用matlab计算微积分共40页
- 格式:ppt
- 大小:2.43 MB
- 文档页数:40
matlab在微积分中的应用MATLAB在微积分中的应用一、MATLAB在求导和积分中的应用MATLAB集成了丰富的数学函数库,可以在求导和积分等方面帮助学生更好地理解微积分知识。
举例来说,MATLAB中的diff函数可以对一个函数或矩阵进行求导,计算结果准确可靠。
通过MATLAB可以解决一些手动计算困难的问题,有助于提高学生对微积分的理解。
在数值积分过程中,MATLAB也可以很好地发挥作用。
MATLAB中的quad函数可以用来求解函数在给定区间内的数值积分,通过对函数的积分计算,可以更好地理解微积分中的面积和曲线等概念。
在讲解微积分的面积和曲线时,使用MATLAB可以展示较多的面积和曲线实例,有助于学生理解具体实例。
二、MATLAB在微积分三维空间中的应用微积分中的三维空间部分,一般使用手工计算的方式进行,但是这种方式难度较大而且操作繁琐。
而MATLAB可以很方便地模拟三维空间中的曲线表面、曲面、向量场和曲线积分等,为学生提供更具体、直观的视觉体验。
MATLAB还可以使用画图函数,将许多计算步骤集成在一个命令窗口中,方便学生学习和理解三维空间的微积分。
三、MATLAB在微积分应用中的优点1. 计算精度高:MATLAB的计算精度非常高,可以解决许多手动计算困难的问题。
在使用MATLAB计算微积分时,可以快速得出精确的计算结果。
2. 操作简便:MATLAB界面友好,操作简便。
学生可以很容易地进行操作,快速理解微积分中的概念和原理。
3. 可视化更强:MATLAB可以将微积分的概念可视化,将微积分的理论和实际应用结合起来。
这样的教学方式更加形象直观,可以帮助学生更好地理解微积分的知识体系。
四、总结综合以上述,MATLAB在微积分中的应用,可以帮助学生更好地理解和掌握微积分的基本原理和概念,提高学生学习效率和学习兴趣。
MATLAB也为教师提供了一个新的教学工具,可以更加灵活地设计和授课,提高教学质量和教学效果。
matlab 微积分基本运算§1 解方程和方程组解1. 线性方程组求解对于方程 AX = B ,其中 A 是( m ×n )的矩阵有三种情形:1)当n=m 且A 非奇异时,此方程为“恰定”方程组。
2)当 n > m 时,此方程为“超定”方程组。
3)当n<m 时,此方程为“欠定”方程组。
下面就三种情形的求解分别作一说明:(1) MATLAB 解恰定方程 A* X = B 的方法1)采用求逆运算解方程x=inv(A)*B2)采用左除运算解方程x=A\B例1 “求逆”法和“左除”法求下列方程组的解⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x xx x x x x x x在Matlab 编辑器中建立M 文件fanex1.m :A=[5 6 0 0 01 5 6 0 00 1 5 6 00 0 1 5 60 0 0 1 5];B=[1 0 0 0 1]';R_A=rank(A) %求秩X1=A\B %用"左除"法解恰定方程所得的解X2=inv(A)*B %用"求逆"法解恰定方程所得的解运行后结果如下R_A =5X1 =2.2662-1.72181.0571-0.59400.3188X2 =2.2662-1.72181.0571-0.59400.3188两种方法所求方程组的解相同。
(2)MATLAB 解超定方程AX=B 的方法对于方程 AX = B ,其中 A 是( m ×n )的矩阵, n > m ,如果A 列满秩,则此方程是没有精确解的。
然而在实际工程应用中,求得其最小二乘解也是有意义的。
基本解法有:1)采用求伪逆运算解方程x=pinv(A)*B说明:此解为最小二乘解x=inv(A ’*A)*A*B,这里pinv(A) =inv(A ’*A)*A.2)采用左除运算解方程x=A\B例2 “求伪逆”法和“左除”法求下列方程组的解⎪⎩⎪⎨⎧=+=+=+12214212212121x x x x x x命令如下:>> a=[1 2;2 4;2 2];>> b=[1,1,1]';>> xc=a\b %用左除运算解方程运行得结果:xc =0.40000.1000>> xd=pinv(a)*b %用求伪逆运算解方程运行得结果:xd =0.40000.1000>> a*xc-b %xc 是否满足方程ax=b运行得结果:ans =-0.40000.20000.0000可见xc 并不是方程的精确解。
matlab 微分积分Matlab是一种功能强大的数学软件,广泛用于解决各种科学和工程问题。
其中一个常见的应用领域是微分积分。
在本文中,我们将深入探讨Matlab在微分积分方面的应用,并提供一些对这一主题的观点和理解。
首先,让我们从微分开始。
微分在数学中是一个重要的概念,也是Matlab中的一个核心功能。
通过Matlab,我们可以计算函数的导数、局部斜率以及函数图形的曲线特性。
例如,我们可以使用Matlab计算函数f(x) = x^2的导数。
下面是一段Matlab代码示例:```matlabsyms xf = x^2;df = diff(f, x);```在这个例子中,我们使用了Matlab的Symbolic Math工具箱(Symbolic Math Toolbox)来定义符号变量x和函数f,并使用diff 函数计算函数f的导数,存储在df变量中。
通过这样的方式,我们可以轻松地计算复杂函数的导数。
接下来,让我们转向积分。
积分在数学中也是一个重要的概念,用于求解函数的面积、曲线的长度和求解一些实际问题。
Matlab提供了多种方法来进行数值积分和符号积分。
对于简单的积分问题,可以使用Matlab的int函数进行符号积分计算。
例如,对于函数f(x) = x^2的定积分,我们可以使用以下代码:```matlabsyms xf = x^2;integral = int(f, x, 0, 1);```在这个例子中,我们使用了Matlab的int函数来计算函数f在区间[0, 1]上的定积分,结果存储在integral变量中。
这样,我们就可以得到函数f在指定区间上的面积。
除了符号积分,Matlab还提供了一些数值积分方法,例如梯形法则、辛普森法则和高斯积分法。
这些方法适用于更复杂的积分问题,可以通过Matlab的integral函数进行计算。
例如,我们可以使用Matlab 计算函数f(x) = sin(x)在区间[0, pi]上的数值积分,如下所示:```matlabf = @(x) sin(x);integral = integral(f, 0, pi);```在这个例子中,我们使用了Matlab的函数句柄(function handle)来定义函数f,然后使用integral函数计算函数f在指定区间上的数值积分。
Matlab 在微积分中的应用命令1 极限函数 limit格式 limit(F,x,a) %计算符号表达式F=F(x)的极限值,当x →a 时。
limit(F,a) %用命令findsym(F)确定F 中的自变量,设为变量x ,再计算F 的极限值,当x →a 时。
limit(F) %用命令findsym(F)确定F 中的自变量,设为变量x ,再计算F 的极限值,当x →0时。
limit(F,x,a,'right')或limit(F,x,a,'left') %计算符号函数F 的单侧极限:左极限x →a - 或右极限x →a+。
例3-25>>syms x a t h n;>>L1 = limit((cos(x)-1)/x)>>L2 = limit(1/x^2,x,0,'right')>>L3 = limit(1/x,x,0,'left')>>L4 = limit((log(x+h)-log(x))/h,h,0)>>v = [(1+a/x)^x, exp(-x)];>>L5 = limit(v,x,inf,'left')>>L6 = limit((1+2/n)^(3*n),n,inf)计算结果为:L1 =L2 =infL3 =-infL4 =1/xL5 =[ exp(a), 0]L6 =exp(6)命令2 导数(包括偏导数)函数 diff格式 diff(S,'v')、diff(S,sym('v')) %对表达式S 中指定符号变量v 计算S 的1阶导数。
diff(S) %对表达式S 中的符号变量v 计算S 的1阶导数,其中v=findsym(S)。
diff(S,n) %对表达式S 中的符号变量v 计算S 的n 阶导数,其中v=findsym(S)。
第三章 微积分的数学实验3.1极限与一元微积分3.1.1 初等运算1.定义单个或多个符号变量:syms x y z t ;定义单个符号变量或者符号函数还可以用单引号定义,如x=’x ’,f=’sin(x^2)+2*x-1’。
符号表达式的反函数运算g=finverse(f),g 是返回函数f 的反函数。
例1 求sin(1)y x =-的反函数>>syms x>>y=sin(x-1); g=finverse(y),结果为 g=1+asin(t)2. f actor(f) 因式分解函数f3.Collect(f) 对函数f 合并同类项4. expand(f) 将函数f 表达式展开5. simple(f) 找出表达式的最简短形式(有时需要用2次)6. roots (p )对多项式p 求根函数。
7. solve(F) 一般方程的求根函数例2 解方程2510x x +-=解 >>syms x>>solve(x^2+5*x-1)结果为x =[ -5/2+1/2*29^(1/2) -5/2-1/2*29^(1/2)]8.fzero(f,x0)或fzero(f,[a,b]) 在初始点x0处开始或在区间[a,b]上搜索函数的零点,f(a)与f(b)需要符号相反。
3.1.2 Matlab计算函数的极限函数形式:1)limit(F,x,a),求函数F在 x ->a时的极限。
2)limit(F,a),默认其中的变量为极限变量.3)limit (F),默认其中的变量为极限变量且趋向于0.4)limit(F,x,a,'right')或limit(F,x,a,’left') 求函数F在x->a时的右、左极限.例3 >>syms x a t h; %syms作用是申明x,a,t,h是符号变量,不需先赋值再调用。
>>limit(sin(x)/x) %结果为 1>>limit((x-2)/(x^2-4),2) %结果为 1/4>>limit((1+2*t/x)^(3*x),x,inf) %结果为 exp(6*t)>>limit(1/x,x,0,'right') %结果为 inf>>limit(1/x,x,0,'left') %结果为 -inf>>limit((sin(x+h)-sin(x))/h,h,0) %结果为 cos(x)>>v = [(1 + a/x)^x, exp(-x)];limit(v,x,inf,'left') %结果为[exp(a),0]3.1.3 Matlab计算导数与微分1.一元导数和微分diff函数用以计算函数的微分和导数,相关的函数语法有下列4个:diff(f) 返回f对预设独立变量的一次导数值diff(f,'t')或diff(f,t) 返回f对独立变量t的一次导数(值)diff(f,n) 返回f对预设独立变量的n阶导数(值)diff(f,'t',n) 或diff(f,t,n)返回f对独立变量t的n阶导数(值)这里尽管自变量已经作为符号变量,可以不用syms说明,但是在具体执行diff(f)、diff(f,'t')和diff(f,t)会出现差异,有的能够执行,有的不能够,有的执行符号微分,有的执行数值微分,所以比较麻烦。
MATLAB的微积分基本运算第六章 MATLAB 的微积分基本运算学习⽬标:1、熟悉符号对象和表达式的创建;2、熟悉计算结果的类型与精度控制和转换3、掌握MATLAB 中符号微积分运算:极限、导数、积分的命令及格式。
第⼀节极限⼀、极限概念演⽰:数列极限是指当n ⽆限增⼤时,n u 与某常数⽆限接近或n u 趋向于某⼀定值,就图形⽽⾔,其点列以某⼀平⾏y 轴的直线为渐近线。
函数极限也是如此。
例1:观察数列?+1n n ,当∞→n 时的变化趋势。
输⼊程序:>> n=1:100;xn=n./(n+1); >> for i=1:100;plot(n(i),xn(i),'r') % plot 是⼆维图形作图命令。
hold onend % for ……..end 语句是循环语句,循环体内的语句被执⾏100次由图可看出,随n 的增⼤,点列与直线y=1⽆限接近,所以11lim=+∞→n nn 例2:观察函数 xx f 1sin)(=,当0→x 时的变化趋势。
输⼊程序:>> x=-1:0.01:1;y=sin(1./x);plot(x,y)从图可看到,当0→x 时,x1sin 在-1和1之间⽆限次振荡,极限不存在。
例3:观察函数 xxx f )11()(+=,当∞→x 时的变化趋势输⼊程序:>> x=-1:10:1000;y=(1+1./x).^x;plot(x,y)从图可看到,当∞→x 时,函数值与某常数⽆限接近,这个常数就是e 。
⼆、极限计算:如果符号表达式F中只有⼀个变量x,x可以省略,当a=0时0也可以省略。
例:阅读理解下列程序>> syms x n>> limit(x^2*exp(x))ans =>> limit(exp(-1/x),x,0,'left')ans =inf>> limit((1+2/n)^(3*n),n,inf)ans =exp(6)三、符号对象与表达式的建⽴微积分运算的对象为函数,MATLAB称为符号表达式, MATLAB进⾏微积分运算⾸先要建⽴符号表达式,然后才可以利⽤MATLAB符号数学⼯具箱提供的函数进⾏运算。
详解Matlab 求积分的各种方法一、符号积分由函数int 来实现。
该函数的一般调用格式为:int(s):没有指定积分变量和积分阶数时,系统按findsym 函数指示的默认变量对被积函数或符号表达式s 求不定积分;int(s,v):以v 为自变量,对被积函数或符号表达式s 求不定积分;int(s,v,a,b):求定积分运算。
a,b 分别表示定积分的下限和上限。
该函数求被积函数在区间[a,b]上的定积分。
a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf) 。
当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。
当a,b中有一个是inf时,函数返回一个广义积分。
当a,b中有一个符号表达式时,函数返回一个符号函数。
例:求函数xz+yz+z2的三重积分。
内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y ;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1, 上限是2,求解如下:>>syms x y z %定义符号变量>>F2二i nt(i nt(i nt(xA2+yA2+zA2,z,sqrt(x*y),xA2*y),y,sqrt(x),xA2),x,1,2) %注意定积分的书写格式F2 =57/-/348075*2八(1/2)+14912/4641*2八(1/4)+64/225*2八(3/4) % 给出有理数解>>VF2=vpa(F2) %给出默认精度的数值解VF2 =1/ 3224.9232805 二、数值积分1. 数值积分基本原理求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)?法、牛顿—柯特斯(Newton-Cotes)法等都是经常采用的方法。
它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,•,其中x仁a, xn+仁b。
matlab中求积分的命令Matlab是一种功能强大的数学软件,它提供了许多用于求解数学问题的工具和函数。
其中之一就是求积分的命令。
在本文中,我们将介绍如何使用Matlab中的积分命令来求解各种数学问题。
在Matlab中,求积分的命令是"int"。
该命令可以用于求解定积分、不定积分以及多重积分。
下面将分别介绍这三种情况的用法和示例。
首先是定积分。
定积分是求解某一函数在给定区间上的面积。
在Matlab中,可以使用"int"命令来求解定积分。
其语法格式为:I = int(fun, a, b)其中,"fun"是被积函数,可以是一个已定义的函数,也可以是一个匿名函数;"a"和"b"是积分区间的起点和终点;"I"是积分的结果。
接下来是不定积分。
不定积分是求解某一函数的原函数。
在Matlab 中,可以使用"int"命令来求解不定积分。
其语法格式为:F = int(fun, x)其中,"fun"是被积函数,可以是一个已定义的函数,也可以是一个匿名函数;"x"是变量;"F"是积分的结果。
最后是多重积分。
多重积分是求解多元函数在给定区域上的体积或面积。
在Matlab中,可以使用"int"命令来求解多重积分。
其语法格式为:I = int(fun, xmin, xmax, ymin, ymax, zmin, zmax)其中,"fun"是被积函数,可以是一个已定义的函数,也可以是一个匿名函数;"xmin"和"xmax"是变量x的积分区间;"ymin"和"ymax"是变量y的积分区间;"zmin"和"zmax"是变量z的积分区间;"I"是积分的结果。