matlab微积分运算命令与例题
- 格式:pdf
- 大小:104.43 KB
- 文档页数:8
matlab解常微分方程例题当涉及到使用MATLAB解常微分方程(ODE)的例题时,我们可以采用MATLAB中的ode45函数来进行求解。
ode45是一种常用的ODE求解器,它基于龙格-库塔方法。
下面我将以一个简单的例题来说明如何使用MATLAB解常微分方程。
假设我们要解决以下的常微分方程:dy/dt = -2y + 4t.初始条件为y(0) = 1。
首先,我们需要定义一个匿名函数来表示方程右侧的表达式,即-2y + 4t。
在MATLAB中,可以这样定义这个函数:f = @(t, y) -2y + 4t.接下来,我们需要定义时间范围和初始条件:tspan = [0 5] % 时间范围从0到5。
y0 = 1 % 初始条件y(0) = 1。
然后,我们可以使用ode45函数进行求解:[t, y] = ode45(f, tspan, y0)。
最后,我们可以绘制出解的图像:plot(t, y)。
xlabel('t')。
ylabel('y')。
title('Solution of dy/dt = -2y + 4t')。
这样,我们就得到了常微分方程的数值解,并用图像表示出来。
需要注意的是,这只是一个简单的例题,实际应用中可能会涉及更复杂的常微分方程。
但是使用MATLAB的ode45函数求解常微分方程的基本步骤是相似的,定义方程右侧的函数,设定时间范围和初始条件,然后使用ode45函数进行求解,并绘制出解的图像。
希望以上的解答能够满足你的需求。
如果你有更多关于MATLAB 解常微分方程的问题,欢迎继续提问。
第九章微积分基础1函数的极限(符号解法)一元函数求极限函数 limit格式 limit(F,x,a) %计算符号表达式F=F(x) 当x→a时的极限值。
limit(F,a) %用命令findsym(F)确信F中的自变量,设为变量x,再计算F当x→a时的极限值。
limit(F) %用命令findsym(F)确信F中的自变量,设为变量x,再计算F当x→0时的极限值。
limit(F,x,a,'right')或limit(F,x,a,'left') %计算符号函数F的单侧极限:左极限x →a- 或右极限x→a+。
【例1】>>syms x a t h n;>>L1 = limit((cos(x)-1)/x)>>L2 = limit(1/x^2,x,0,'right')>>L3 = limit(1/x,x,0,'left')>>L4 = limit((log(x+h)-log(x))/h,h,0)>>v = [(1+a/x)^x, exp(-x)];>>L5 = limit(v,x,inf,'left')>>L6 = limit((1+2/n)^(3*n),n,inf)计算结果为:L1 =L2 =infL3 =-infL4 =1/xL5 = [ exp(a), 0] L6 = exp(6)注:在求解之前,应该先声明自变量x,再概念极限表达式fun,假设0x 为∞,那么能够用inf 直接表示。
若是需要求解左右极限问题,还需要给出左右选项。
【例2】 试别离求出tan 函数关于pi/2点处的左右极限。
>> syms t;f=tan(t);L1=limit(f,t,pi/2,'left'), L2=limit(f,t,pi/2,'right') L1 = Inf L2 = -Inf【例3】求以下极限1)312lim20+-→x x x 2)x x x t 3)21(lim +∞→解:编程如下:>>syms x t ;L1 = limit((2*x-1)/(x^2+3)) >>L2 = limit((1+2*t/x)^(3*x),x,inf)回车后可得: L1 = -1/3 L2 = exp(6*t) 多元函数求极限求多元函数的极限能够嵌套利用limit()函数,其挪用格式为:limit(limit(f,x,x0),y,y0)或limit(limit(f,y,y0),x,x0)【例4】求极限:x xy y x )sin(lim 30→→>> syms x y;f=sin(x*y)/x;limit(limit(f,x,0),y,3)ans = 3注:若是x0或y0不是确信的值,而是另一个变量的函数,如)(y g x →,那么上述的极限求取顺序不能互换。
第三章 微积分的数学实验3.1极限与一元微积分3.1.1 初等运算1.定义单个或多个符号变量:syms x y z t ;定义单个符号变量或者符号函数还可以用单引号定义,如x=’x ’,f=’sin(x^2)+2*x-1’。
符号表达式的反函数运算g=finverse(f),g 是返回函数f 的反函数。
例1 求sin(1)y x =-的反函数>>syms x>>y=sin(x-1); g=finverse(y),结果为 g=1+asin(t)2. f actor(f) 因式分解函数f3.Collect(f) 对函数f 合并同类项4. expand(f) 将函数f 表达式展开5. simple(f) 找出表达式的最简短形式(有时需要用2次)6. roots (p )对多项式p 求根函数。
7. solve(F) 一般方程的求根函数例2 解方程2510x x +-=解 >>syms x>>solve(x^2+5*x-1)结果为x =[ -5/2+1/2*29^(1/2) -5/2-1/2*29^(1/2)]8.fzero(f,x0)或fzero(f,[a,b]) 在初始点x0处开始或在区间[a,b]上搜索函数的零点,f(a)与f(b)需要符号相反。
3.1.2 Matlab计算函数的极限函数形式:1)limit(F,x,a),求函数F在 x ->a时的极限。
2)limit(F,a),默认其中的变量为极限变量.3)limit (F),默认其中的变量为极限变量且趋向于0.4)limit(F,x,a,'right')或limit(F,x,a,’left') 求函数F在x->a时的右、左极限.例3 >>syms x a t h; %syms作用是申明x,a,t,h是符号变量,不需先赋值再调用。
>>limit(sin(x)/x) %结果为 1>>limit((x-2)/(x^2-4),2) %结果为 1/4>>limit((1+2*t/x)^(3*x),x,inf) %结果为 exp(6*t)>>limit(1/x,x,0,'right') %结果为 inf>>limit(1/x,x,0,'left') %结果为 -inf>>limit((sin(x+h)-sin(x))/h,h,0) %结果为 cos(x)>>v = [(1 + a/x)^x, exp(-x)];limit(v,x,inf,'left') %结果为[exp(a),0]3.1.3 Matlab计算导数与微分1.一元导数和微分diff函数用以计算函数的微分和导数,相关的函数语法有下列4个:diff(f) 返回f对预设独立变量的一次导数值diff(f,'t')或diff(f,t) 返回f对独立变量t的一次导数(值)diff(f,n) 返回f对预设独立变量的n阶导数(值)diff(f,'t',n) 或diff(f,t,n)返回f对独立变量t的n阶导数(值)这里尽管自变量已经作为符号变量,可以不用syms说明,但是在具体执行diff(f)、diff(f,'t')和diff(f,t)会出现差异,有的能够执行,有的不能够,有的执行符号微分,有的执行数值微分,所以比较麻烦。
matlab 微积分基本运算§1 解方程和方程组解1. 线性方程组求解对于方程 AX = B ,其中 A 是( m ×n )的矩阵有三种情形:1)当n=m 且A 非奇异时,此方程为“恰定”方程组。
2)当 n > m 时,此方程为“超定”方程组。
3)当n<m 时,此方程为“欠定”方程组。
下面就三种情形的求解分别作一说明:(1) MATLAB 解恰定方程 A* X = B 的方法1)采用求逆运算解方程x=inv(A)*B2)采用左除运算解方程x=A\B例1 “求逆”法和“左除”法求下列方程组的解⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x xx x x x x x x 在Matlab 编辑器中建立M 文件fanex1.m :A=[5 6 0 0 01 5 6 0 00 1 5 6 00 0 1 5 60 0 0 1 5];B=[1 0 0 0 1]';R_A=rank(A) %求秩X1=A\B %用"左除"法解恰定方程所得的解X2=inv(A)*B %用"求逆"法解恰定方程所得的解运行后结果如下R_A =5X1 =2.2662-1.72181.0571-0.59400.3188X2 =2.2662-1.72181.0571-0.59400.3188两种方法所求方程组的解相同。
(2)MATLAB 解超定方程AX=B 的方法对于方程 AX = B ,其中 A 是( m ×n )的矩阵, n > m ,如果A 列满秩,则此方程是没有精确解的。
然而在实际工程应用中,求得其最小二乘解也是有意义的。
基本解法有:1)采用求伪逆运算解方程x=pinv(A)*B说明:此解为最小二乘解x=inv(A ’*A)*A*B,这里pinv(A) =inv(A ’*A)*A.2)采用左除运算解方程x=A\B例2 “求伪逆”法和“左除”法求下列方程组的解⎪⎩⎪⎨⎧=+=+=+12214212212121x x x x x x命令如下:>> a=[1 2;2 4;2 2];>> b=[1,1,1]';>> xc=a\b %用左除运算解方程运行得结果:xc =0.40000.1000>> xd=pinv(a)*b %用求伪逆运算解方程运行得结果:xd =0.40000.1000>> a*xc-b %xc 是否满足方程ax=b运行得结果:ans =-0.40000.20000.0000可见xc 并不是方程的精确解。
MATLAB中的微积分运算(数值符号)显然这个函数是单词differential(微分)的简写,⽤于计算微分。
实际上准确来说计算的是差商。
如果输⼊⼀个长度为n的⼀维向量,则该函数将会返回长度为n-1的向量,向量的值是原向量相邻元素的差,于是可以计算⼀阶导数的有限差分近似。
(1)符号微分1.常⽤的微分函数函数:diff(f) 求表达式f对默认⾃变量的⼀次微分值diff(f,x) 求表达式f对⾃变量x的⼀次积分值diff(f,n) 求表达式f对默认⾃变量的n次微分值diff(f,t,n)求表达式f对⾃变量t的n次微分值>> x=1:10x =1 2 3 4 5 6 7 8 9 10>> diff(x)ans =1 1 1 1 1 1 1 1 1例1:求矩阵中各元素的导数求矩阵[1/(1+a) (b+x)/cos(x)1/(x*y) exp(x^2)]对x的微分,可以输⼊以下命令A = sym('[1/(1+a),(b+x)/cos(x);1,exp(x^2)]');B = diff(A,'x')可得到如下结果:例2:求偏导数求的偏导数。
syms x y;f = x*exp(y)/y^2;fdx = diff(f,x)fdy = diff(f,y)可得到如下结果:例3:求复合函数的导数求的导数sym('x');y = 'x*f(x^2)'y1 = diff(y,'x')得到结果如下:例4:求参数⽅程的导数对参数⽅程求导syms a b tf1 = a*cos(t);f2 = b*sin(t);A = diff(f2)/diff(f1) %此处代⼊了参数⽅程的求导公式B = diff(f1)*diff(f2,2)-diff(f1,2)*diff(f2)/diff(f1)^3 %求⼆阶导数可得到如下结果:例5:求隐函数的导数求的⼀阶导数syms x yp = 'x*y(x)-exp(x+y(x))'%隐函数可进⾏整体表⽰%注意y(x)这种写法,它代表了y是关于x的函数p1 = diff(p,x)可得到如下结果:2.符号积分1符号函数的不定积分函数:int功能:求取函数的不定积分语法:int(f)int(f,x)说明:第⼀个是求函数f对默认⾃变量的积分值;第⼆个是求⾃变量f对对⾃变量t的不定积分值。
第六章 MATLAB 的微积分基本运算学习目标:1、 熟悉符号对象和表达式的创建;2、 熟悉计算结果的类型与精度控制和转换3、掌握MATLAB 中符号微积分运算:极限、导数、积分的命令及格式。
第一节 极 限一、 极限概念演示:数列极限是指当n 无限增大时,n u 与某常数无限接近或n u 趋向于某一定值,就图形而言,其点列以某一平行y 轴的直线为渐近线。
函数极限也是如此。
例1:观察数列⎭⎬⎫⎩⎨⎧+1n n ,当∞→n 时的变化趋势。
输入程序:>> n=1:100;xn=n./(n+1); >> for i=1:100;plot(n(i),xn(i),'r') % plot 是二维图形作图命令。
hold onend % for ……..end 语句是循环语句,循环体内的语句被执行100次由图可看出,随n 的增大,点列与直线y=1无限接近,所以11lim=+∞→n nn 例2:观察函数 xx f 1sin)(=,当0→x 时的变化趋势。
输入程序:>> x=-1:0.01:1;y=sin(1./x);plot(x,y)从图可看到,当0→x 时,x1sin 在-1和1之间无限次振荡,极限不存在。
例3:观察函数 xxx f )11()(+=,当∞→x 时的变化趋势 输入程序:>> x=-1:10:1000;y=(1+1./x).^x;plot(x,y)从图可看到,当∞→x 时,函数值与某常数无限接近,这个常数就是e 。
二、 极限计算:如果符号表达式F中只有一个变量x,x可以省略,当a=0时0也可以省略。
例:阅读理解下列程序>> syms x n>> limit(x^2*exp(x))ans =>> limit(exp(-1/x),x,0,'left')ans =inf>> limit((1+2/n)^(3*n),n,inf)ans =exp(6)三、符号对象与表达式的建立微积分运算的对象为函数,MATLAB称为符号表达式, MATLAB进行微积分运算首先要建立符号表达式,然后才可以利用MATLAB符号数学工具箱提供的函数进行运算。
实验04 多元函数微积分一实验目的 (2)二实验内容 (2)三实验准备 (2)四实验方法与步骤 (3)五练习与思考 (7)一 实验目的1 了解多元函数、多元函数积分的基本概念,多元函数的极值及其求法;2 理解多元函数的偏导数、全微分等概念,掌握积分在计算空间立体体积或表面积等问题中的应用;3 掌握MATLAB 软件有关求导数的命令;4 掌握MATLAB 软件有关的命令.二 实验内容1 多元函数的偏导数,极值;2 计算多元函数数值积分;3计算曲线积分,计算曲面积分.三 实验准备1 建立符号变量命令为sym 和syms ,调用格式为: x=sym('x') 建立符号变量x ;syms x y z 建立多个符号变量x ,y ,z ; 2 matlab 求导命令diff 的调用格式: diff(函数(,)f x y ,变量名x)求(,)f x y 对x 的偏导数f x∂∂; diff(函数(,)f x y ,变量名x,n) 求(,)f x y 对x 的n 阶偏导数n n fx∂∂;3 matlab 求雅可比矩阵命令jacobian 的调用格式: jacobian([f;g;h],[],,x y z )给出矩阵f f f x y zg g g x y zh h h xyz ⎛⎫∂∂∂ ⎪∂∂∂ ⎪ ⎪∂∂∂ ⎪∂∂∂ ⎪ ⎪∂∂∂ ⎪∂∂∂⎝⎭4 MATLAB 中主要用int 进行符号积分,常用格式如下: ① int(s)表示求符号表达式s 的不定积分② int(s,x)表示求符号表达式s 关于变量x 的不定积分③ int(s,a,b)表示求符号表达式s 的定积分,a ,b 分别为积分的上、下限④ int(s,x,a,b)表示求符号表达式s 关于变量x 的定积分,a,b 分别为积分的上、下限5 MATLAB 中主要用trapz,quad,quad8等进行数值积分,常用格式如下:① trapz(x,y)采用梯形积分法,其中x 是积分区间的离散化向量,y 是与x 同维数的向量、用来表示被积函数.② quad8('fun',a,b,tol)采用变步长数值积分,其中fun 为被积函数的M 函数名,a,b 分别为积分上、下限,tol 为精度,缺省值为1e-3.③ dblquad('fun',a,b,c,d)表示求矩形区域的二重数值积分,其中fun 为被积函数的M 函数名,a ,b 分别为x 的上、下限,c ,d 分别为y 的上、下限.使用help int ,help trapz ,help quad 等查阅有关这些命令的详细信息.四 实验方法与步骤例1 定义二元函数23z x y =+.解 (1)方法一:syms x y;z=x.^2+y.^3; (2)方法二:编写M 文件fun7.m 定义函数function z=fun7(x,y) z=x.^2+y.^3;(3)方法三:利用inline 函数:f=inline('x.^2+y.^3'). 注:不同定义方式,调用格式不完全相同. 例2 绘出函数23z x y =+的图形.解 程序为:x=linspace(-10,10,40);y=x;[X,Y]=meshgrid(x, y); Z=fun7(X,Y);surf(X,Y,Z),shading interp 结果如图2-10所示.图2-10例3 设222u x y yz =++,求u y∂∂. 解 输入命令:syms x y z;diff(x^2+2*y^2+y*z,y),得ans=4*y+z.利用jacobian 命令:jacobian(x^2+2*y^2+y*z,[x y]),得ans=[2*x,4*y+z],即矩阵,u u x y ⎛⎫∂∂ ⎪∂∂⎝⎭例4 设642232z x y x y =-+,求22222,,z z zx y x y∂∂∂∂∂∂∂.解 求22zx∂∂的程序为:syms x y;diff(x^6-3*y^4+2*x^2*y^2,x,2)结果为: ans=30*x^4+4*y^2 求22zy ∂∂的程序为:syms x y;diff(x^6-3*y^4+2*x^2*y^2,y,2) 结果为:ans=-36*y^2+4*x^2求2z x y∂∂∂的程序为:syms x y;diff(diff(x^6-3*y^4+2*x^2*y^2,x),y) 结果:为ans=8*x*y.注:diff(x^6-3*y^4+2*x^2*y^2,x,y)是求zy∂∂,而不是求2z x y ∂∂∂例5 设由,x y 所确定的z 的隐函数为2225xy y z ++=,求,z zx y∂∂∂∂.解 令()22,,25F x y z xy y z =++- ''/x z zF F x∂=-∂ 输入命令:syms x y z;a=jacobian(x*y+y^2+2*z^2-5,[x,y,z]) 可得矩阵()''',,x y z F F F =[y,x+2*y,4*z] 利用公式''''/,/x z y z z zF F F F x y∂∂=-=-∂∂可得 求zx ∂∂的程序为:-a(1)/a(3),结果为:-1/4*y/z ; 求zy∂∂的程序为:-a(2)/a(3),结果为:1/4*(-x-2*y)/z. 例6 求(1)()222122()312(12)f x x x x =-+-在点()2,2-临近的极小值.(2)222()()(1)f x y x x =-+-在55x -≤≤内的极值.解 求多元函数(,)z f x y =的极值点X 和极小值minf ,可用如下方法 方法一:X=fminsearch('f',x0),用的是Nelder-Mead 单纯形搜索法求解; 方法二:X=fminunc('f',x0),用的是BFGS 拟牛顿迭代法求解. 其中[](1),(2),(3),,()X x x x x n =,x0是初始点. 若求极大值点,用(-1)乘函数,再求极小值点.(1)程序如下:f='(x(1)^2-3*x(2))^2+12*(1-2*x(2))^2'; x=fminsearch(f,[-2,2]),minf=eval(f) 结果为:x =-1.2247 0.5000, minf =2.1879e-009结果说明在1 1.2247x =-,20.5x =时,函数的极小值为0. (2)先作函数的图形,程序如下:[x,y]=meshgrid(-5:0.5:5); f=(y-x.^2).^2+(1-x).^2; surf(x,y,f);结果如图2-11所示.以下程序为求函数的极小值:图2-11f='(x(2)-x(1).^2).^2+(1-x(1)).^2';x=fminsearch(f,[0.2,0.3]),minf=eval(f),shading interp结果为:x=[1.0000,1.0000],minf=4.1546e-010 说明在1,1x y ==时,函数的极小值为0. 例8 计算积分221(1)d d x y xy x y +≤+⎰⎰.解 先将被积函数转化为二次积分:)22111(1)d d 1d d x y x y x y x y y x -+≤⎛⎫++=++ ⎪⎝⎭⎰⎰⎰, 程序为:clear; syms x y;iy=int(1+x*y,y,-sqrt(1-x^2),sqrt(1-x^2));int(iy,x,-1,1) 结果为:ans=π.例9 求对弧长的曲线积分:(1)计算2d ,:2cos ,3sin Ly s L x t y t ==⎰。
第二讲 导数与微分方程一、实验内容1、实际引例(牛顿冷却模型)警察上午9点钟发现一被谋杀者,并测得尸体温度为32.4℃,一小时以后,尸体的温度变为31.7℃,尸体所在房间的温度是20℃。
如果人的正常体温为36.5℃,并知道热物体冷却速度与自身温度与外界温度之差成正比,试推断谋杀时间。
解设T 为尸体温度,t 为时间(十进制,如10.5代表10点30分),温度的变化率(dt dT )比例常数为K解题关键热物体冷却速度与自身温度与外界温度之差成正比。
即 dtdT =k*(T-20). 该方程就为微分方程,那么如何求解喃?以下为MATLAB 求解过程:T=dsolve('DT=k*(T-20)','T(9)=32.4') %T (9)表示在9点时的温度为32.4℃ ans =(62*exp(k*t))/(5*exp(9*k)) + 20由于10点室温为31.7℃,带入后可求K,命令如下:先输入 solve(''),然后把上面得到的表达式复制进去(62*exp(k*t))/(5*exp(9*k)) + 20k=solve('(62*exp(k*10))/(5*exp(9*k)) + 20=31.7') (带入t=10,T=31.7) k=-0.05810763080728074591965065204834T=(62*exp(k*t))/(5*exp(9*k)) + 20T=20.91915298056906312642973833139/exp(0.05810763080728074591965065204834*t)+20 T=vpa(T,6) (保留几位数)T =20.9192/exp(0.0581076*t) + 20.0t=solve('20.9192/exp(0.0581076*t) + 20.0=36.5')ans =4.08392390395064778268825821864340.083923*60=5.0354即谋杀时间 凌晨4点5分左右二、引例子所涉及的知识点1、首先要列出微分方程,简单的来说出现了变化率(dtdT )。
matlab 积分题在Matlab中,积分是一项常用的数值计算操作,它在解决数学问题和工程问题中都具有重要的作用。
本文将介绍如何使用Matlab进行积分计算,并讨论一些常见的积分问题。
在Matlab中,可以使用`integral`函数进行积分计算。
该函数可以计算定积分、不定积分以及多重积分。
下面以定积分为例进行说明。
首先,需要定义一个要积分的函数。
例如,我们要计算函数 f(x) = x^2 的定积分,可以使用如下代码定义这个函数:```matlabfunction y = myfun(x)y = x.^2;end```接下来,可以使用`integral`函数进行积分计算。
具体操作如下:```matlabresult = integral(@myfun, a, b);```其中,`@myfun`表示要计算积分的函数,`a`和`b`分别是积分的下限和上限。
计算结果将保存在变量`result`中。
除了使用匿名函数外,还可以使用已有的函数进行积分计算。
例如,假设有一个已有的函数文件`myfun.m`,其中定义了函数`myfun`,则可以直接使用该函数进行积分计算:```matlabresult = integral(@myfun, a, b);```在某些情况下,积分区域可能非常复杂,无法用简单的下限和上限表示。
这时可以将积分区域分割成多个小区间,然后分别进行积分计算,并对结果进行求和。
下面以一个例子进行说明。
假设要计算函数 f(x) = x^2 在区间 [a, b] 上的定积分,但是积分区域[a, b] 可以分为多个子区间。
首先,我们需要将区间 [a, b] 分割成 n 个小区间,每个小区间的宽度为Δx = (b-a)/n。
然后,可以使用循环结构来计算每个小区间的积分,并将结果相加,得到最终的积分结果。
具体操作如下:```matlabn = 100; % 分割的小区间个数a = 0; % 积分下限b = 1; % 积分上限dx = (b - a) / n; % 小区间宽度result = 0; % 积分结果for i = 1:nx = a + (i - 0.5) * dx; % 小区间中点y = myfun(x); % 函数值result = result + y * dx; % 积分结果累加end```完成循环后,变量`result`即为所求的积分结果。