因式分解--方法三
十字相乘法
一、整式的有关概念
1、单项式:数与字母乘积,这样的代数式叫单项式。 单独的一个数或字母也是单项式。
2、单项式的系数: 单项式中的数字因数。
3、单项式的次数:单项式中所有的字母的指数和。 4、多项式: 几个单项式的和叫多项式。 5、多项式的项:组成多项式中的单项式叫多项式的项 6、多项式的次数: 多项式中次数最高的项的次数叫做这个多项式的次数。
.
( xa) b ( x )x 2 ( ab )axb
x2(ab) xab (x+a)(x+b)
例:1把x2 5x6分解因式;
解:原式= (x+2)(x+3)
x
2
x
3
2x+3x=5x
(1).因式分解拆两边;
(2).交叉相乘验中间;
3x +2x=5x
(3).竖着分解横着写;
.
(x+2)和(x+3)
x2 2x15分解因;式
解 :原 x 2 式 2 x 3 x 2 3
x2(23)x6
x25x6
(3). (x-2)(x-3);
(4)(x+a)(x+b);
.
( xa) b ( x )x 2 ( ab )axb
反过来: x2(ab)xab(x+a)(x+b)
也就说 是,对于二次三 x2 项 px式 q,如果常q 能分为 解分解为两 数a个 ,b的 因 积,并且 abp时, (a与b和是一次项的系数)就可以用上面的 解公 因.式 式
3. 若 多 项项 M 分解的因式是 (x - 2)(x - 3), 则 M 是 ( C)
A. x 2 5x 6;