自然数的相关极限,而函数的极限则主要用于解决连续函数的相关极限.那么就让我们先一一来回忆它们吧!1.3极限的概念数列的极限设为数列,为实数,若对任给的正数,总存在正整数,使得当时有, 则称数列收敛于,实数称为数列的极限,并记作或.(读作:当趋于无穷大时,的极限等于或趋于).由于限于取正整数,所以在数列极限的记号中把写成,即或.若数列没有极限,则称不收敛,或称为发散数列.注1:关于:①的任意性.定义1中的正数的作用在于衡量数列通项与常数a的接近程度,越小,表示接近得越好;而正数可以任意小,说明与常数a可以接近到任何程度;②的暂时固定性.尽管有其任意性,但一经给出,就暂时地被确定下来,以便依靠它来求出N;③的多值性.既是任意小的正数,那么等等,同样也是任意小的正数,因此定义1中的不等式中的可用等来代替.从而“”可用“”代替;④正由于是任意小的正数,我们可以限定小于一个确定的正数.注2:关于:①相应性,一般地,随的变小而变大,因此常把定义作来强调,是依赖于的;一经给定,就可以找到一个;②多值性的相应性并不意味着是由唯一确定的,因为对给定的,若时能使得当时,有,则或更大的数时此不等式自然成立.所以不是唯一的.事实上,在许多场合下,最重要的是的存在性,而不是它的值有多大.基于此,在实际使用中的也不必限于自然数,只要是正数即可;而且把“”改为“”也无妨.函数的极限设函数在点的某一去心邻域内有定义.如果存在常数,对于任意给定的正数(不论它有多么小),总存在某正数,使得当满足不等式时,对应的函数值都满足不等式,那么常数就叫做函数当时的极限,记为.可以看出,数列极限与函数极限定义的思想是一致的,都是相应的某个表达上的值无限地接近某个常数值.不同的是数列是离散的,数列中的项在跳跃式地接近,而函数是连续的,函数值在逐渐地接近,但二者都能与相应的常数值以任意程度地接近.2、定积分与极限2.1定积分在求极限中应用概述不难看出,无论是数列的极限还是函数的极限,它们都与定积分的定义存在着千丝万缕的关系,那么就让我们来揭晓它们之间玄机与奥秘吧.事实上,定积分的定义中蕴含着一列数{}的和,并且只要充分地小,和式就可以任意地接近确定的实数J=,这正是极限思想的存在,即.这就为我们求极限提供了一种独特而有力的方法——利用定积分求极限.因为在积分学中有大量的积分公式,所以我们运用之解决众多类型的和式极限.2.2定积分求极限中应用思想的形成先让我们看一个简单的例子:例1.求极限.分析:此极限式的求解,不容易直接用极限的定义解决,因为该法往往是用来一边计算一边证明某个极限结果已经比较明显的问题,因此这里不适合;重要极限的结论显然也在这里没有用武之地,因为形式上根本不同;再考虑洛必达法则,它不是无穷比无穷型的极限也非零比零型的极限,也不可能用到此法;那么泰勒公式呢?泰勒公式往往是用来解决连续函数的极限问题,通过泰勒展式往往能把非多项式形式的表达式转化成多项式形式,以简化形式从而求解,看来这里也不适用.那是不是就没有什么合适的办法了呢?答案当然是否定的,事实上,它从形式上与定积分的定义还是有一些相像的,那么就让我们尝试用定积分的办法来解决这个问题吧!解:把此极限式转化为某个积分形式,从而计算定积分.为此做如下变形:.不难看出,其中的和式是函数在区间上的一个积分和(这里取得是等量分割,).所以,J=.从该例题的解法中可以看出,本题的关键是将极限和转化为积分和,从而利用了定积分将所求极限迎刃而解.于是,我们可以总结出定积分在求极限中应用的一般方法步骤:Sept1将和式极限经过变形,使其成为积分形式.这里常取;Sept2确定积分函数的上下限.a=;Sept3用x代换,写出定积分表达式,并求出原极限的值.通过以上的一般方法步骤,我们在面对无穷项和式的极限问题时就有方可依,有法可循了.现在让我们再来看一个例子,并从中仔细体会以上方法步骤.例2.求极限.解:Sept1 化和式极限为积分形式.原极限=.显然,这里,被积函数可看成Sept2 确定积分函数上下限.Sept3 写出积分表达式并求出积分值.原极限=.对于本题,我们是紧紧按照刚刚总结出的方法步骤进行的,并顺利地求出了原题的极限值.这是一个具体的例子,那么我们是否可以总结出更为一般性结论呢?答案自然是肯定的.3、应用定积分求极限3.1一般性结论的综述及其应用至此,我们可以得出如下结论:结论1如果函数在区间上连续,将区间进行等分,,那么,.事实上,连续函数一定可积,而将区间进行n等分也是分割的一种特殊情况.根据定积分的定义,上述结论成立.当然,并不是所有的用到定积分求极限的问题中都要严格用到上面总结出的三个步骤,我们可视情况灵活处理,比如无需用到某一步骤或者还需用到其他求极限的思想等.下面我们再看一组求极限的习题,以充分感受结论1的用途.习题组11).这组习题都是无穷项式子和的极限问题,都可以把定积分的思想应用到求极限中去.现在就让我们用结论1来解决这些求极限的问题,并从不同习题中寻找出异同,以加深对结论1的掌握和认识.解:(1) 分析原极限显然可以看成在上的定积分.故(2)分析先通过恒等变形,原极限式=,被积函数,积分区间是,于是原极限值=;(3)分析原和式极限的通项是不可以看成是关于的某一个函数,但是注意到:应用结论1,上面不等式左端可以取极限,即=,上面不等式右端可以取极限,即.于是,由极限的迫敛性可知原极限值=.这组题均典型地运用了定积分的计算,从而求出了各极限.我们发现,只要找到某个连续函数,并能把这个和式极限转化成积分形式,我们就只需计算出f(x)在[0,1]上的积分值,从而确定出原极限值.这三个习题中,例题1的式子无需再进行恒等变形,因为其形式上已经是f()了;习题2与习题3形式上直观上不是f()的形式,因为式子与式子都不含的项.为此,我们需要对习题2以及习题3极限的式子进行恒等变形,通过提取公因式等手段使其出现的因子.当然有的题可能不容易找到对应的连续函数,例如习题3,我们可以用极限的一些性质,如极限的迫敛性,从而间接地求出原和式极限的极限值.3.2一般性结论的深化及推广接下来,我们对结论1进行适当的推广,以得到更多形式的极限的求法.推论1如果函数均在上可积,证明:首先,均在上可积.又由于,,所以,于是,==.例3.求极限:.解:由推论1可知,f(x)=于是,原极限式=.推论2设例4.试求:.推论3如果函数在区间上可积,且.证明:记A=,则例5.计算.解:本题也可以直接运用推论3,这三个推论是对结论1的必要补充与完善.形式上我们不仅有无穷项式子和的极限,还衍生出了无穷项式子乘积的极限.它们都是顺着结论1的思路继续进行探索,从形式上丰富了定积分在求极限中应用这一思想,但从本质上讲,它们与结论1是一致的.它们都紧紧抓住了定积分概念的实质,意识到定积分是无穷项和的极限,应用数学的一些基本性质,对各式子进行恒等变形,尽量把不同形式的极限向定积分定义中的和式上去靠拢.最终通过简单明了的定积分公式,求出定积分的值来,以确定出原极限的值.由这三个推论来看,等形式的极限,我们都有方可循,用定积分的方法容易求出其极限来.对于任何一种数学方法,只要我们仔细地观察与推究,都能将其结论或应用范围加以推广,就像结论1.现在让我们来看一组习题,以体会以上诸推论.现在,我们已经积累了多种求和式极限的方法,它们是今后应用定积分解决极限类问题的最佳模型与范例.那就再让我们来看一组习题,以熟悉与巩固等形式的极限吧.下面这组习题综合用到了以上各结论与推论.习题组2用定积分的方法计算下列各极限.(1);(2);(3);(4).解:分析以上例题都容易恒等变形,使其满足结论1或者推论1至推论3的条件.于是,(1)(2)=,=(3);(4).3.3定积分在求极限中应用思想的转移至此,我们已经深深的体会到了各种形式的定积分在极限中应用的作用.仅仅于此,我们尚不能满足,我们可以把定积分在求极限中的应用思想借鉴到其他方面.例如,利用这种思想方法来证明一些不等式,或者用之解决一些复杂一点的求极限问题.下面将举例说明.例 6.证明:若函数在上连续,且对于,有,则.证明:已知与在上都可积.将进行等分,分点是.在第K个区间上取.由算数平均不小于几何平均,有.体会:本例恰巧反过来,将积分和转化为极限和的形式,并运用了算术平均数不小于几何平均数这一结论,将问题化繁为简.较好地认识与掌握定积分与极限之间的关系是解决本问题的关键.该例题说明,我们应该充分认识到定积分在极限中的作用,并能做到灵活变通,适当情形下,二者可以相互转化,将问题化难为易,从而达到解决问题的目的.例7.试求极限.分析:该问题似乎不能直接运用结论1或推论1至推论3来求极限.因为极限的表达式不容易化成以上结论或者推论的情形.但是,该问题的解决就真用不到定积分了吗?答案是否定的.在解决该问题之前,还是先让我们看一下沃利斯公式的由来吧!沃利斯公式:.证明:令,则当时用分部积分法容易求得移项并整理后可得递推公式:由于重复应用上面的递推公式可得,又由于,再将式代入,便可以得到,因为,根据极限的迫敛性可知.而,故得沃利斯公式.现在让我们来仔细看看沃利斯公式究竟与定积分有什么关系吧!事实上,在计算定积分时,我们巧妙地运用了定积分的递推表达式,这样我们才正真地寻找到了解决极限问题的金钥匙,看来定积分的运算还是在其中发挥了不可低估的作用.那么就让我们直接运用该公式来探究例8问题吧!根据沃利斯公式,可知.从某种程度上讲,我们利用了定积分方法解决了例8中极限的问题.倘若我们采用其方法来求这个极限,恐怕会走一些弯路.3.4定积分在求极限中应用思想的完善我们知道反常积分也是定积分在极限下定义出来的.以上的所有求极限问题都是将极限的表达式整体转化成积分形式,从而应用了定积分巧妙地求出了原极限的结果,那么能不能把定积分在求极限中局部应用呢?现在我们再来看一个有趣的问题,以便说明此问题.例8.证明:.分析:这个例题不同于前面所有的例题,前面的例题,我们都能迅速地将所求极限的表达式转化成,而本例不行,但它形式上与我们讨论的定积分在求极限中应用的例子非常相像,因为式子中有无穷多项和,所以我们就尝试用定积分的方法来求它吧!把这个极限式子的分子进行适当变形.如果根据前面的经验,我们知道的.可是现在我们对两个问题有所质疑.第一,我们并没有把原极限式直接转化成积分形式;第二,即使局部用到了定积分,但我们知道的.事实上,原式经变形后,我们会发现分子与分母中的无穷大量是等价的.即(这里我们统一了分子分母中的变量,统一用变量x,这里已经表示变量x是逐步趋近,由数学分析中归结原理”,这个手段是不影响极限结果的).最后我们求得其结果,.由此可以看到,在求极限的问题中,定积分的思想不仅可以对表达式整体使用,也可以对其进行局部使用.总之,只要我们善于思考书本上的一些概念以及分析它们之间联系,我们就往往能够游刃有余地把一种数学思想用于解决其他数学问题上.最后,让我们再来总结一下,定积分在求极限中应用时所应该注意的几个问题.第一,极限必须是无穷项和的极限,并且这些和的极限经过适当的恒等变形之后能转化为定积分的形式.第二,应用定积分求极限时,往往还需要用到其他的一些求极限的方法和手段,例如极限的迫敛性,重要极限的结论,取对数手段等.第三,求极限一类问题往往需要使用各种手段,这样才能做到事半功倍.4、论文总结4.1再认识数学通过以上探讨,我们重新认识了数学.我们在进行推理与应用时,是有深切体会的.数学本身是一门严谨的自然科学,因为它是一种思维的工具,是一种思想方法,它还是一种理性的艺术.数学是一种思维的工具.第一,数学具抽象性.数学概念是以极度抽象的形式出现的.本文中讨论的定积分以及极限更是如此.与此同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依靠于严格的证明.当数学应用于实际问题的研究时,其关键在于能建立一个较好的数学模型.我们在运用定积分求极限时,就已经拥有了较好的数学模型——函数模型.在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识,判断和预测.这就是运用抽象思维去解决现实问题的体现.第二,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段.在数学中,每一个公式,定理都要严格地从逻辑上加以证明以后才能够确立.当我们发现了“结论1”之后,相继经过严密的推理与论证后才拓展到了“推论1”至“推论3”.第三,数学是一种辅助工具和表现方式.我们在解决数学问题本身时,还必须依赖于数学中的其他相关方法思路.另外数学反映的是一种复杂而抽象事物内部关系,但是我们仍然有简明的数学符号与形象鲜明的图形等来表示它.无论是定积分还是极限,其中都用到了丰富的数学符号,离开这些数学符号,我们的表达似乎显得寸步难行.数学是一种思想方法.数学是研究量的科学.它研究客观对象量的变化,关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法.数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一,内容与形式的统一的最有效的表现方式.无论是定积分还是极限都离不开计算,这就意味着它们中都蕴含着量的变化.数学还是一种理性的艺术.一般我们觉得,艺术与数学是两种风格与本质都有着明显不同的事物.它们一个处于高度理性化的峰顶,另一个则位于精神世界的枢纽地带;一个是自然科学的代表,另一个则是美学的杰作.但是,在种种表面上无关甚至完全不同的现象身后却隐藏着艺术与数学相当一致的一般意义.我们进行学术研究纯粹是我们进取以及求知欲的驱使.艺术与数学都是公认的地球语言.艺术与数学在描绘万事万物的过程中,还同时完善了自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言特征.其共同特点有(1)超文化性.艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流.(2)整体性.艺术的整体性来自于其艺术表现的普遍性和广泛性;数学的整体性来自于数学统一的符号体系,各个分支之间的有力联系,共同的逻辑法则和既约的表达方式.(3)简明性.它首先表现为很高的抽象程度,其次是凝冻与浓缩.(4)代表性.艺术与数学语言各自代表性可以诱发某种强烈的情感体验,唤起某种美的享受,而意义则在于把注意力转向思维,上升为理念,成为表现人类内心意图的方式.(5)形式性.在艺术与数学各自进行的符号与信息的含义交换中,其共同的特征就是达到了实体与形式的分离.我们研究的定积分在求极限中的应用,那种思想以及符号呈现方式可被世界人悦纳.艺术与数学具有共同的精神价值.其共同的特点有:(1)自律性.数学价值的自律性是与数学价值的客观性相关联的;艺术的价值也是不能以人的意志而转移.艺术与数学的价值基本上是在自身框架内被鉴别,鉴赏和评价的.(2)超越性.它们可以超越时空,彰显永恒.在艺术与数学的价值超越过程中,现实得以扩张,延伸.艺术与数学的超越性还表现为超前的价值.(3)非功利性.艺术与数学的非功利性是其价值判断异于其他种类文化与科学的显著特征之一.(4)多样化,物质化与广泛化.在现代技术与商业化的推动下,艺术与数学的价值也开始发生升华,出现了各自价值在许多领域内的散射,渗透,应用,交叉等情况.定积分在求极限中的应用,不仅仅贡献于数学本身,它将逐渐在其他领域也发挥一定的作用.4.2结束语我们已经见到了定积分在求极限问题中应用的各种形式.事实上,只要我们对学过的某些概念用心的体会,并加以深刻的思考,我们就可能将其精髓运用到数学的其他领域.正如我们这里把定积分与极限结合起来,并进行了适当推广,得到了较为满意的结论和推论.本文主要给大家介绍了定积分在求极限中应用.一开始我们就回忆了定积分以及极限等大学数学学习中的重要概念.然后剖析它们之间的内在联系,进而寻找到了一种独特的求极限的办法——借助定积分求极限.当然,这种思想也并非空穴来风,它是源于教材中某些例题中具有创新性思想方法或者一些独特的步骤.因为不是所有的数学概念之间经过思考推理,相互之间就能建立起联系来.因此,在平时的数学学习中,我们务必对教材中的基本概念加深体会,尤其是要把相互之间或多或少存在着某种关系的概念加以比较与分析.然后对其进行大胆的假设,并进行一定的逻辑证明.如果我们的假设成立,那就是我们发现的新事物,这对于我们发散思维与创新思维都是大有裨益的;假设不成立,我们也可更好地掌握不同概念之间区别,这对于我们理解知识都是有好处的.所以,在我们平时的学习过程中,我们要积极去思考,并大胆地进行某些适当的假设,以提升我们创新思维能力.求极限的方法可能还有更多,值得大家去思考与挖掘.希望本文能起到抛砖引玉的目的,能激发更多的数学爱好者携起手来探索出更多实用与巧妙的求极限的方法来.欢迎大家对本文进行批评与指正.。