8定积分应用(积分中值定理,求极限,变上限
- 格式:ppt
- 大小:371.00 KB
- 文档页数:19
定积分的几个简单应用一、定积分在经济生活中的应用在经济管理中,由边际函数求总函数,一般采用不定积分来解决,或者求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决.例1 某商场某品牌衬衫的需求函数是q p 15.065-=,如果价格定在每件50元,试计算消费者剩余.解 由p 50=,q p 15.065-=,得10000=q ,于是dq q )5015.065(100000--⎰10000023)1.015(q q -=50000=,所求消费者剩余为50000元.例2 已知某产品总产量的变化率为t t Q 1240)(+='(件/天),求从第5天到第10天产品的总产量.解 所求的总产量为⎰⎰+='=105105)1240()(dt t dt t Q Q 1052)640(t t +=650=(件). 二、用定积分求极限例1 求极限 ∑=∞→n k n n k 123lim .解 nn n n n n n n k n k 12111123+++=∑= )21(1nn n n n +++= . 上式是函数[]1,0)(在x x f =的特殊积分和.它是把[]1,0分成n 等分,i ξ取⎥⎦⎤⎢⎣⎡-n i n i ,1的右端点构成的积分和.因为函数[]1,0)(在x x f =可积,由定积分定义,有∑=∞→n k n n k 123lim ⎥⎦⎤⎢⎣⎡+++=∞→)21(1lim n n n n n n 3210==⎰dx x . 例2 求极限 2213lim k n n k n k n -∑=∞→. 解 212213)(11n k nk n k n n k n k n k -⋅=-∑∑==. 上式是函数[]1,01)(2在x x x f -=的特殊积分和.它是把区间[]1,0分成n 等分,i ξ取⎥⎦⎤⎢⎣⎡-n i n i ,1的右端点构成的积分和.因为函数21)(x x x f -=在[]1,0可积,由定积分定义,有2213lim k n n k n k n -∑=∞→31)1(31110232102=⎥⎦⎤⎢⎣⎡--=-=⎰x dx x x . 三、用定积分证明不等式 定积分在不等式的证明中有着重要的应用.在不等式的证明中,可根据函数的特点,利用定积分的性质来证明.例1 设)(x f 是闭区间[]b a ,上的连续函数,且单调增加,求证:⎰⎰+≥b ab a dx x f b a dx x xf )(2)(. 证明 作辅助函数 dt t f x a dt t tf x xa x a ⎰⎰+-=)(2)()(ϕ, 显然0)(=a ϕ,且)(2)(21)()(x f x a dt t f x xf x x a ⎰+--='ϕ )(2))((21)(2x f a a x f x f x ---=ξ [])()(2ξf x f a x --=, 其中[]x a ,∈ξ.因为)(x f 在[]b a ,上单调增加,所以0)(≥'x ϕ,从而)(x ϕ在闭区间[]b a ,上单调增加,所以0)()(=≥a x ϕϕ,取b x =得⎰⎰+≥b a ba dx x fb a dx x xf )(2)(. 定积分在许多领域中有着重要应用,它是解决一些几何学问题、物理学问题和经济学问题的重要工具.这一章主要介绍了定积分在不同学科中的应用问题.。
积分中值定理与定积分应用积分中值定理与定积分应用的实战技巧积分中值定理与定积分应用的实战技巧积分中值定理和定积分是微积分中的重要概念,能够帮助我们解决各种实际问题。
本文将介绍积分中值定理和定积分的基本概念,以及如何应用这些概念来解决实际问题。
一、积分中值定理积分中值定理是微积分中的基本定理之一,它与导数中值定理有密切关联。
积分中值定理表明,若函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)上可导,则在[a,b]上至少存在一点c,使得函数的平均值等于函数在c处的导数值。
其数学表达式如下:∫[a,b] f(x) dx = f(c) (b-a)其中,f(x)表示在[a,b]上的连续函数,c为[a,b]上的某一点,b和a 分别为积分上限和下限。
积分中值定理的应用十分广泛。
它可以用于证明其他定理,例如柯西中值定理和拉格朗日中值定理。
除了数学的理论性应用外,积分中值定理还可用于解决实际问题,如求函数在某个区间上的平均值、证明函数在某个区间上的增减性等。
下面将以一个具体例子来说明积分中值定理的应用。
例子:求函数f(x) = 2x^2 + 3x在区间[1,3]上的平均值。
解:根据积分中值定理,函数f(x)在[1,3]上的平均值等于函数在该区间上某一点的函数值。
首先,我们计算函数f(x)在[1,3]上的定积分:∫[1,3] (2x^2 + 3x) dx = (2/3)x^3 + (3/2)x^2 |[1,3] = 24然后,求出函数f(x)在[1,3]上的平均值:平均值 = (1/3 - 1/2) * 24 = 8所以,函数f(x) = 2x^2 + 3x在区间[1,3]上的平均值为8。
通过这个例子,我们可以看到积分中值定理的实际应用,它不仅使我们能够求出函数在某个区间上的平均值,还可以帮助我们判断函数在某个区间上的增减性。
二、定积分的应用定积分是对区间上函数值的累加,可以用于求解曲线下面的面积、体积、平均值等问题。
变上限函数的性质及其应用作者连永龙系别统计与数学学院专业数学与应用数学年级2008级学号802091149指导教师邢华导师职称副教授评语:成绩:指导教师:年月日摘要:了解变上限函数的的定义并掌握其性质,用来解决定理、积分不等式、积分等式、敛散性的证明;极限、概率密度函数、重积分、不定积分的求解等问题。
从而,体会变上限函数的应用价值。
关键词:变上限函数性质应用变上限积分的改进引言变上限函数的引入及其定义:对于定义在[],a b 上的可积函数()f x 的定积分()d b af x x ⎰,若()f x 已知,则定积分为一确定的数。
现考虑,对任意的x 属于[],a b ,由定积分的性质得()f t 在[],a x 可积,且其结果为定义在[],a b 的函数。
于是定义这种函数为变上限函数: ()()d x aF x f t t =⎰[],x a b ∈变上限函数的性质及其相关定理一、 与定积分相同的有关性: 性质1、若()()d x aF x f t t =⎰[],x a b ∈,k 为常数,则()()d ()x aG x kf t t kF x ==⎰性质2、若f 、g 都在[],a b 上积分,且()()d x aF x f t t =⎰、()()d x aG x g x t=⎰[],x a b ∈,则()()f t g t ±在[],a x 可积,且[]()()d ()d ()d x xx a aaf tg t t f t t g t t ±=±⎰⎰⎰性质3、若f 、g 都在[],a x 上可积[],x a b ∈,则()()f tgt 在[],a x 上可积[],x a b ∈性质4、设()f x 为[],a b 上的可积函数,若()0f x ≥,[],x a b ∈,则()d 0xaf t t ≥⎰性质5、若()f x 在[],a b 上可积,则f 在[],a b 上也可积,且[]()d ()d ,x x aaf t t f t tx a b ≤∈⎰⎰这些性质可以类似证明定积分的性质来证明二、不定积分的特殊性质:(一)变上限函数的连续性定理:若()f x 在[],a b 上可积,则()()d x aF x f t t =⎰在[],a b 上是连续的。
考研——积分上限的函数(变上限积分)知识点()()xaF x f t dt =⎰形如上式的积分,叫做变限积分。
注意点:1、在求导时,是关于x 求导,用课本上的求导公式直接计算。
2、在求积分时,则把x 看作常数,积分变量t 在积分区间],[x a 上变动。
(即在积分内的x 作为常数,可以提到积分之外。
)关于积分上限函数的理论定理1如果)(x f 在],[b a 上连续,则)(x f 在(a ,b )上可积,而)(x f 可积,则⎰=xa dtt f x F )()(在],[b a 上连续。
定理2如果)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在(a ,b )上可积。
定理3如果)(x f 在],[b a 上连续,则⎰=xa dt t f x F )()(在],[b a 上可导,而且有).(])([)(x f dt t f dx d x F xa=='⎰ ==========================================注:(Ⅰ)从以上定理可看出,对)(x f 作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。
这是积分上限函数的良好性质。
而我们知道,可导函数)(x f 经过求导后,其导函数)(x f '甚至不一定是连续的。
(Ⅱ)定理(3)也称为原函数存在定理。
它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。
我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。
定理(3)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。
重要推论及计算公式:推论1)(])([x f dt t f dx d bx -=⎰ <变上限积分改变上下限,变号。
> 推论2)()]([])([)(x x f dt t f dxd x c ϕϕϕ'=⎰ <上限是复合函数的情况求导。