计量经济学模型的估计办法与模型检验
- 格式:pptx
- 大小:143.05 KB
- 文档页数:5
简答题一、计量经济学的步骤答:选择变量和数学关系式 —— 模型设定 确定变量间的数量关系 —— 估计参数 检验所得结论的可靠性 —— 模型检验 作经济分析和经济预测 —— 模型应用 二、模型检验答:所谓模型检验,就是要对模型和所估计的参数加以评判,判定在理论上是否有意义,在统计上是否有足够的可靠性。
对计量经济模型的检验主要应从以下四方面进行:1、经济意义的检验。
2、统计推断检验。
3、计量经济学检验。
4、模型预测检验。
三、模型应用 答:(1)经济结构分析,是指用已经估计出参数的模型,对所研究的经济关系进行定量的考查,以说明经济变量之间的数量比例关系。
(2)经济预测,是指利用估计了参数的计量经济模型,由已知的或预先测定的解释变量,去预测被解释变量在所观测的样本数据以外的数值。
(3)政策评价,是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案作出评价。
(4)检验与发展经济理论,是利用计量经济模型去验证既有经济理论或者提出新的理论。
四、普通方法的思想和它的计算方法答:计量经济学研究的直接目的是确定总体回归函数12,然而能够得到的知识来自总体的若干样本的观测值,要用样本信息建立的样本回归函数尽可能“接近”地去估计总体回归函数。
为此,可以以从不同的角度去确定建立样本回归函数的准则,也就有了估计回归模型参数的多种方法。
例如,用生产该样本概率最大的原则去确定样本回归函数,成为极大似然发展;用估计的剩余平方和的最小的原则确定样本回归函数。
称为最小二乘法则。
为了使样本回归函数尽可能接近总体回归函数,要使样本回归函数估计的与实际的的误差尽量小,即要使剩余项越小越好。
可是作为误差有正有负,其简单代数和∑最小的准则,这就是最小乘准则,即∑∑∑五、简单线性回归模型基本假定 答:(1)对模型和变量的假定,如12i i iY X u ββ=++①假定解释变量x 是确定性变量,是非随机的,这是因为在重复抽样中是取一组固定的值.或者虽然是随机的,但与随机扰动项也是不相关;②假定模型中的变量没有测量误差。
计量经济学的模型方法本文就计量经济学模型方法的几个哲学基础问题进行讨论。
(一)计量经济学模型的检验与发现一般认为的“只能检验,不能发现”,对于狭义的计量经济学模型方法,即模型检验而言是成立的,但广义的或者说完整的计量经济学模型方法,包括模型设定和模型检验两个阶段,是一个能够作出科学发现的研究过程。
狭义的计量经济学,它以模型估计和模型检为核心内容,说到底,就是回归分析。
那么它显然处于对假说进行检验的位置。
回归分析是一种统计分析方法,它针对已经设定的总体回归模型,按照随机抽样理论抽取样本观测值,采用适当的模型估计方法估计模型参数,并进行严格的检验,得到样本回归函数,从而完成统计分析的全过程。
统计分析给出的只是必要条件而非充分条件。
经济行为中客观存在的经济关系,一定能够通过表征经济行为的数据的统计分析而得到检验。
如果不能通过必要性检验,在表征经济行为的数据是准确的和采用的统计分析方法是正确的前提下,只能质疑所设定的经济关系的合理性和客观性。
但是反过来,如果在统计分析中发现了新的数据之间的统计关系,并不能就此说发现了新的经济行为关系,因为统计关系不是经济关系的充分条件。
毫无疑问,从这个意义上讲,计量经济学模型只能检验理论而不能发现理论。
尽管狭义的计量经济学模型方法的功能是有局限的,只能检验,不能发现,但它仍然是任何科学的经济学研究所不可或缺的。
经济研究以至于整个社会科学研究的一个显著特点是没有实验室,不可能通过实验室的实验来检验理论假设,那么回归分析就成为不可替代的检验方法。
广义的计量经济学,是经济理论、统计学和数学的结合。
计量经济学模型研究的完整框架是:关于经济活动的观察即行为分析关于经济理论的抽象即理论假说建立总体回归模型获取样本观测数据估计模型检验模型应用模型。
我们不妨称之为“广义的计量经济学模型理论与方法”。
大量有价值的应用计量经济学模型的实证经济研究成果,并不是“没有理论的检验”,都是首先提出理论假说,然后进行检验。
所有计量经济学检验方法1. OLS回归分析:OLS(Ordinary Least Squares)是一种常用的回归分析方法,它通过最小二乘估计来计算自变量对因变量的影响。
OLS回归分析可用于检验两个或多个变量之间的关系。
2.t检验:t检验用于检验样本均值与总体均值之间的差异是否显著。
在计量经济学中,常常用t检验来检测回归系数的显著性,即判断自变量对因变量的影响是否显著。
3.F检验:F检验用于检验回归模型的整体显著性。
通过F检验可以判断回归模型中自变量的组合对因变量的影响是否显著。
4.残差分析:残差分析用于检验回归模型的拟合优度。
它通过对回归模型的残差进行统计分析,判断残差是否符合正态分布、是否存在异方差等,并据此评估回归模型的合理性。
5.雅克-贝拉检验:雅克-贝拉检验用于检验时间序列数据的自相关性。
自相关性是指时间序列数据中的随机误差项之间存在相关性,为了使回归模型的估计结果有效,需要排除自相关性的影响。
6. ARIMA模型:ARIMA(Autoregressive Integrated Moving Average)模型是一种常用的时间序列分析模型,用于分析和预测时间序列数据。
ARIMA模型可以用于检验时间序列数据的平稳性和趋势。
7. Granger因果检验:Granger因果检验用于检验两个时间序列变量之间的因果关系。
通过检验一个变量的过去值对另一个变量的当前值的预测能力,可以判断两个变量之间是否存在因果关系。
8.卡方检验:卡方检验用于检验两个或多个分类变量之间是否存在显著差异。
在计量经济学中,卡方检验常用于检验变量之间的相关性和拟合优度。
9.随机效应模型和固定效应模型:随机效应模型和固定效应模型是面板数据分析中常用的方法。
它们通过考虑个体特征对经济现象的影响,帮助研究人员解决面板数据中存在的个体特征和时间特征之间的内生性问题。
10.引导变量法:引导变量法用于解决因果关系中的内生性问题。
通过引入其他变量作为工具变量,可以将内生性引起的估计偏误消除或减小。
目录一、加载工作文件 (7)二、选择方程 (7)1.作散点图 (7)2.进行因果关系检验 (9)三、一元线性回归 (10)四、经济检验 (12)五、统计检验 (13)六、回归结果的报告 (15)七、得到解释变量的值 (15)八、预测应变量的值 (17)实验二一元线形回归模型的估计、检验和预测实验目的:掌握一元线性回归模型的估计、检验和预测方法。
实验要求:选择方程进行一元线性回归,进行经济、拟合优度、参数显著性和方程显著性等检验,预测解释变量和应变量。
实验原理:普通最小二乘法,拟合优度的判定系数R2检验和参数显著性t检验等,计量经济学预测原理。
实验步骤:已知广东省宏观经济部分数据如表2-1所示,要根据这些数据研究和分析广东省宏观经济,建立宏观计量经济模型,从而进行经济预测、经济分析和政策评价。
实验二~实验十二主要都是用这些数据来完成一系列工作。
表2-1 广东省宏观经济数据续上表续上表一、加载工作文件广东省宏观经济数据已经制成工作文件存在盘中,命名为GD01.WF1,进入EViews后选择File/Open打开GD01.WF1。
二、选择方程根据广东数据(GD01.WF1)选择收入法国国内生产总值(GDPS)、财政收入(CS)、财政支出(CZ)和社会消费品零售额(SLC),分别把①CS作为应变量,GDPS作为解释变量;②CZ作为应变量,CS作为解释变量;③SLC作为应变量,GDPS作为解释变量进行一元线性回归分析。
1.作散点图从三个散点图(图2-1~图2~3)可以看出,三对变量都呈现线性关系。
图2-1 图2-2图2-3 2.进行因果关系检验从三个因果关系检验可以看出,GDPS是CS的因;CS不是CZ 的因;GDPS不是SLC的因。
但根据理论CS是CZ的因,GDPS是SLC的因,可能是由于指标设置问题。
所以还是把CS作为应变量,GDPS作为解释变量;CZ作为应变量,CS作为解释变量;SLC作为应变量,GDPD作为解释变量进行一元线性回归分析。
经济学研究中的计量经济学模型评估在经济学研究中,计量经济学是一种重要的方法论,通过建立和评估经济模型来研究经济现象和政策效果。
计量经济学模型评估是对经济模型有效性和可靠性的评估,它在经济研究中扮演着至关重要的角色。
首先,计量经济学模型评估需要建立适当的经济模型。
构建经济模型时,需要明确关注的经济问题、变量的选择和理论依据。
经济模型应该能够准确地描述经济现象,并具有可估计的参数,为后续的模型评估奠定基础。
接下来,模型评估的一项重要任务是进行模型的参数估计。
参数估计是通过收集和分析可用数据来确定模型中的未知参数。
常见的参数估计方法包括最小二乘估计、极大似然估计等。
参数估计的质量对模型评估的准确性和可靠性至关重要。
在进行模型参数估计之后,评估模型的拟合优度也是计量经济学模型评估的重要任务之一。
拟合优度反映了经济模型对现实世界数据的拟合程度。
常用的拟合优度指标包括R平方、调整R平方等。
较高的拟合优度表明模型能够较好地解释和预测数据,增强了模型评估的可信度。
此外,计量经济学模型评估还需要进行模型的假设检验。
模型假设检验的目的是验证模型的合理性和有效性。
常见的假设检验方法包括t检验、F检验等。
假设检验能够帮助我们判断模型中的变量是否具有统计显著性,从而评估模型的可用性。
除了对模型的参数估计、拟合优度和假设检验进行评估外,计量经济学模型评估还需要考虑模型的稳健性。
稳健性评估是通过对模型进行敏感性分析,检验模型在参数值或某些条件变化时的稳定性和鲁棒性。
稳健性评估可以增加模型评估的可靠性和泛化能力。
此外,计量经济学模型评估还需要进行模型的预测和验证。
模型的预测性能是评估模型性能的重要指标之一。
通过对模型进行预测,可以验证模型的有效性和可靠性。
在模型预测中,可以运用回归分析、时间序列分析等方法进行验证。
最后,计量经济学模型评估还需要进行模型结果的解释和政策分析。
对模型结果的解释是为了从理论角度深入理解模型产生结果的原因和机制。
1. 模型的检验包括哪几个方面?具体含义是什么?模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。
①在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号、大小、参数之间的关系是否与根据人们的经验和经济理论所拟订的期望值相符合; ②在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质,有拟合优度检验、变量显著检验、方程显著性检验等;③在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;④模型的预测检验,主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
2. 计量经济学研究的基本步骤是什么?包括四个步骤:理论模型的设定、模型参数的估计、模型的检验、模型的应用。
3. 总体回归函数和样本回归函数之间有哪些区别与联系?样本回归函数是总体回归函数的一个近似。
总体回归函数具有理论上的意义,但其具体的参数不可能真正知道,只能通过样本估计。
样本回归函数就是总体回归函数的参数用其估计值替代之后的形式,即01ˆˆββ,为01ββ,的估计值。
4. 为什么用可决系数2R 评价拟合优度,而不是用残差平方和作为评价标准? 可决系数R 2=ESS/TSS=1-RSS/TSS ,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣,该值越大说明拟合的越好;而残差平方和与样本容量关系密切,当样本容量比较小时,残差平方和的值也比较小,尤其是不同样本得到的残差平方和是不能做比较的。
此外,作为检验统计量的一般应是相对量而不能用绝对量,因而不能使用残差平方和判断模型的拟合优度。
5. 根据最小二乘原理,所估计的模型已经使得拟合误差达到最小,为什么还要讨论模型的拟合优度问题?普通最小二乘法所保证的最好拟合是同一个问题内部的比较,即使用给出的样本数据满足残差的平方和最小;拟合优度检验结果所表示的优劣可以对不同的问题进行比较,即可以辨别不同的样本回归结果谁好谁坏。
模型旳计量经济学检查一、 概念1、 异方差:2)(i i Var σε=,随机扰动项旳方差随解释变量(被解释变量)旳变化而变化2、 自有关:s t E s t ≠≠ , 0)(εε时。
一阶自有关:t t t v +=-1ρεε,0≠ρ,t v 中不存在自有关性;二阶自有关:t t t t v ++=--2211ερερε,02≠ρ,t v 中不存在自有关性。
3、 多重共线性:完全多重共线性:1)(+<k X Rank ,02211=+++k k x x x λλλ ;不完全多重共线性:02211=++++u x x x k k λλλ二、 产生旳背景1、 异方差● 模型设立错误(缺失解释变量、函数形式设立错误);● 样本数据旳观测误差;● 异常值旳影响。
2、 自有关● 经济变量旳惯性作用;● 经济行为旳滞后性;● 随机因素旳影响;●模型设立错误;●蛛网现象。
3、多重共线性●经济变量变化趋势旳共向性;●经济变量之间旳密切内在联系;●模型中使用滞后变量;●模型设立中变化选择不当。
三、产生旳影响1、异方差●最小二乘估计无偏,参数估计值旳方差不再最小;●t检查失效(也许浮现虚假通过现象);●估计与预测精度减少。
2、自有关:●最小二乘估计无偏,参数估计值旳方差不再最小;●∧2σ低估2σ;●t检查失效(也许浮现虚假通过现象);●估计与预测精度减少。
3、多重共线性(不完全多重共线性)●难于区别单个解释变量旳作用、回归模型缺少稳定性;●参数估计旳原则差扩大(膨胀);●t检查失效(也许浮现虚假通但是现象);●估计与预测精度减少。
四、检查措施1、 异方差● 图示法:⏹一元模型:Scat x y ⏹ 多元模型:Scat y e● 有关性检查:残差与解释变量或被解释变量与否存在较强有关性● GoldFeld-Quandt 检查● White 检查● ARCH 检查2、 自有关● 图示法: Scat e e(-1);● 有关性检查:残差与其滞后项与否存在较强有关性;● D-W 检查:根据DW 记录量与U L d d ,旳比较得出检查成果;● Breusch-Godfrey 检查(高阶自有关检查、辅助回归法):根据辅助回归模型旳2nR 与)(2p αχ旳比较得出检查成果。
计量经济学模型建立的步骤
建立计量经济学模型的步骤可以概括为以下几个阶段:
1. 模型的设定:首先确定研究的目标和问题,然后根据理论基础和研究对象的特点,选择适当的经济学理论模型作为分析框架。
2. 设定假设:根据模型设定的理论框架及前提条件,对模型中的关键变量进行假设设定,包括变量之间的函数形式、参数的取值范围以及各种约束条件。
3. 数据收集与处理:收集与研究问题相关的数据,对数据进行处理和整理,包括数据清洗、缺失值处理、数据变换等。
4. 模型估计与检验:根据设定的经济模型,利用计量经济学的方法进行模型的估计与检验,确定模型中的参数估计值,并对估计结果进行合理性检验,如参数的显著性检验、模型的拟合优度检验等。
5. 模型解释和分析:根据模型的估计结果,进行解释和分析,研究变量之间的关系、因果关系以及对实际问题的影响等,并提出相应的政策建议或研究结论。
需要注意的是,以上的步骤是一个一般性的描述,实际建立计量经济学模型时可能会因研究问题的不同而有所变化。
此外,在每个阶段都需要进行严谨的理论分
析和数据处理工作,以确保模型的可靠性和有效性。