探究二
思维辨析
随堂演练
解:将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上,
如图,线段AA1的长为所求△AEF周长的最小值.
∵∠AVB=∠A1VC=∠BVC=30°,∴∠AVA1=90°.又 VA=VA1=4,∴AA1=4 2,∴△AEF周长的最小值为4 2.
反思感悟 本题是多面体表面上两点间的最短距离问题,常常要
答案:①③④⑤
防范措施 在解答关于空间几何体概念的判断题时,要注意紧扣定 义,切忌只凭图形主观臆断.同时立体几何问题中也要注意分类讨 论思想的应用,否则就会因审题片面而出错.
课堂篇探究学习
探究一
探究二
思维辨析
随堂演练
变式训练如图,甲、乙、丙是不是棱柱、棱锥、棱台?为什么?
解:题图甲这个几何体不是棱柱.这是因为虽然上、下面平行,但 是四边形ABB1A1与四边形A1B1B2A2不在一个平面内.所以多边形 ABB1B2A2A1不是一个平面图形,它更不是一个平行四边形,因此这 个几何体不是一个棱柱.题图乙中的六个三角形没有一个公共点, 故不是棱锥,只是一个多面体;题图丙也不是棱台,因为侧棱的延长 线不能相交于同一点.
①棱柱中互相平行的两个面叫做棱柱的底面;②各个面都是三角 形的几何体是三棱锥;③有两个面互相平行,其余四个面都是等腰 梯形的六面体是棱台;④四棱锥有4个顶点.
A.0个 B.1个 C.3个D.4个 分析所给命题→联想空间图形→紧扣棱柱、棱锥、棱台的结构 特征→作出判断 答案:A
探究一
探究二
思维辨析
随堂演练
探究一
探究二
思维辨析
随堂演练
课堂篇探究学习
解:作出三棱锥的侧面展开图,如图.A,B两点之间的最短绳长就是 线段AB的长度.OA=4,OB=3,∠AOB=90°,所以AB=5,即此绳在A,B 之间最短的绳长为5.