计量经济学6 经典计量经济学应用模型
- 格式:pdf
- 大小:825.16 KB
- 文档页数:131
§1.3 计量经济学模型的应用经济系统中各部分之间、经济过程中各环节之间、经济活动中各因素之间,除了存在经济行为理论上的相互联系之外,还存在数量上的相互依存关系。
研究客观存在的这些数量关系,是经济研究的一项重要任务,是经济决策的一项基础性工作,是发展经济理论的一种重要手段。
计量经济学则是经济数量分析的最重要的分支学科。
计量经济学模型的应用大体可以被概括为四个方面:结构分析、经济预测、政策评价、检验与发展经济理论。
在本书后续章节中将结合具体计量经济学模型来解释每个方面的应用,这里,仅作一些概念性介绍,以期对后续课程的学习起到某些指导作用。
一、结构分析经济学中的结构分析是对经济现象中变量之间相互关系的研究。
它不同于人们通常所说的,诸如产业结构、产品结构、消费结构、投资结构中的结构分析。
它研究的是当一个变量或几个变量发生变化时会对其它变量以至经济系统产生什么样的影响,从这个意义上讲,我们所进行的经济系统定量研究工作,说到底,就是结构分析。
结构分析所采用的主要方法是弹性分析、乘数分析与比较静力分析。
弹性,是经济学中一个重要概念,是某一变量的相对变化引起另一变量的相对变化的度量,即是变量的变化率之比。
在经济研究中,除了需要研究经济系统中变量绝对量之间的关系,还要掌握变量的相对变化所带来的相互影响,以掌握经济活动的数量规律和有效地控制经济系统。
计量经济学模型结构式揭示了变量之间的直接因果关系,从模型出发进一步揭示变量相对变化量之间的关系是十分方便的。
乘数,也是经济学中一个重要概念,是某一变量的绝对变化引起另一变量的绝对变化的度量,即是变量的变化量之比,也称倍数。
它直接度量经济系统中变量之间的相互影响,经常被用来研究外生变量的变化对内生变量的影响,对于实现经济系统的调控有重要作用。
乘数可以从计量经济学模型的简化式很方便的求得。
关于计量经济学模型的结构式和简化式的概念,将在第四章专门介绍,简单地说,结构式的解释变量中可以出现内生变量,而简化式的解释变量中全部为外生或滞后内生变量。
第7章计量经济学应用模型1.分析教材例7.1.1中的问题,回答:为什么按照(1)、(2)、(3)的方法建立的农户借贷因素分析模型都是不正确的?答:(1)若仅利用2820户发生借贷的农户为样本,以他们的借贷额为被解释变量,各种影响因素为解释变量建立的农户借贷因素分析模型是不正确的。
在损失大量样本(丢弃的样本占总样本的44.7%)导致回归精度下降的同时,如果再对其进行经典的截面数据模型分析,将会出现样本选择性问题,应该建立“选择性样本”模型,而不是经典回归模型,属于模型类型选择错误。
(2)若选用所有的5100户作为样本,以其借贷额为被解释变量,将没有发生借贷行为的农户的借贷额记为0(约占总样本的45%),进行经典的截面数据模型分析,这将会在模型中包含实际上并不满足要求的样本数据,属于“选择性样本”数据,仍然应该建立“选择性样本,模型,而不是经典回归模型,属于模型类型选择错误。
故此方法建立的农户借贷因素分析模型是不正确的。
(3)若将没有发生借贷的农户的借贷额视为小于等于0,建立Tobit模型进行回归分析,考虑了样本的选择性。
因此,从模型类型选择的角度,是正确的。
但这种处理方式同样会导致回归结果的精度下降,这主要是因为将有发生借贷的农户的借贷额视为小于等于0的数据处理方式有失偏颇,其中可能存在有借贷需求,但出于某种原因(例如提出借贷被拒绝,担心借不到而不敢提出借贷要求)没有发生借贷的农户。
故此方法建立的农户借贷因素分析模型仍是不正确的。
2.分析教材例7.1.2中的问题,回答:如果建立某类商品的单方程需求函数模型,该模型在什么情况下是可以应用的?答:在计量经济学应用研究中,单方程模型和联立方程模型的选择对经济行为具有依赖性。
根据对需求行为的分析发现,人们对各种商品的需求量,是在预算约束下,由效用函数在效用最大化下导出的。
人们在决定对某种商品的需求量时,肯定会同时考虑对其他商品的需求量。
所以,从理论上讲,不能建立某类商品的单方程需求函数模型。
计量经济学的模型
计量经济学是一门运用数学、统计学和经济学理论来分析经济数据的学科。
它的核心是建立经济变量之间的数学模型,并利用实际数据进行估计和验证。
计量经济学模型通常由一组方程式组成,这些方程式描述了经济变量之间的关系。
其中,最常见的模型是线性回归模型,它假设因变量与自变量之间存在线性关系。
在建立计量经济学模型时,需要考虑许多因素,例如变量的选择、数据的收集和处理、模型的假设和限制等。
为了确保模型的可靠性和有效性,需要进行一系列的统计检验和诊断,例如拟合优度检验、异方差性检验、自相关检验等。
计量经济学模型可以用于预测经济变量的未来走势、评估政策的效果、检验经济理论的正确性等。
它在宏观经济、金融市场、产业经济等领域都有广泛的应用。
总之,计量经济学是一门重要的经济学分支,它通过建立数学模型来分析经济数据,为政策制定和经济决策提供了科学依据。
单方程计量经济学应用模型引言单方程计量经济学应用模型是经济学中常用的一种分析工具,它通过建立和估计单个经济变量〔即单方程模型〕的数学关系,来研究经济现象之间的因果关系。
本文将介绍单方程计量经济学应用模型的根本原理和常见的应用案例。
模型根本原理单方程计量经济学应用模型的根本原理是建立一个经济变量Y与其他相关变量X之间的数学关系。
这个数学关系通常采用线性回归模型来表示,即:Y = β0 + β1X1 + β2X2 + … + βnXn + ε其中,Y是被解释变量〔也称为因变量〕,X1, X2, …, Xn是解释变量〔也称为自变量〕,β0, β1, β2, …, βn是回归系数,ε是误差项。
通过对经济数据进行统计分析,我们可以估计出这些回归系数的值,从而得到关于经济现象之间的因果关系的量化结果。
应用案例消费者支出模型消费者支出是宏观经济中的一个重要变量,在经济政策制定和预测分析中起着重要的作用。
通过建立消费者支出模型,我们可以研究消费者支出与其他经济变量之间的关系,并预测未来的消费者支出水平。
消费者支出模型常常包括收入、利率、通货膨胀等变量作为解释变量,以消费者支出作为被解释变量。
通过对历史数据进行回归分析,我们可以估计出这些变量对消费者支出的影响,并进行预测。
投资决策模型投资是经济中的另一个重要变量,对经济增长和资源配置起着重要作用。
通过建立投资决策模型,我们可以研究投资与其他经济变量之间的关系,并预测未来的投资水平。
投资决策模型常常包括利率、企业利润、经济增长等变量作为解释变量,以投资作为被解释变量。
通过对历史数据进行回归分析,我们可以估计出这些变量对投资的影响,并进行预测。
价格影响模型价格影响模型是研究价格与其他经济变量之间的关系的重要工具。
通过建立价格影响模型,我们可以研究价格与供应、需求等因素之间的关系,并分析价格变动对经济的影响。
价格影响模型常常包括供应量、需求量、生产本钱等变量作为解释变量,以价格作为被解释变量。
3.5回归模型的其他函数形式一、模型的类型与变换1.倒数模型、多项式模型与变量的直接置换法2.幂函数模型、指数函数模型与对数变换法3.复杂函数模型与级数展开法 二、非线性回归实例 三、非线性最小二乘估计 1.普通最小二乘原.2.高斯-牛顿迭代法(对原始模型展开台劳级数,取一阶近似值)⒊ 牛顿-拉夫森迭代法大部分非线性关系又可以通过一些简单的数学处理, 使之化为数学上的线性关系, 从而可以运用线性回归模型的理论方法。
⒋应用中的一个困难如何保证迭代所逼近的是总体极小值(即最小值)而不是局部极小值?一般方法是模拟试验:随机产生初始值→估计→改变初始值→再估计→反复试验, 设定收敛标准(例如100次连续估计结果相同)→直到收敛。
⒌非线性普通最小二乘法在软件中的实现给定初值 写出模型 估计模型 改变初值 反复估计1一般情况下, 线性化估计和非线性估计结果差异不大。
如果差异较大, 在确认非线性估计结果为总体最小时, 应该怀疑和检验线性模型。
2非线性估计确实存在局部极小问题。
3根据参数的经济意义和数值范围选取迭代初值。
4NLS 估计的异方差和序列相关问题。
NLS 不能直接处理。
应用最大似然估计。
3.6受约束回归– 在建立回归模型时, 有时根据经济理论需要对模型中的参数施加一定的约束条件。
例如: – 需求函数的0阶齐次性条件 – 生产函数的1阶齐次性条件模型施加约束条件后进行回归, 称为受约束回归(restricted regression ); 未加任何约束的回归称为无约束回归(unrestricted regression )。
一、模型参数的线性约束 1.参数的线性约束2.参数线性约束检验具体问题能否施加约束?需进行相应的检验。
常用的检验有: F 检验、x2检验与t 检验。
F 检验: 1构造统计量;2检验施加约束后模型的解释能力是否发生显著变化。
第一步:给出参数估计值 β的初值 ()β0,将f x i(, )β在 ()β0处展开台劳级数, 取一阶近似值;第二步:计算 z df x d i i =(, ) ()βββ0和 ~(, ) ()()y y f x z i i i i =-+⋅ββ00的样本观测值; 第三步:采用普通最小二乘法估计模型 i i i z y εβ+=~,得到β的估计值 ()β1; 第四步:用 ()β1代替第一步中的 ()β0,重复这一过程,直至收敛。
计量经济学4种常用模型计量经济学是经济学的一个重要分支,主要研究经济现象的数量关系及其解释。
在计量经济学中,常用的模型有四种,分别是线性回归模型、时间序列模型、面板数据模型和离散选择模型。
下面将对这四种模型进行详细介绍。
第一种模型是线性回归模型,也是计量经济学中最常用的模型之一。
线性回归模型是通过建立自变量与因变量之间的线性关系来解释经济现象的模型。
在线性回归模型中,自变量通常包括经济学理论认为与因变量相关的变量,通过最小二乘法估计模型参数,得到经济现象的解释。
线性回归模型的优点是简单易懂,计算方便,但其前提是自变量与因变量之间存在线性关系。
第二种模型是时间序列模型,它主要用于分析时间序列数据的模型。
时间序列模型假设经济现象的变化是随时间演变的,通过分析时间序列的趋势、周期性和随机性,可以对经济现象进行预测和解释。
时间序列模型的常用方法包括自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)等。
时间序列模型的优点是能够捕捉到时间的动态变化,但其局限性是对数据的要求较高,需要足够的时间序列观测样本。
第三种模型是面板数据模型,也称为横截面时间序列数据模型。
面板数据模型是将横截面数据和时间序列数据结合起来进行分析的模型。
面板数据模型可以同时考虑个体间的差异和时间的变化,因此能够更全面地解释经济现象。
面板数据模型的常用方法包括固定效应模型、随机效应模型等。
面板数据模型的优点是能够控制个体间的异质性,但其需要对个体间的相关性进行假设。
第四种模型是离散选择模型,它主要用于分析离散选择行为的模型。
离散选择模型假设个体在面临多种选择时,会根据一定的规则进行选择,通过建立选择概率与个体特征之间的关系,可以预测和解释个体的选择行为。
离散选择模型的常用方法包括二项Logit模型、多项Logit模型等。
离散选择模型的优点是能够分析个体的选择行为,但其局限性是对选择行为的假设较强。
综上所述,计量经济学中常用的模型有线性回归模型、时间序列模型、面板数据模型和离散选择模型。