8定积分应用(积分中值定理,求极限,变上限
- 格式:ppt
- 大小:371.00 KB
- 文档页数:19
定积分的几个简单应用一、定积分在经济生活中的应用在经济管理中,由边际函数求总函数,一般采用不定积分来解决,或者求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决.例1 某商场某品牌衬衫的需求函数是q p 15.065-=,如果价格定在每件50元,试计算消费者剩余.解 由p 50=,q p 15.065-=,得10000=q ,于是dq q )5015.065(100000--⎰10000023)1.015(q q -=50000=,所求消费者剩余为50000元.例2 已知某产品总产量的变化率为t t Q 1240)(+='(件/天),求从第5天到第10天产品的总产量.解 所求的总产量为⎰⎰+='=105105)1240()(dt t dt t Q Q 1052)640(t t +=650=(件). 二、用定积分求极限例1 求极限 ∑=∞→n k n n k 123lim .解 nn n n n n n n k n k 12111123+++=∑= )21(1nn n n n +++= . 上式是函数[]1,0)(在x x f =的特殊积分和.它是把[]1,0分成n 等分,i ξ取⎥⎦⎤⎢⎣⎡-n i n i ,1的右端点构成的积分和.因为函数[]1,0)(在x x f =可积,由定积分定义,有∑=∞→n k n n k 123lim ⎥⎦⎤⎢⎣⎡+++=∞→)21(1lim n n n n n n 3210==⎰dx x . 例2 求极限 2213lim k n n k n k n -∑=∞→. 解 212213)(11n k nk n k n n k n k n k -⋅=-∑∑==. 上式是函数[]1,01)(2在x x x f -=的特殊积分和.它是把区间[]1,0分成n 等分,i ξ取⎥⎦⎤⎢⎣⎡-n i n i ,1的右端点构成的积分和.因为函数21)(x x x f -=在[]1,0可积,由定积分定义,有2213lim k n n k n k n -∑=∞→31)1(31110232102=⎥⎦⎤⎢⎣⎡--=-=⎰x dx x x . 三、用定积分证明不等式 定积分在不等式的证明中有着重要的应用.在不等式的证明中,可根据函数的特点,利用定积分的性质来证明.例1 设)(x f 是闭区间[]b a ,上的连续函数,且单调增加,求证:⎰⎰+≥b ab a dx x f b a dx x xf )(2)(. 证明 作辅助函数 dt t f x a dt t tf x xa x a ⎰⎰+-=)(2)()(ϕ, 显然0)(=a ϕ,且)(2)(21)()(x f x a dt t f x xf x x a ⎰+--='ϕ )(2))((21)(2x f a a x f x f x ---=ξ [])()(2ξf x f a x --=, 其中[]x a ,∈ξ.因为)(x f 在[]b a ,上单调增加,所以0)(≥'x ϕ,从而)(x ϕ在闭区间[]b a ,上单调增加,所以0)()(=≥a x ϕϕ,取b x =得⎰⎰+≥b a ba dx x fb a dx x xf )(2)(. 定积分在许多领域中有着重要应用,它是解决一些几何学问题、物理学问题和经济学问题的重要工具.这一章主要介绍了定积分在不同学科中的应用问题.。
积分中值定理与定积分应用积分中值定理与定积分应用的实战技巧积分中值定理与定积分应用的实战技巧积分中值定理和定积分是微积分中的重要概念,能够帮助我们解决各种实际问题。
本文将介绍积分中值定理和定积分的基本概念,以及如何应用这些概念来解决实际问题。
一、积分中值定理积分中值定理是微积分中的基本定理之一,它与导数中值定理有密切关联。
积分中值定理表明,若函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)上可导,则在[a,b]上至少存在一点c,使得函数的平均值等于函数在c处的导数值。
其数学表达式如下:∫[a,b] f(x) dx = f(c) (b-a)其中,f(x)表示在[a,b]上的连续函数,c为[a,b]上的某一点,b和a 分别为积分上限和下限。
积分中值定理的应用十分广泛。
它可以用于证明其他定理,例如柯西中值定理和拉格朗日中值定理。
除了数学的理论性应用外,积分中值定理还可用于解决实际问题,如求函数在某个区间上的平均值、证明函数在某个区间上的增减性等。
下面将以一个具体例子来说明积分中值定理的应用。
例子:求函数f(x) = 2x^2 + 3x在区间[1,3]上的平均值。
解:根据积分中值定理,函数f(x)在[1,3]上的平均值等于函数在该区间上某一点的函数值。
首先,我们计算函数f(x)在[1,3]上的定积分:∫[1,3] (2x^2 + 3x) dx = (2/3)x^3 + (3/2)x^2 |[1,3] = 24然后,求出函数f(x)在[1,3]上的平均值:平均值 = (1/3 - 1/2) * 24 = 8所以,函数f(x) = 2x^2 + 3x在区间[1,3]上的平均值为8。
通过这个例子,我们可以看到积分中值定理的实际应用,它不仅使我们能够求出函数在某个区间上的平均值,还可以帮助我们判断函数在某个区间上的增减性。
二、定积分的应用定积分是对区间上函数值的累加,可以用于求解曲线下面的面积、体积、平均值等问题。
变上限函数的性质及其应用作者连永龙系别统计与数学学院专业数学与应用数学年级2008级学号802091149指导教师邢华导师职称副教授评语:成绩:指导教师:年月日摘要:了解变上限函数的的定义并掌握其性质,用来解决定理、积分不等式、积分等式、敛散性的证明;极限、概率密度函数、重积分、不定积分的求解等问题。
从而,体会变上限函数的应用价值。
关键词:变上限函数性质应用变上限积分的改进引言变上限函数的引入及其定义:对于定义在[],a b 上的可积函数()f x 的定积分()d b af x x ⎰,若()f x 已知,则定积分为一确定的数。
现考虑,对任意的x 属于[],a b ,由定积分的性质得()f t 在[],a x 可积,且其结果为定义在[],a b 的函数。
于是定义这种函数为变上限函数: ()()d x aF x f t t =⎰[],x a b ∈变上限函数的性质及其相关定理一、 与定积分相同的有关性: 性质1、若()()d x aF x f t t =⎰[],x a b ∈,k 为常数,则()()d ()x aG x kf t t kF x ==⎰性质2、若f 、g 都在[],a b 上积分,且()()d x aF x f t t =⎰、()()d x aG x g x t=⎰[],x a b ∈,则()()f t g t ±在[],a x 可积,且[]()()d ()d ()d x xx a aaf tg t t f t t g t t ±=±⎰⎰⎰性质3、若f 、g 都在[],a x 上可积[],x a b ∈,则()()f tgt 在[],a x 上可积[],x a b ∈性质4、设()f x 为[],a b 上的可积函数,若()0f x ≥,[],x a b ∈,则()d 0xaf t t ≥⎰性质5、若()f x 在[],a b 上可积,则f 在[],a b 上也可积,且[]()d ()d ,x x aaf t t f t tx a b ≤∈⎰⎰这些性质可以类似证明定积分的性质来证明二、不定积分的特殊性质:(一)变上限函数的连续性定理:若()f x 在[],a b 上可积,则()()d x aF x f t t =⎰在[],a b 上是连续的。
考研——积分上限的函数(变上限积分)知识点()()xaF x f t dt =⎰形如上式的积分,叫做变限积分。
注意点:1、在求导时,是关于x 求导,用课本上的求导公式直接计算。
2、在求积分时,则把x 看作常数,积分变量t 在积分区间],[x a 上变动。
(即在积分内的x 作为常数,可以提到积分之外。
)关于积分上限函数的理论定理1如果)(x f 在],[b a 上连续,则)(x f 在(a ,b )上可积,而)(x f 可积,则⎰=xa dtt f x F )()(在],[b a 上连续。
定理2如果)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在(a ,b )上可积。
定理3如果)(x f 在],[b a 上连续,则⎰=xa dt t f x F )()(在],[b a 上可导,而且有).(])([)(x f dt t f dx d x F xa=='⎰ ==========================================注:(Ⅰ)从以上定理可看出,对)(x f 作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。
这是积分上限函数的良好性质。
而我们知道,可导函数)(x f 经过求导后,其导函数)(x f '甚至不一定是连续的。
(Ⅱ)定理(3)也称为原函数存在定理。
它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。
我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。
定理(3)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。
重要推论及计算公式:推论1)(])([x f dt t f dx d bx -=⎰ <变上限积分改变上下限,变号。
> 推论2)()]([])([)(x x f dt t f dxd x c ϕϕϕ'=⎰ <上限是复合函数的情况求导。
定积分求极限公式1.中值定理2.大数定律3.独立变量的积分4.常用极限公式接下来,我将对这些公式进行详细的介绍。
1.中值定理中值定理是微积分中的一个重要定理,可以用来证明函数的连续性。
对于函数f(x)在闭区间[a,b]上连续并可导,在(a,b)内存在一个点c,使得f'(c)=(f(b)-f(a))/(b-a)。
根据中值定理,定积分的极限可以通过函数的导数和平均值来表示。
2.大数定律有很多情况下,定积分可以用来表示一些随机变量的数学期望(期望值)。
根据大数定律,当取样数量足够大时,随机变量的平均值会趋近于其数学期望。
这意味着当定积分的上下限趋近于无穷时,定积分的值会收敛到一个常数。
3.独立变量的积分对于含有一个或多个独立变量的积分,可以通过分离变量,将其转化为只含有一个变量的积分。
例如,如果要求解∫(x^2 + y^2) dx,可以将 y 视为常数,并对 x 进行积分。
这样就可以得到只关于 y 的积分表达式。
4.常用极限公式在定积分求极限过程中,还可以直接使用一些常用的极限公式来简化计算。
常用的极限公式包括:- 弧长公式:当 a < b 时,有lim(x→∞) ∫(a→b) f(x) dx =lim(x→∞) ∫(a→x) f(t) dt + lim(x→∞) ∫(x→b) f(t) dt;- 指数函数和对应的自然对数函数的极限:lim(x→0) (1 + x)^1/x= e;- 三角函数的极限:lim(x→0) sin(x)/x = 1;- 幂函数的极限:lim(x→∞) x^a = ∞,其中 a > 0;- 正无穷大与负无穷大的相加或相减:lim(x→∞) [f(x) ± g(x)]= lim(x→∞) f(x) ± lim(x→∞) g(x);- 正无穷大与有界函数的乘积:lim(x→∞) [f(x) * g(x)] =lim(x→∞) f(x) * lim(x→∞) g(x),其中lim(x→∞) f(x) 为正无穷大,g(x) 为有界函数。
微积分中值定理及其应用
微积分的值定理是一个很重要的定理,它通常被用来求解复杂函数的积
分值。
值定理告诉我们,任何一个定义在实数段上的函数f在范围
(a≤x≤b)上至多只有一个不变点,并且它等于函数f在这个范围上的积
分值c=∫a﹣b f(x)dx。
值定理有多种不同的应用,广泛用于函数积分、函数极限以及定积分的
解决。
用值定理求积分的方法通常称为值定理逼近法。
首先,将一个积分表
达式分解为多个函数的积分,然后利用值定理的思想,将这些函数的积分求出,最后,将这些函数的积分求和,即可得到原积分表达式的积分结果。
值定理也可以用来求解函数极限,即当函数f(x)在x=a处取极值时,将
该函数积分以得到极限。
这实际上是应用积分来求取极限的一种方法,也称
为值定理极限法或积分极限法。
它的原理是,当函数取到极值时,把它积分,就会把该函数的参量控制,也就可以使函数的值趋近极限的值,即求解函数
的极限。
值定理也被广泛应用于定积分的解决中。
定积分是由函数和定义域定义
的定积分问题,要求该函数在这个定义域上积分的结果。
一般来说,将定积
分分解为若干函数的积分,然后运用值定理解决,即将它们的积分和加起来,得到定积分问题的答案。
以上就是关于微积分中值定理及其应用的简单介绍。
它是微积分中一个
重要的定理,在函数积分、极限以及定积分的解决中应用的非常广泛,具有
极大的实际意义。
变上限定积分导数的应用上限定积分的导数也称为上极限导数,是微积分中一个重要的概念,可以用来求解一些实际问题。
本文将介绍上限定积分导数的定义及其应用。
设函数f(x)在[a,b]上有连续的导数,则对于x∈(a,b),函数F(x)定义为F(x)=∫(a→x) f(t)dt称为函数f(x)在[a,b]上的上限定积分。
如果F(x)在(x-ε,x+ε)内有导数,则称F(x)在x点可导,记作F'(x)。
F'(x)=lim(h→0) [ F(x+h)-F(x) ]/h根据上限定积分导数的定义,我们可以通过求极限的方式来计算上限定积分导数。
具体计算方法如下:1. 用定积分求上限定积分导数指的是利用导数的定义和定积分的性质,将上限定积分转化为定积分来求解。
考虑函数F(x)=∫(a→x) f(t)dt,根据定积分的可加性和线性性质,可以得到:利用定积分的性质可得:这个极限可以转化为以下形式:所以,我们可以将上限定积分导数的计算问题转化为定积分的计算问题。
2. 利用导数的性质求上限定积分导数也是一种常用的方法。
根据导数的性质,我们可以得到:将上式两边对h求导,可以得到:这说明上限定积分的导数等于原函数在该点的函数值,即F'(x)=f(x)。
上限定积分导数在实际问题中有广泛的应用,下面介绍几个常见的应用场景。
1. 求曲线的切线斜率考虑曲线y=f(x),通过求上限定积分导数,可以求得曲线在某点处的切线斜率。
这说明F(x)在点a处的导数等于函数f(x)在该点的函数值,即F'(a)=f(a),也就是说F(x)在点a处的导数等于曲线在该点处的切线斜率。
2. 求物体的位移和速度考虑一个物体在直线上运动,其速度v(t)关于时间的函数已知。
我们可以通过上限定积分导数来求物体的位移和速度。
设s(t)表示物体在时刻t的位移,根据速度的性质,可以得到:根据上限定积分导数的定义,上式可以转化为:s'(t)=v(t)这说明位移函数s(t)的导数等于速度函数v(t)。
定积分知识总结一、基本概念和性质(1)定义[]()[]())()(lim )()()(,,,,0max ...,)()(lim lim )(11111111011-=∞→-=----∞→∞→=∞→-⋅-⋅=-⋅≈=→-∞→==-⋅=⋅∑∑∑∑⎰i i ni i n i i ni i i i i i i i i i i i i i i i i n i nn i n ni iban x x f x x f S x x f S I S I S I x x I x x n b x x x a n b a x x f S dx x f ξξξξξ④求极限:即③求和:,上任取一点在上用矩形代替在上的代数面积为在②记时,要求当<<<个小区间,区间分成①把的定义:[]dxx g dx x f dx x g x f ab babababa⋅⋅+⋅⋅=⋅⋅+⋅-=⎰⎰⎰⎰)()()()(12βαβα②线性运算性质:①)定积分的性质()()()(=⋅⋅-=⋅⎰⎰⎰aaabba dx x f dxx f dx x f()))(定要求的区间可积即可,不一其中,包含③区间的可加性:b a c c b a dxx f dx x f dx x f bccaba,,,()()()(∈⋅+⋅=⋅⎰⎰⎰[][][][]⎰⎰⎰⎰⎰⎰⋅⋅≥≡=⋅≥⋅≥⋅≥≥⋅≥babababab abadxx g dx x f x g x f x g x f b a x g x f x f x f dx x f x f x f b a x f dxx g dx x f x g x f b a x g x f dx x f x f b a x f )()(),()(),()(,)(),(0:0)(00:0)(0)(0)(0)(,)()()(),()(,)()(0)(0)(,)(>则:不恒等于且上连续,在区间推论:若区间上都等于则是指在整个;,也可能整个区间均为可能个别点上等于>,则不恒等于,上连续,在⑥若则上可积且在,⑤若,则上可积且在④ [][][][][])()()(,,)()()()(,)(,)()()(,)(a b f dx x f b a b a x f a b M dx x f a b m M m b a x M x f m b a x f dxx f dx x f b a x f bababa ba-⋅=⋅∈-≤⋅≤-∈≤≤⋅≤⋅⎰⎰⎰⎰ξξ,使得:点上连续,则至少存在一在闭区间若⑨(积分中值定理)均为常数,则:,,,上可积,在⑧若上可积,则在⑦若二、微积分基本公式1、积分上限函数及其导数定义:设函数)(x f 在区间],[b a 上连续,对于任意],[b a x ∈,)(x f 在区间],[x a 上也连续,所以函数)(x f 在],[x a 上也可积.显然对于],[b a 上的每一个x 的取值,都有唯一对应的定积分⎰xadt t f )(和x 对应,因此⎰xadt t f )(是定义在],[b a 上的函数.记为⎰=Φxadt t f x )()(,],[b a x ∈.称)(x Φ叫做变上限定积分,有时又称为变上限积分函数.定理1:如果函数)(x f 在区间],[b a 上连续,则⎰=Φxadt t f x )()(在],[b a 上可导,且)()()()(b x a x f dt t f dxd x xa ≤≤==Φ'⎰定理2、3:如果)(x f 在区间],[b a 上连续,则它的原函数一定存在,且其中的一个原函数为⎰=Φxadt t f x )()(.2、牛顿——莱布尼茨公式定理4(微积分基本公式)如果函数)(x f 在区间],[b a 上连续,且)(x F 是)(x f 的任意一个原函数,那么⎰-=b aa Fb F dx x f )()()(.证 由定理5.2知,⎰=Φx adt t f x )()(是)(x f 在区间],[b a 的一个原函数,则)(x Φ与)(x F 相差一个常数C ,即C x F dt t f x a+=⎰)()(.又因为C a F dt t f a a+==⎰)()(0,所以)(a F C -=.于是有)()()(a F x F dt t f x a -=⎰.所以 ⎰-=baa Fb F dx x f )()()(成立.为方便起见,通常把)()(a F b F -简记为ba x F )(或b a x F )]([,所以公式可改写为)()()()(a F b F x F dx x f b a b a-==⎰三、定积分的积分法1、定积分的换元积分法定理1设函数)(x f 在区间],[b a 上连续,并且满足下列条件:(1))(t x ϕ=,且)(αϕ=a ,)(βϕ=b ;(2))(t ϕ在区间],[βα上单调且有连续的导数)(t ϕ';(3)当t 从α变到β时,)(t ϕ从a 单调地变到b . 则有⎰⎰'=b adt t t f dx x f βαϕϕ)()]([)(上述公式称为定积分的换元积分公式.在应用该公式计算定积分时需要注意以下两点:①从左到右应用公式,相当于不定积分的第二换元法.计算时,用 把原积分变量 换成新变量 ,积分限也必须由原来的积分限 和 相应地换为新变量 的积分限 和 ,而不必代回原来的变量 ,这与不定积分的第二换元法是完全不同的.②从右到左应用公式,相当于不定积分的第一换元法(即凑微分法).一般不用设出新的积分变量,这时,原积分的上、下限不需改变,只要求出被积函数的一个原函数,就可以直接应用牛顿—莱布尼兹公式求出定积分的值. 2、定积分的分部积分法设函数)(x u u =和)(x v v =在区间],[b a 上有连续的导数,则有)()()]()([)()(x du x v x v x u x dv x u bab ab a⎰⎰-=.上述公式称为定积分的分部积分公式.选取)(x u 的方式、方法与不定积分的分部积分法完全一样.四、定积分的应用1、定积分应用的微元法为了说明定积分的微元法,我们先回顾求曲边梯形面积A 的方法和步骤: (1)将区间],[b a 分成n 个小区间,相应得到n 个小曲边梯形,小曲边梯形的面积记为i A ∆),2,1(n i =;(2)计算i A ∆的近似值,即i i i x f A ∆≈∆)(ξ(其中],[,11i i i i i i x x x x x --∈-=∆ξ); (3)求和得A 的近似值,即i ni i x f A ∆≈∑=1)(ξ;(4)对和取极限得⎰∑=∆==→bai ni i dx x f x f A )()(lim 1ξλ.下面对上述四个步骤进行具体分析:第(1)步指明了所求量(面积A )具有的特性:即A 在区间],[b a 上具有可分割性和可加性.第(2)步是关键,这一步确定的i i i x f A ∆≈∆)(ξ是被积表达式dx x f )(的雏形.这可以从以下过程来理解:由于分割的任意性,在实际应用中,为了简便起见,对i i i x f A ∆≈∆)(ξ省略下标,得x f A ∆≈∆)(ξ,用],[dx x x +表示],[b a 内的任一小区间,并取小区间的左端点x 为ξ,则A ∆的近似值就是以dx 为底,)(x f 为高的小矩形的面积(如图5.7 阴影部分),即dx x f A )(≈∆.通常称dx x f )(为面积元素,记为dx x f dA )(=.将(3),(4)两步合并,即将这些面积元素在],[b a 上“无限累加”,就得到面积A .即⎰=ba dx x f A )(.一般说来,用定积分解决实际问题时,通常按以下步骤来进行: (1)确定积分变量x ,并求出相应的积分区间],[b a ;(2)在区间],[b a 上任取一个小区间],[dx x x +,并在小区间上找出所求量F 的微元dx x f dF )(=;(3)写出所求量F 的积分表达式⎰=ba dx x f F )(,然后计算它的值.利用定积分按上述步骤解决实际问题的方法叫做定积分的微元法. 注 能够用微元法求出结果的量F 一般应满足以下两个条件: ①F 是与变量x 的变化范围],[b a 有关的量;②F 对于],[b a 具有可加性,即如果把区间],[b a 分成若干个部分区间,则F 相应地分成若干个分量.2、定积分求平面图形的面积(1)直角坐标系下面积的计算(1)由曲线)(x f y =和直线0,,===y b x a x 所围成曲边梯形的面积的求法前面已经介绍,此处不再叙述.(2)求由两条曲线)(),(x g y x f y ==,))()((x g x f ≥及直线b x a x ==,所围成平面的面积A (如图5.8所示).下面用微元法求面积A . ①取x 为积分变量,],[b a x ∈.②在区间],[b a 上任取一小区间],[dx x x +,该区间上小曲边梯形的面积dA 可以用高)()(x g x f -,底边为dx 的小矩形的面积近似代替,从而得面积元素dx x g x f dA )]()([-=. ③写出积分表达式,即⎰-=badx x g x f A )]()([.⑶求由两条曲线)(),(y x y x ϕψ==,))()((y y ϕψ≤及直线d y c y ==,所围成平面图形(如图5.9)的面积. 这里取y 为积分变量,],[d c y ∈, 用类似 (2)的方法可以推出:⎰-=dcdy y y A )]()([ψϕ.(2)极坐标系下面积的计算设曲边扇形由极坐标方程)(θρρ=与射线)(,βαβθαθ<==所围成(如图5.13所示).下面用微元法求它的面积A.以极角θ为积分变量,它的变化区间是],[βα,相应的小曲边扇形的面积近似等于半径为)(θρ,中心角为θd 的圆扇形的面积,从而得面积微元为θθρd dA 2)]([21=于是,所求曲边扇形的面积为 ⎰=βαθθρd A 2)]([21.3.定积分求体积 (1)旋转体的体积旋转体是一个平面图形绕这平面内的一条直线旋转而成的立体.这条直线叫做旋转轴.设旋转体是由连续曲线)0)()((≥=x f x f y 和直线b x a x ==,及x 轴所围成的曲边梯形绕x 轴旋转一周而成(如图5.15).取x 为积分变量,它的变化区间为],[b a ,在],[b a 上任取一小区间],[dx x x +,相应薄片的体积近似于以)(x f 为底面圆半径,dx 为高的小圆柱体的体积,从而得到体积元素为dx x f dV 2)]([π=,于是,所求旋转体体积为dx x f V bax ⎰=2)]([π.(2)平行截面面积为已知的立体体积设一物体被垂直于某直线的平面所截的面积可求,则该物体可用定积分求其体积.不妨设直线为x 轴,则在x 处的截面面积)(x A 是x 的已知连续函数,求该物体介于a x =和)(b a b x <=之间的体积(如图5.19).取x 为积分变量,它的变化区间为],[b a ,在微小区间],[dx x x +上)(x A 近似不变,即把],[dx x x +上的立体薄片近似看作)(x A 为底,dx 为高的柱片,从而得 到体积元素dx x A dV )(=.于是该物体的体积为⎰=badx x A V )(.类似地,由曲线)(y x ϕ=和直线d y c y ==,及y 轴所围成的曲边梯形绕y 轴旋转一周而成(如图5.16),所得旋转体的体积为dy y V dcy ⎰=2)]([ϕπ.。
定积分的例题分析及解法本章的基本内容是定积分的概念、计算和应用 一、定积分的概念1.定积分是下列和式的极限xi i f dx x f i nba∆∑==→⎰)(lim )(10ξλ其中{}xi ni ∆=≤≤1max λ因此,定积分是一个数,它依赖于被积函数)(x f 和积分区间〔a,b 〕 定积分与积分变量用什么字母无关:⎰⎰=babadt t f dx x f )()(定积分的几何意义是曲边梯形的面积(当被积函数0)(≥x f 时)。
2.定积分的性质 (1)线性性质[]⎰⎰⎰+=+bab abadx x g k dx x f k dx x g k x f k)()()()(2121(2) ⎰⎰⎰=-=aaabba dx x f dx x f dx x f 0)(,)()( (3) ⎰⎰⎰+=bccaba dx x f dx x f dx x f )()()((4)若),()(x g x f ≥则⎰⎰≥babadx x g dx x f )()((5)积分中值定理:设)(x f 在〔a,b 〕上连续,则在〔a,b 〕上至少存在一点ξ,使下式成立),()()(a b f dx x ba-=⎰ξ其中].[b a ∈ξ。
(6)估值定理:若)(x f 在〔a,b 〕上可积,且M x f m ≤≤)(,则有不等式⎰-≤≤-baa b M dx x f a b m )()()((7)若函数)(x f 在〔a,b 〕上连续,则有⎰=xa x f dt t f dxd )()( 3.广义积分。
二、定积分的计算 1.牛顿—莱布尼茨公式:⎰-=baa Fb F dx x f )()()(2.换元法:注意,在换元的同时不要忘记换积分限 3.分部积分法:⎰⎰-=babab a x du x x x u x d x u )()()()()()(υυυ4.定积分的近似计算:梯形,抛物线法。
三、定积分的应用基本方法是:(1)代公式;(2)微元法1.平面图形的面积(1)直角坐标系。