巧用定积分的概念求和式极限的方法技巧
- 格式:pdf
- 大小:103.79 KB
- 文档页数:5
利用定积分定义求极限的原理定积分是微积分的一个重要概念,用于计算函数在一定区间上的面积。
定积分的定义可以用来求极限,这是一项重要的数学技巧。
本文将介绍利用定积分定义求极限的原理,并通过实例说明其应用。
首先,我们来回顾一下定积分的定义。
对于一个函数f(x)在[a,b]区间上的定积分,可以用极限的概念表达为:∫(a,b) f(x) dx = lim(n→∞) Σ[i=1,n] f(x_i) Δx其中,Δx = (b - a) / n 是每个小区间的宽度,x_i 是区间中的任意一点,lim(n→∞)代表当n趋向于无穷大时取的极限,Σ[i=1,n]表示对每个小区间做求和运算。
根据定积分的定义,我们可以利用它来求解一些函数的极限。
具体步骤如下:第一步,确定求解的函数。
首先需要选择一个待求解的函数f(x),并找到一个包含区间[a,b]的闭区间来计算。
第二步,进行积分近似。
利用定积分的定义,将函数f(x)分割成若干个小区间,并在每个小区间上选择一个代表点x_i。
然后,计算相应的Σ[i=1,n]f(x_i)Δx。
第三步,求解极限。
根据极限的定义,将积分近似的结果取极限,即lim(n→∞) Σ[i=1,n] f(x_i) Δx。
第四步,验证结果。
通过比较求得的极限与给定函数的极限是否相等,来验证我们的结果。
接下来,我们通过一个具体的实例来说明利用定积分定义求极限的原理。
例子1:求解函数f(x) = x^2在区间[0, 1]上的极限lim(n→∞) Σ[i=1,n] f(x_i) Δx。
首先,将区间[0,1]分割成n个小区间,每个小区间的宽度为Δx=1/n。
然后,在每个小区间上选择一个代表点x_i,可以选择x_i=Δx/2接下来,计算Σ[i=1,n]f(x_i)Δx:Σ[i=1,n]f(x_i)Δx=Σ[i=1,n](Δx/2)^2Δx=Σ[i=1,n]Δx^3/4=(∑[i=1,n]Δx^3)/4=nΔx^3/4=n(1/n)^3/4=1/4n^2最后,取极限得到极限结果:lim(n→∞) Σ[i=1,n] f(x_i) Δx = lim(n→∞) (1 / 4n^2) = 0我们知道函数f(x)=x^2在区间[0,1]上的极限为0,因此利用定积分的方法求得的极限结果与函数极限相等,验证了我们的结果。
高等数学定积分及重积分的方法与技巧第一部分 定积分的计算一、定积分的计算例1 用定积分定义求极限. )0(21lim 1>++++∞→a nn a a a a n . 解 原式=∫∑=⋅=∞→1011lim a ani n x n n i dx =aa x a +=++11111. 例2 求极限 ∫+∞→121lim xx n n dx .解法1 由10≤≤x ,知nn x x x ≤+≤210,于是∫+≤1210x x n ∫≤1n x dx dx .而∫10nx ()∞→→+=+=+n n n x dx n 0111101,由夹逼准则得∫+∞→1021lim xx n n dx =0. 解法2 利用广义积分中值定理()()x g x f ba ∫()()∫=b ax g f dx x dx (其中()x g 在区间[]b a ,上不变号), ().1011112102≤≤+=+∫∫n n nn dx x dx xx x x由于11102≤+≤nx,即211nx+有界,()∞→→+=∫n n dx x n01110,故∫+∞→1021lim x x n n dx =0. 注 (1)当被积函数为()22,x a x R +或()22,a x x R −型可作相应变换.如对积分()∫++3122112xxdx,可设t x tan =;对积分()02202>−∫a dx x ax x a,由于()2222a x a x ax −−=−,可设t a a x sin =−.对积分dx e x ∫−−2ln 021,可设.sin t e x =−(2)()0,cos sin cos sin 2≠++=∫d c dt td t c tb t a I π的积分一般方法如下:将被积函数的分子拆项,[分子]=A[分母]+B[分母]′,可求出22dc bdac A ++=,22dc adbc B +−=. 则积分 ()220cos sin ln 2cos sin cos sin πππtd t c B A dt td t c t d t c B A I ++=+′++=∫.ln2dc B A +=π例3 求定积分()dx x x x ∫−1211arcsin分析 以上积分的被积函数中都含有根式,这是求原函数的障碍.可作适当变换,去掉根式. 解法1 ()dxx x x ∫−1211arcsin 2tx x t ==12121211212arcsin arcsin arcsin 21arcsin 2tt d t dt tt ==−∫∫.1632π=解法2 ()dx x x x∫−1211arcsin .163cos sin cos sin 2sin 2242242πππππ==⋅=∫u du u u uu u u x 小结 (定积分的换元法)定积分与不定积分的换元原则是类似的,但在作定积分换元()t x ϕ=时还应注意:(1)()t x ϕ=应为区间[]βα,上的单值且有连续导数的函数; (2)换限要伴随换元同时进行;(3)求出新的被尽函数的原函数后,无需再回代成原来变量,只要把相应的积分限代入计算即可.例4 计算下列定积分(1)∫+=2031cos sin sin πx x xdx I , dx xx xI ∫+=2032cos sin cos π;(2).1cos 226dx e xx ∫−−+ππ解 (1)∫+=2031cos sin sin πxx xdx I)(sin cos cos 2023du u u uu x −+−=∫ππ=.sin cos cos 223∫=+πI dx xx x故dx xx xx I I ∫++==203321cos sin cos sin 21π=()41cos cos sin sin 212022−=+−∫ππdx x x x x . (2)=I .1cos 226dx e x x ∫−−+ππ()dxe xdu e uu x x u ∫∫−−+=−+−=2262261cos 1cos ππππ+++=∫∫−−2222661cos 1cos 21ππππdx e x dx e x e I x x x.3252214365cos cos 21206226πππππ=×××===∫∫−xdxxdx这里用到了偶函数在对称取间上的积分公式以及公式:dx xdx n n∫∫=2020cos sin ππ()()()()()()=⋅×−×−−=×−×−−=偶数奇数n n n n n n n n n n ,22421331,1322431π小结 (1)常利用线性变换把原积分化为可抵消或可合并的易于积分的形式。
定积分的定义公式分割近似求和取极限定积分这玩意儿,在数学里那可是个相当重要的角色。
它的定义公式——分割近似求和取极限,听起来好像挺复杂,但咱们慢慢捋捋,其实也没那么可怕。
我记得有一次,我在课堂上讲定积分的时候,有个学生一脸迷茫地看着我,那小眼神仿佛在说:“老师,这都是啥呀?”我就跟他说:“别着急,咱们一步一步来。
”咱先说分割。
这就好比你有一块大蛋糕,你要把它切成好多小块。
比如说,一个函数的区间[a,b] ,咱把它分成 n 个小区间,这就是分割。
每个小区间的长度不一定相等,但加起来就是整个区间的长度。
然后是近似。
这就像你切完蛋糕,要估计每一小块的大小。
对于每个小区间里的函数值,咱找个简单的数来近似代替,比如说区间里某一点的函数值。
再说说求和。
把每个小区间里近似的函数值乘以小区间的长度,然后加起来,这就是求和。
最后是取极限。
当把区间分得越来越细,小区间的数量越来越多,每个小区间的长度越来越小,这个求和的结果就会越来越接近一个确定的值,这个值就是定积分的值。
比如说,你要计算从 0 到 1 区间上 x²的定积分。
咱先把这个区间分成 n 个小区间,每个小区间的长度就是 1/n 。
然后在每个小区间里,咱用区间中点的函数值来近似代替。
比如第 i 个小区间的中点是 i/n ,那这个小区间里的函数值就近似为 (i/n)²。
把每个小区间的近似值乘以小区间长度 1/n 再加起来,得到一个式子。
最后让 n 趋向于无穷大,取这个式子的极限,就能得到定积分的值 1/3 。
在实际生活中,定积分也有很多用处呢。
就像你要计算一个不规则图形的面积,或者计算一个物体在一段时间内移动的路程,都能用到定积分。
还记得有一次我装修房子,要计算一面墙的不规则形状的面积,来确定需要多少壁纸。
我就用定积分的思路,把那面墙的形状分割成好多小部分,近似计算每一部分的面积,最后求和取极限,算出了差不多准确的面积,成功买到了合适数量的壁纸。
运用定积分求极限修正后:求极限的方法层出不穷,但最常用的方法有极限的定义和性质、重要极限的结论、洛必达法则以及泰勒公式等。
应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果。
但这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子。
重要极限的结论形式上要求非常严格,只能解决两种形式的极限问题。
洛必达法则是用于解决“$\frac{0}{0}$”型的极限和“$\frac{\infty}{\infty}$”型极限的。
泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过___展式后可以达到某些项抵消效果。
但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识。
事实上,微分学和积分学的关系正如中小学时代研究过的加法与减法、乘法与除法、乘方与开方以及幂运算与取对数运算的关系一样,它们互为逆运算。
如果也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美。
而利用定积分求极限正体现了这一理念。
下面回顾一下定积分以及极限的定义:定积分:设函数$f(x)$在闭区间$[a,b]$上有定义,在闭区间$[a,b]$内任意插入$n-1$个分点将$[a,b]$分成$n$个区间$[x_{i-1},x_i]$,记$\Delta x_i=x_i-x_{i-1}(i=1,2,\dots,n)$,$\forall \xi\in[x_{i-1},x_i]$,作乘积$f(\xi_i)\Delta x_i$(称为积分元),把这些乘积相加得到和式$\sum_{i=1}^n f(\xi_i)\Deltax_i$(称为积分形式)。
设$\lambda=\max\{\Delta i\leq n\}$,若$\lim\limits_{\lambda\to 0}\sum_{i=1}^n f(\xi_i)\Delta x_i$极限存在唯一且该极限值与区间$[a,b]$的分法$\lambda\to 0$及分点$\xi_i$的取法无关,则称这个唯一的极限值为函数$f(x)$在$[a,b]$上的定积分,记作$\int_a^b f(x)\mathrm{d}x$,即$\int_a^b f(x)\mathrm{d}x=\lim\limits_{\lambda\to0}\sum_{i=1}^n f(\xi_i)\Delta x_i$。
定积分求极限的方法总结1. 使用定积分的定义直接计算极限值。
2. 将定积分转化为不定积分,再求导计算极限值。
3. 将定积分转化为无穷级数,并利用级数求极限的方法。
4. 运用分部积分的方法化简定积分,再求极限值。
5. 使用换元积分法将定积分中的变量进行替换,再求极限值。
6. 将定积分拆分成多个部分,分别计算每部分的极限值,再求和得到总极限。
7. 将定积分转化为面积或体积,并通过几何图形的方式求极限值。
8. 运用洛必达法则,将定积分中的参数带入得到的极限表达式中。
9. 利用夹逼定理,将定积分所求的函数夹在两个已知的函数之间,再求极限。
10. 将定积分转化为递推式,逐步递推计算极限值。
11. 运用积分的性质,将定积分拆分成更简单的形式,再求极限值。
12. 将定积分表示的区域进行分割,通过分割后的极限值之和来求得总极限。
13. 将定积分所求函数进行分段处理,每个分段求极限后再组合求总极限。
14. 利用泰勒级数展开函数,再求得展开式在无穷远点的极限值。
15. 将定积分中的变量进行代换,把变量限定在一个特定范围内再求极限。
16. 利用柯西定理,将定积分转化为复积分,再求极限值。
17. 运用平均值定理,将定积分转化为函数的平均值来计算极限值。
18. 将定积分转化为广义积分,并通过广义积分的性质求得极限值。
19. 利用积分中值定理,将定积分转化为函数在某一点的导数表达式,再求极限值。
20. 运用积分的区间可加性,将定积分的区间进行划分,再通过区间极限值之和来求总极限。
21. 将定积分中的变量限制在一个趋向于极限值的范围内再进行计算。
22. 运用积分中的对称性或周期性,将定积分化简后再求极限值。
23. 利用积分中的不等式性质,将定积分转化为不等式,再求得不等式的边界极限值。
24. 将定积分中的参数带入函数中,得到极限参数函数表达式,再求其极限值。
25. 运用积分的递推性质,将定积分拆分成多个部分,再逐步递推计算总极限。
专题1——利用定积分定义求极限 对于满足如下条件的极限,可以考虑采用利用定积分定义求极限的方法:① 是n →∞时的极限② 极限运算中含有连加符号1n i =∑在定积分的定义中,我们把区间[,]a b 平均分成n 个小区间(定积分的定义中是任意分割区间[,]a b ,我们当然可以平均分割),那么每个小区间的长度为b a n-(即定义中的i x ∆),这n 个小区间分别为[,]b a a a n -+,[,2]b a b a a a n n --++,[2,3]b a b a a a n n--++,……,[(2),(1)]b a b a a n a n n n --+-+-,[(1),]b a a n b n-+-,在定义中每个小区间上任意取的i ξ我们一致取为每个小区间的右端点i b a a i n ξ-=+(也可以取左端点(1)i b a a i n ξ-=+-),那么定义中的1()n i ii f x ξ=∆∑就变为1()n i b a b a f a i n n =--+∑,那么1lim ()()n b a n i b a b a f a i f x dx n n →∞=--+=∑⎰。
(取左端点时1lim ((1))()n b a n i b a b a f a i f x dx n n→∞=--+-=∑⎰) 注意:定积分的定义中0λ→表示的意思是把区间分割为无线个小区间(n →∞也表示把区间分割成无数个小区间,但是在任意分割的前提下,不能用n →∞来表示把区间分割成无数个小区间,这里的原因我是理解的,但是不好表述,你清楚结论就行了),当分割方式为均等分割时,n →∞就表示把区间分割成无数个小区间,所以这里是1lim ()()n b a n i b a b a f a i f x dx n n →∞=--+=∑⎰,而不是01lim ()()n b a i b a b a f a i f x dx n n λ→=--+=∑⎰。